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Abstract 

We look at the decomposition of arbitrary f in L2(R) in terms of the family of functions 
cp , , (x )  = w-'/*exp{ - iimnab + iman - i ( x  - n b ) 2 } ,  with a, b > 0. We derive bounds and ex- 
plicit formulas for the minimal expansion coefficients in the case where ab = 2 w / N ,  N an integer 2 2 .  
Transported to the Hilbert space F of entire functions introduced by V. Bargmann, these results are 
expressed as inequalities of the form 

where z,, = ma + inb, m, M > 0, and (1 (1 is the norm in F, 

We conjecture that these inequalities remain true for all a ,  b such that ab < 2 r .  

1. Introduction 

In this paper we present some bounds on entire functions in the Bargmann 
space F. F is the complex vector space of entire analytic functions of one 
complex variable z = x + iy such that 

F is a Hilbert space with inner product 

dxdyf (x  + iy)  g ( x  + iy)exp{ - ( x 2  + y 2 ) / 2 }  
1 

(f,g> = G/L2 
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(We use the physicist’s convention, where the inner product is anti-linear in the 
first and linear in the second argument.) 

The space F has been discovered, re-discovered and studied by many authors. 
Its roots can be found in the search for a setting in which multiplication by z and 
differentiation with respect to z are each other’s adjoint (see Fischer [9] and Fock 
[lo]). The space itself made its full fledged appearance in Bargmann [3], [4], Segal 
[18] and Newman and Shapiro (151, [16]. The Hilbert space F has turned out to 
be useful in many different contexts. In mathematics, F has been used as a tool 
in the study of, for instance, the Fourier transform in [4] and convolution 
operators in [15], [16]. In physics, the space F arises naturally whenever the 
canonical coherent states (we shall give their definition below) are used in 
quantum mechanics (see e.g. Bargmann [3], or Chapter 7 in Klauder and 
Sudarshan [14]. For a recent review of the many applications in physics of 
canonical and other coherent states, see Klauder and Skagerstam [14]). 

The space F has a reproducing kernel (see Aronszajn [I]) or, equivalently, a 
family of elements e, that define evaluation functionals at a point. For any 
z E C,  the function e, is defined as 

e,(z’) = exp{ - SIZI’ + $5 z’}. 

Then e ,  E F, Ile,ll = 1, and, for every f E F, 

The vectors of the family { e,; z E C }  are not mutually orthogonal; they satisfy 

~ ( e , , e , , ) ~  = exp{-$Iz - ~ ’ 1 ’ ) .  

A unitary map from L2(R) onto F is given by the Bargmann transform U,. It 
is defined by: for cp E L2(W), 

Its inverse is given by: for f E F, 

where 

1 
dp(z) = ?- ,d(g&z) d(Ymz)exp{ -+1z1’}. 
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The image of e, under Uil is the function (with z = p + iq; p ,  q E W) 

= n-1/4exp{ - L~ 2 P4 >exp{ ipx bXP{ - t ( x  - d2} ; 

p P , 4  is in L2(R), I J I ~ P ’ ~ ) ) )  = 1. The absolute value of ‘ p P , q ( x )  is a Gaussian, 
peaked at x = q; the absolute value of its Fourier transform is also a Gaussian, 
peaked at p. The function (2) is called by physicists a (canonical) coherent state, 
and by engineers a Gabor wavelet (see [ll]). 

The motivation for the present paper is the study of expansions of an 
arbitrary f f L2(W) into discrete families of coherent states 

q m n ( x )  = n-’/4exp{ - $imnab}exp{ imax}exp{ - $ ( x  - nb)2}. 

Here a,  b are strictly positive; we shall discuss the families (qmn)m,nEZ and 
expansions with respect to these families for various possible choices of a,  b. 
Notice that the family ( ‘ p m n ) m , n E z  corresponds to a doubly periodic lattice of 
points in the complex plane, generated by the numbers a and ib: 

z,, = ma + inb. 

It is well known (see Bargmann, Butero, Girardello and Klauder [5 ] ,  
Perelomov [17] and Bacry, Grossmann and Zak [2]) that the family ( I J I , , , ~ ) ~ , ~ ~ ~  
is not complete in L2(R) if ab > 2n; only if ab 6 2n can the qmn give rise to an 
expansion formula for arbitrary f in L2(R). It is important at this point to 
remark that, for ab 2a, the vectors qmn are not “w-independent”, in the sense 
that one vector of the family lies in the closed linear span of the other vectors. If 
ab = 2n, then removing one qmn turns the remaining family into an w-indepen- 
dent set. If ub < 2a, then the family ( I J I ~ ~ ) ~ , ~ ~ ~  remains w-dependent even 
after removal of any finite number of qmn - s. 

We are interested in expansions of the form 

(3) 

for arbitrary f E L2(W). Expansions of this type were first suggested by Gabor 
[ll], with a view of applications in electric engineering. For a discussion of Gabor 
expansions, see Janssen [12]. 



154 I. DAUBECHIES AND A. GROSSMAN 

The family of vectors (qmn)m, defines a map T from vectors in L2(W) to 
(m, n)-sequences of complex numbers, by 

(4) (Tf)mn = ( q m n 7  f ) l  f €  L2(R). 

It follows from standard arguments (see Section 2) that this map is bounded from 
L2(W) to I2(Z X Z), for all a,  b > 0. That is, for all f E L2(R), 

C I ( q m n ,  f) I 2  5 ~ ( a ,  ~ ) I I ~ I I ~ *  
m , n € Z  

(5) 

The adjoint of T is the map from l 2  to L2(W) defined by 

T*C = C C m n q m n ,  
m , n c Z  

for all c = ( c ~ ~ ) ~ ,  E 12(Z X Z). One has thus, for all f E L2(W), 

If T*T is bounded below away from zero, i.e., if there exists a constant 
m(a, b )  > 0 such that, for all f E L2(R), 

C I ( q m n ,  f) I 2  2 m(a, ~ I I I ~ I I ~ ,  
m , n € Z  

(7) 

then the range of TCT is all of L2(W), and T*T has a bounded inverse. For any 
g E L2(W), g = T*Tf, we obtain then from (6) that 

This gives an expression of g in terms of the qmn. Notice that (7) is not only a 
sufficient, but also a necessary condition for the existence of an expansion of type 
(3), with square summable coefficients cmn, for arbitrary f E L2(W). 

Provided (7) holds, our analyzing and reconstruction procedure is the follow- 
ing. To every f~ L2(W) we associate a well-defined set of coefficients c,,(f) 
defined by 

(9) cmn ( f )  = (qmn 9 ( T*T) - I f  >. 

The sequence c(f)  = ( ~ , , ( f ) ) ~ , ~ ~ ~  is in 1 2 ;  the function f can be recon- 
structed from this sequence by 
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In general the sequence ( c,,( f)),, , z, defined by (9), is not the only sequence 
satisfying (3) for a given f E  L2(W). This is because the range of T may be a 
closed proper subspace of 1 '. Among all the sequences ( c,,),, , satisfying (3) 
(f fixed), the sequence (~,,(f)),,,~~ has minimal norm. Because of the 
non-zero lower bound (7) the whole procedure (9) + (10) is stable. 

We shall prove in Section 2 that (7) holds, with m > 0, for ab = 2n/N, 
N an integer, N 2 2. We shall give below an explicit formula for ( P T ) - l  in 
these cases (see (23)). The expansion (9) + (10) has been mainly studied in the 
case ab = 2 v ,  where, as we shall prove below, (7) does not hold. As a result the 
expansion (9) + (10) is then a purely formal expression in general, and the 
coefficients c , , ( f )  may be rather ill-behaved. For this reason the Gabor expan- 
sion (9) + (lo), with ab = 27r, is considered to be less useful than e.g. the Wigner 
distribution method (see Janssen [12] for a comparison of the two methods). If 
one takes however ab = s (for instance), then the Gabor expansion is perfectly 
well-defined and presents no convergence problems; it should prove to be a 
useful tool. The fact that the q,,, are not w-independent does not pose any 
problem, as we saw above, even though this w-dependence causes the c,, in (3) 
to be non-unique. For ab = v,  the q,, are basically an oversampling sequence of 
Gabor wavelets. 

A family of vectors ( q j ) j E J  in a Hilbert space 2 for which there exist 
constants m, M > 0 such that, for all f E 2, 

is called a frame (see Duffin and Schaffer [8], Young [21]). It is clear that 
(5) + (7) are nothing else than (11). We believe that frames can be very 
important in signal analysis, as illustrated by the Gabor expansion example 
above. We have studied other examples elsewhere (see Daubechies, Grossmann 
and Meyer [7]); we even constructed explicit examples of frames, which we called 
tight frames, for which m = M, or equivalent P T  = ml. The expansion (9) + (10) 
becomes then particularly simple (see (71). 

Let us now see what all this has to do with entire functions. We can transpose 
all the L2(R)-statements to the Hilbert space F of entire functions, by means of 
the unitary map Ui'. In the theorem below we state our various results in terms 
of explicit estimates for functions in F. We give explicit expressions for all the 
constants involved, and list all the cases we are able to treat. Proofs are given in 
Section 2. 

THEOREM . Define z,, = ma + inb, where a ,  b > 0, 

i.e., 

e, , (z)  = exp{ - f l z , , ~ ~  + fz *z}. 
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For N an integer, N 2 1, and t ,  s E [ - 4, 41, let 

2 
b S ( b ,  N ;  t ,  s )  = -exp{ -s2b2 
J;; r=O 

b N-1 2 
- - - 

C 1 exp{2vil(t - r /N)}exp(  - $b2(1 + s)’} I , 
r=O I E Z  

where 9, is one of Jacobi’s theta-functions, i.e., with the notations of e.g. Bateman 
[61, 

m 

g3(z17) = 1 + 2 C c o s 2 n 1 z e x p { i n ~ 1 ~ } .  
I -  I 

Then : 
(i) For all a ,  b > 0, for all f E F, 

C 
m, n c Z  

I(emn, f)12 s ~ 1 ( a ,  b)tIfI12, (12) 

or, equivalently, 

with 

W W 

(ii) For ab = 2a/N, with N an integer, N 2 1, the above inequality can be 
sharpened. That is, (12) and (13) still hold if we replace Ml(2n/Nb,  b )  by the 
smaller constant 

M2( $, b )  = sup S ( b ,  N ;  t ,  s ) .  
r ,  s E[ - 5, f ]  

For the cases ab = 2v /N ,  (15) is the best constant possible, i.e., 
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(iii) For ab = 2n/N, with N an integer, N 2 2, we have furthermore that 

or equivalently, 

with 

= inf S(b ,  N ; t , s )  > 0. 
r , s c [ -  $ , + I  

Again this is the best constant possible in the inequalities (17) or (18), i.e., 

(iv) In  the case ab 2 2n, there is - no constant m(a, b) > 0 for which (17) 
would hold for all f E F. In other words, 

Remarks. 1. If ab > 2n, one can explicitly construct non-zero functions f in 
F vanishing at all the zmn. One such example is f(z) = B,(a-'zlia-'b) where 8,  
is another of Jacobi's theta-functions (see IS]). For these functions (emn, f )  = 0 
for all m, n E Z, while nevertheless f E F. This implies (21) for ab > 28. 

2. Relations (16) and (17) follow from an explicit construction (see Section 2), 
showing that the map P T  E .%?(L2(W)) defined by 

is unitarily equivalent to a multiplication operator. The unitary transform used in 
this construction maps Lz(W) onto L2([ - f, b] X [ - ;,+I); it is defined by 
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with inverse 

where the notation \ y ]  denotes the largest integer not exceeding y. VZ,6 is the 
Zak transform (see [22]; we give a few more details in Section 2). We prove in 
Section 2 that, for ab = 2 n / N ,  N integer, N 2 1, 

(22)  VZ,6PTV;,\ = multiplication byS(b, N ;  t ,  s ) .  

Consequently, 

inf S ( b ,  N ;  t ,  s )  5 P T  sup S ( b ,  N ;  t ,  s ) ,  
r ,  SE[- f ,  t ]  1 ,  . € [ - f , f l  

which proves (15), (16) and (17), (18). The continuity of the function S(b ,  N ;  0 ,  0 )  

moreover implies that these are the best possible upper and lower bounds. 
3. For ub = 2n, T*T is unitarily equivalent to multiplication by S(b, 1; t, s). 

Since 03(3 + ib2/4nlib2/2a) = 0, we find S(b,  1 ;  $, 4) = 0. This implies that 
the spectrum of P T  is of the form [0, A ] .  Hence (21) follows. 

4. If however ab = 2 n / N  with N an integer, N 2 2, then (\l;F/b)S(b, N ;  t, s) 
is the sum of at least two squares of absolute values of 03-functions with 
non-coinciding zeros. This implies inf, [ -  t, $(b, N ;  t ,  s )  > 0, or m(21r/Nb, b) 
> 0. 

5. The unitary equivalence (22) also enables us to make the analyzing and 
reconstruction procedure (9) + (10) completely explicit. Choose a, b > 0 such 
that 27r/ab is an integer N 2 2. Let qmn E L2(W) be the associated discrete 
family of coherent states, 

c p , , ( x )  = ~ - ' / ~ e x p (  -nimn/N}exp(2simx/Nb}exp{ - $ ( x  - nb)') .  

Then f E L'(R) can be written as 

f =  C C m n ( f ) q m n  
m ,  n c Z  

with, m = N k  + r ,  k ,  r E h, 0 5 r < N ,  

= &T- ' /~(  - 1) k"exp{ innr/N } 

dt exp{ -2nis (k  + r / N ) }  
(23) 

-1/2 -1/2 
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6. In the following two tables we give numerical values of the constants 
M,,M, for ab = 2s, and of M,,M,, m for ab = s. 

Table I. 
b 
.5 

1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

Mi(2g/b, b )  M,(2g/b, b )  
7.090 7.090 
3.545 3.545 
2.422 2.365 
2.073 1.824 
2.015 1.669 
2.050 1.769 
2.159 1.992 
2.339 2.260 

Table 11. 

.5 7.091 
1 .o 4.146 
1.5 4.001 
2.0 4.000 
2.5 4.014 
3.0 4.100 
3.5 4.319 
4.0 4.679 

7.090 
3.546 
2.482 
2.425 
2.843 
3.387 
3.949 
4.514 

. m 7  

.601 
1.540 
1.600 
1.178 
.713 
.369 
.165 

In [6] we studied the expansion problem (3) for a different family of qmn, 
based on a continuous function with compact support rather than on a Gaussian 
as used here (see (2)). In that case we could prove the lower bound (7), with 
non-zero m, for all a ,  b with ab < 2s (ab = 2s being excluded‘there too). These 
lower bounds cannot be translated into estimates of type (18) for entire func- 
tions. It nevertheless seems reasonable to conjecture that also in the present 
setting (7) should hold, with m =- 0, for all ub < 2s. This would mean the 
existence of bounds of type (17) or (18) for all ab c 297 (rather than only 
ub = 297/N, N integer, N 2 2, as proved here). We hope to have made a 
convincing case of the interest of such bounds. We would feel gratified if experts 
on entire functions (which we are not) were motivated by our results to study this 
matter. 

Before we proceed to the proof of our theorem, let us make two more 
remarks. The first is that while we worked here with only one complex variable, 
the generalization to any finite number of variables is straightforward. The 
second is that we want to stress that the question we have raised here is different 
from the question whether the ( zm,Jm,  constitute an interpolating sequence 
in the sense of Shapiro [19] or Young [21]. For ab large enough, the family 
( zmn)m, is a “universal interpolating sequence” (see Shapiro [19], page 96). 
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For ab 5 2n however, the case of most interest to us, the family ( z ~ , , ) ~ ,  is 
not an interpolating sequence. The difference can be easily explained in terms of 
the operator T defined by (4). A family of points ( z ~ ) ~ ~ ,  is an interpolating 
sequence (in the sense of [19] or [21]) if and only if the associated map f from F 
to 1 2 ( J ) ,  defined by 

( S ) j  = k,, f), 

is bounded and surjective. Since the em, = ezmn are not a-independent for 
ab 5 2n, the associated map = T U i ’  is not surjective. 

2. Proofs 

We start by proving the bound (12) + (14), using standard arguments (see e.g. 
Shapiro [19], Section 6.2 or Young [21], Section 4.2). The bound (12) can be 
rewritten as 

where T is the operator from L2(W) to l 2  defined by (4), i.e., ( T f ) , ,  = (cp,,, f). 
The bound (24) is equivalent to 

( 2 5 j  IlTT*lI 6 M A 4  b ) .  

A sufficient condition for the infinite hermitian matrix ((cp,,, ‘p,., ,,.)),, n;  m,. ,,, to 
define a bounded operator on 12(Z X Z) is given by: for all m‘, n’ E Z, 

If (26) is satisfied, one easily derives (25), with M,(a,  6) = M, by using the 
Cauchy-Schwarz inequality (see [19], (211). In our present case we have (use (1)) 

= exp{ -+(m - m 1 ) 2 ~ 2  - +(TI  - n’ ) ’b2} .  

This implies that the sufficient condition (26) is satisfied. 
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Indeed, for all m', n' E E ,  

161 

= e3 (0 1 i~ IT ) o3 ( o lib2/4 IT). 

This proves (12), (14). 

As pointed out in the remarks following the theorem, all the other statements 
in the theorem follow from the unitary equivalence (22). We now proceed to 
prove this unitary equivalence. For a 7 0, we define the Zak transform Vz,a: 
L 2 ( W )  + L2([ - I 2 1  1 21 x [ -  3, $1) by 

Strictly speaking, the series in the right-hand side need not converge for an 
arbitrary f E  L2(W). For f E CF(R), the set of C"-functions with compact 
support, (27) is well defined however (only a finite number of terms contribute), 
and one easily checks IlV,,.fII = I l f l l .  Since C,"(R) is dense in L2(R) 
we can extend Vz,a to all of L2(W). One finds that the range of Vz,a is all of 
L2([ - $, $1 X [ - $, $1) (see [2]; this follows also from our calculations below). 
Hence V'z,a is unitary. 

There exists a link between the Zak transform and an abelian subfamily of 
the Weyl operators. The Weyl operators are a family of unitary operators 
W( p ,  q )  of fundamental importance in quantum mechanics (see Weyl [20]). On 
L2(R)  they are defined by 

The coherent states defined by (2) can be seen as an orbit of the family of Weyl 
operators, 

cpJ',q = W( p ,  q ) t p 0 * O  with tpo*o(x) = ~ - ~ / ~ e x p {  - )x2}. 

For any a E R*, the subfamily of Weyl operators W(m27r/a, na), with m, n E k, 
is abelian. The following simple relationship links this abelian subfamily with the 
Zak transform. For all f E L2(R),  
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This implies that, for all f, g E L2(R), 

ds exp { 2aitn } exp { - 2nims } 
m ,  n c Z  

Let us now apply all this to the problem at hand. Suppose that ab = 2n/N wil 1 
N an integer, N 2: 1. Take a = 6. For m = Nk + r, with k, r E h, 0 r < N, 

On the other hand, 

= &77-1’4 exp{2sitl}exp{i2ar(s - l)/N}exp{ - i b 2 ( s  - 1)’) 
I C Z  

= ~n-1/4exp{2nirs/N} exp{2aiZ(t - r/N)}exp{ - $ b 2 ( s  - 1 ) 2 } .  
I c Z  

Hence 

b N-1 = - c  
6 r - 0  

= S ( b ,  N; 

2 c exp{2ail(t - r/N)}exp{ - $b2(s - Z)’} 1 
I €  z 

, s). 
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Putting everything together, we find 

( f , P T f )  = c l(%Wf)l2 
m .  n € Z  

= J1l2 dt J1/’ d r S ( b ,  N ;  t ,  s ) ( ( V Z , b f ) ( t ,  s )  12.  
-1/2 -1/2 

This shows that Vz, bPTV;,\ is multiplication by S(b,  N t, s). Together with the 
remarks listed following the theorem, this proves the theorem. 

Acknowledgment. The work of the first author was done while she was a 
visiting member of the Courant Institute of Mathematical Sciences, on leave from 
the department of Theoretical Physics, Vrije Universiteit, Brussels, Belgium, as 
“ Bevoegdverklaard Navorser” at the Belgian National Science Foundation. 

Note added in proof: After the submission of this paper, the conjecture that 
(17) should hold, M > 0, for all ab < 2?r, was partially proved by one of us. It 
turns out that the emn constitutes a frame for all ab < 277 X .996. The full 
conjecture (I.E., for ab up to 277) is still open. This new result will be published 
in The wavelet transform, time-frequency and signal analysis, by I. Daubechies, 
submitted to IEEE Trans. Inf. Theory. 
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