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FRAMES, RIESZ BASES, AND DISCRETE GABOR/WAVELET
EXPANSIONS

OLE CHRISTENSEN

Abstract. This paper is a survey of research in discrete expansions over the
last 10 years, mainly of functions in L2(R). The concept of an orthonormal
basis {fn}, allowing every function f ∈ L2(R) to be written f =

∑
cnfn for

suitable coefficients {cn}, is well understood. In separable Hilbert spaces, a
generalization known as frames exists, which still allows such a representation.
However, the coefficients {cn} are not necessarily unique. We discuss the rela-
tionship between frames and Riesz bases, a subject where several new results
have been proved over the last 10 years. Another central topic is the study of
frames with additional structure, most important Gabor frames (consisting of
modulated and translated versions of a single function) and wavelets (trans-
lated and dilated versions of one function). Along the way, we discuss some
possible directions for future research.

1. Introduction

The theory for frames and bases has developed very fast over the last 10 years,
especially in the context of wavelets and Gabor systems. For a whole generation
of researchers and Ph.D. students, the starting point has been the article [24] by
Daubechies, her book [25], and the survey paper by Heil and Walnut [37]. The
purpose of the present paper is to give a unified approach to the newest research
generalizing the results from [37]. With a few exceptions we use the notation from
[37]. Thus, the paper can be thought of as an (independent) continuation of [37].

Let L2(R) denote the space of square integrable functions (w.r.t. Lebesgue mea-
sure). We usually think about functions f ∈ L2(R) as signals. Recall that a basis
{fn} for L2(R) allows every f ∈ L2(R) to be written

f =
∑
n

cnfn(1)

for a unique set of scalar coefficients {cn}. Usually we think about (1) as a decom-
position of the “complicated” signal f into a sum of the “simpler building blocks”
fn that might be easier to work with. For instance, if T is a bounded operator on
L2(R) and the action on the building blocks fn are known, we can find the action
on an arbitrary signal f ∈ L2(R) as Tf =

∑
n cnTfn.
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Applications might ask for bases with special properties that make them easier
to deal with. For instance, {fn} is an unconditional basis if (1) converges uncondi-
tionally for each f , i.e., if every permutation σ(n) of the index set makes

∑
σ(n) cnfn

converge to f . This happens for example if {fn} is an orthonormal basis or, more
generally, a Riesz basis (defined in Section 2.3).

The last 10 years have shown that it very often is convenient to work with
frames instead of bases: if {fn} is a frame for L2(R), each f ∈ L2(R) can still be
represented via an unconditionally convergent series as in (1), but usually the set of
coefficients {cn} is not unique. This has several advantages: the lack of uniqueness
opens up the possibility of choosing the coefficients that fit a certain application
best, and it also makes the representation (1) of a signal f less sensitive to noise.
Also, since the (orthonormal) basis condition is very strong, it might be difficult
to find a basis satisfying extra conditions that a certain application requires. The
frame condition is weaker, and therefore one can often find a frame enjoying special
properties which are impossible for a basis. We mention some important examples
in connection with Gabor systems and wavelets in Sections 4.2 and 5.

Frames were originally defined by Duffin and Schaefer in the early fifties, in the
context of nonharmonic Fourier Series (see Section 3). The interested reader might
be surprised by seeing how much of the frame theory was developed already in the
first paper [28]! The breakthrough in frames came in 1986, when Grossmann [26]
observed the relationship to wavelets.

For computational purposes, it is essential to consider frames (or bases) with
a simple structure. This is the motivation behind Gabor frames and wavelets. A
Gabor frame consists of time-frequency shifts of a single function g ∈ L2(R); i.e.,
it has the form {ei2πmbxg(x − na)}m,n∈Z for some parameters a, b > 0. Similarly,
a wavelet frame { 1

aj/2ψ( xaj − kb)}j,k∈Z consists of shifted and scaled versions of the
single function ψ ∈ L2(R). Wavelets have been studied intensively the last 10 years,
since the breakthrough of multiresolution analysis made it possible to construct
orthonormal bases of wavelets with very desirable properties. Since multiresolution
analysis is already well presented in books and monographs, we shall not discuss
it here. However, we include a short description of a generalization called frame
multiresolution analysis.

The paper is organized as follows. We begin in Section 2 with the theory for
frames and Riesz bases in general Hilbert spaces. An equivalent characterization of
frames is given, and the relationship between frames and Riesz bases is discussed
in detail.

Section 3 deals with frames of exponentials in L2(−π, π). The section is mainly
included as background for the study of Gabor frames, which is the subject of Sec-
tion 4. Sufficient conditions (generalizing those in [37]) for {ei2πmbxg(x−na)}m,n∈Z
to be a frame are presented. We discuss the Balian-Low Theorem, which is
a negative result in Gabor-frame theory: loosely speaking, it says that if
{ei2πmbxg(x − na)}m,n∈Z is a Riesz basis, then g cannot be well localized in both
time and frequency. As we shall see, this problem can be circumvented by consid-
ering Wilson bases. The section ends with a discussion of open problems related to
irregular Gabor systems.

Section 5 is devoted to wavelets. A sufficient condition for { 1
aj/2ψ( xaj −kb)}m,n∈Z

to be a frame is presented, and a short discussion of frame multiresolution analysis
is given.
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2. Frames and bases in Hilbert spaces

Let H be a separable Hilbert space with the inner product < ·, · > linear in
the first entry. The purpose of this section is to present some recent results about
frames and bases in general Hilbert spaces. No special structure is assumed at the
moment, in contrast to the following sections.

For convenience we don’t specify the index set when we consider a family of
elements {fn} ⊆ H. We always assume the index set to be countable. When we
speak about a series

∑
cnfn, it is understood that the convergence is with respect

to a certain enumeration, which is chosen once for all (but it will become clear in
the next subsection that we usually obtain unconditionally convergent series).

2.1. Bessel sequences. As we shall see in Section 2.2, the frame condition can
naturally be split into an upper frame condition and a lower frame condition. Fre-
quently, it is convenient to look at those conditions separately. A sequence satisfying
the upper frame condition is called a Bessel sequence:

Definition 2.1. A family of elements {fn} ⊆ H is called a Bessel sequence if there
exists a constant B > 0 such that∑

| < f, fn > |2 ≤ B||f ||2, ∀f ∈ H.(2)

Bessel sequences can be characterized in terms of the so-called pre-frame opera-
tor, introduced in the lemma below.

Lemma 2.2. {fn} is a Bessel sequence if and only if

T : {cn} →
∑

cnfn

is a well defined operator from `2 into H. In that case T is automatically bounded,
and the adjoint of T is given by

T ∗ : H → `2, T ∗f = {< f, fn >}.(3)

In the literature, Lemma 2.2 is usually formulated as “{fn} is a Bessel sequence
⇔ T is bounded”. However, it follows by the Banach-Steinhaus theorem that T
is automatically bounded if T is well defined on `2. As an important consequence
of Lemma 2.2 we notice that if {fn} is a Bessel sequence, then

∑
cnfn converges

unconditionally for all {cn} ∈ `2.

2.2. Frames - equivalent characterizations. A frame can be thought of as
some kind of “generalized basis”. In this section we present the formal definition
and some equivalent characterizations.

Definition 2.3. A family of elements {fn} ⊆ H is called a frame for H if there
exist constants A,B > 0 such that

A||f ||2 ≤
∑
| < f, fn > |2 ≤ B||f ||2, ∀f ∈ H.(4)

Any numbers A,B for which (4) is valid are called frame bounds. They are not
unique. The optimal frame bounds are the biggest possible value for A and the
smallest possible value for B in (4). If we can choose A = B, the frame is called
tight. If a frame ceases to be a frame when an arbitrary element is removed, the
frame is said to be exact.
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When {fn} is a frame, the pre-frame operator T from Section 2.1 is well defined;
by composing T with its adjoint T ∗ we obtain the frame operator

S : H → H, Sf = TT ∗f =
∑

< f, fn > fn.(5)

It is not difficult to prove that S is bounded, positive and surjective; see e.g. [37].
This leads to the frame decomposition:

Theorem 2.4. Given a frame {fn} with frame operator S, every f ∈ H can be
represented as

f = SS−1f =
∑

< f, S−1fn > fn.(6)

Thus, a frame {fn} allows every f ∈ H to be written as a superposition of
the frame elements. This property is very similar to the property (1) for a basis!
The main difference is that for a frame {fn}, the coefficients < f, S−1fn > in (6)
generally can be replaced by other coefficients. For more details we refer to the
discussion following Theorem 2.8 below.

By Parseval’s equality, an orthonormal basis {en} is a frame with A = B = 1.
By adding a finite sequence or, more generally, a Bessel sequence {gn}, we obtain a
frame {en} ∪ {gn}. In finite dimensional spaces, every frame is the union of a basis
and some “remaining vectors”. This is not the case in infinite dimensional spaces;
cf. the discussion after Theorem 2.8.

Starting with an orthonormal basis {en}∞n=1, many more or less artificial frames
can be constructed. For example, the family

{e1,
1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, · · · }

will also be a frame with bounds A = B = 1. We shall not discuss any such example,
but refer to the following sections, where frames important for applications are
presented.

The frame condition can be expressed entirely in terms of properties of the
operator T . Theorem 2.5 below is a slight generalization of a result from [13] with
a new elementary proof.

Theorem 2.5. A sequence {fn} ⊆ H is a frame for H if and only if the mapping

T : {cn} →
∑

cnfn

is a well defined mapping of `2 onto H.

Proof. First, suppose that {fn} is a frame. Since {fn} is a Bessel sequence, T is
a bounded operator from `2 into H by Lemma 2.2. By (6), the frame operator
S = TT ∗ is surjective. Thus T is surjective.

Now suppose that T is a well defined operator from `2 onto H. By Lemma
2.2 {fn} satisfies the upper frame condition. Consider the restriction of T to an
operator on the orthogonal complement of the kernel of T ; i.e., let T̃ := TN⊥T :
N⊥T → H. Clearly T̃ is a bounded, bijective linear mapping, so it has a bounded
inverse T † := T̃−1 : H → N⊥T . By writing T †f = {(T †f)n} for f ∈ H, we have

f = TT †f =
∑

(T †f)nfn.
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Thus

||f ||4 =< f, f >2= | <
∑

(T †f)nfn, f > |2

≤
∑
|(T †f)n|2 ·

∑
| < f, fn > |2 ≤ ||T †||2 · ||f ||2

∑
| < f, fn > |2;

we conclude that ∑
| < f, fn > |2 ≥

1
||T †||2 ||f ||

2, ∀f ∈ H.

The operator T † constructed in the proof of Theorem 2.5 is usually called the
pseudo-inverse of T . As the proof shows, 1

||T †||2 is a lower frame bound for {fn}.
Actually, this is the optimal lower bound. In [13] it is proved that the optimal
bounds for a frame are given by

A =
1

||T †||2 =
1

||S−1|| , B = ||T ||2 = ||S||.

In Proposition 4.5 below, we use Theorem 2.5 to prove that a certain family con-
stitutes a frame. Sometimes Theorem 2.5 can also be used to conclude that {fn}
is not a frame:

Example 2.6. Let {en}∞n=1 be an orthonormal basis for H and define

fn := en + en+1, n ∈ N.

Then {fn}∞n=1 is a Bessel sequence, but e1 cannot be written e1 =
∑∞

n=1 cnfn for
any sequence {cn}∞n=1 ⊆ `2(N). Thus, by Theorem 2.5 {fn}∞n=1 is not a frame,
despite the fact that H = span{fn}∞n=1.

2.3. Riesz bases and frames. A family {fn} is a Riesz basis for H (or bounded
unconditional basis in [37]) if there is a bounded invertible operator U : H → H
and an orthonormal basis {en} for H such that fn = Uen. By [51], p. 32, {fn} is a
Riesz basis if and only if {fn} is complete in H and there exist constants A,B > 0
such that

A
∑
|cn|2 ≤ ||

∑
cnfn||2 ≤ B

∑
|cn|2,(7)

for all finite sequences of scalars {cn}.
It is illustrative to look at the relationship between Riesz bases and frames. To

do so, we need the concept of biorthogonal sequences. Two sequences {fn} and
{gn} in H are said to be biorthogonal if

< fn, gm >= δnm =

{
1 for n = m

0 for n 6= m.

We refer to [51], p. 29, for the following elementary result:

Lemma 2.7. {fn} has a biorthogonal sequence if and only if it is minimal, meaning
that, for all m, fm /∈ span{fn}n6=m. Also, if a biorthogonal sequence exists, it is
unique if and only if {fn} is complete.

In order to understand the importance of the concept, suppose that {fn} is
a basis for H having a biorthogonal sequence {gn}. Now we can easily find the
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representation of an arbitrary element f ∈ H in terms of the basis {fn}: with
f =

∑
cnfn, we have < f, gm >=

∑
cn < fn, gm >= cm; that is,

f =
∑

< f, gn > fn.

So when a biorthogonal sequence is known, we obtain a representation that is very
similar to the well known representation using an orthonormal basis. It is easy to
see that the biorthogonal sequence {gn} is also a basis.

We now turn to the important question about the relationship between frames
and Riesz bases. Equivalent conditions for a frame to be a Riesz basis are collected
in [41]:

Theorem 2.8. Let {fn} be a frame. Then the following are equivalent.
(i) {fn} is a Riesz basis for H.
(ii) {fn} is an exact frame.
(iii) {fn} is minimal.
(iv) {fn} has a unique biorthogonal sequence.
(v) {S−1fn} is a biorthogonal sequence.
(vi) If

∑
cnfn = 0 in H for a sequence of scalars {cn} ∈ `2, then cn = 0 for every

n.

The implications (i)⇔ (ii)⇔ (iii)⇔ (iv)⇔ (v) are classical (see [37], Th. 2.2.2,
Cor. 2.1.7.), while (i) ⇔ (vi) appeared in [9]. As a consequence of Theorem 2.8 we
note that if {fn} is a frame but not a Riesz basis, there exist non-zero sequences
{cn} ∈ `2 such that

∑
cnfn = 0. Therefore f ∈ L2(R) can be written

f =
∑

< f, S−1fn > fn +
∑

cnfn

=
∑(

< f, S−1fn > +cn
)
fn,

showing that f has many representations as superpositions of the frame elements.
Given a frame {fn}, the family {S−1fn} is also a frame, usually called the

canonical dual; cf. [37]. In [42], Li gives a characterization of all duals, i.e., all
Bessel sequences {gn} for which

f =
∑

< f, gn > fn, ∀f ∈ H.

It is not hard to prove that for a Riesz basis the possible values for A,B in (7)
coincide with the frame bounds. In light of Theorem 2.8 it is natural to think
about frames as “overcomplete bases”, or, “families containing more elements than
needed to be bases”. Usually this intuitive way of looking at frames works well,
but in a strict mathematical sense one needs to be careful: there exist frames
{fn}∞n=1 for which no subfamily {fn}n∈I , I ⊆ N, is a Riesz basis; cf. the frame
{e1,

1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, · · · } mentioned in Section 2.2. There even exist

frames {fn} with ||fn|| = 1, ∀n, not even containing a Schauder basis! We refer to
[9], [10] for the construction of such a frame. For a frame {fi}i∈I with the property
that every subfamily {fi}i∈J , J ⊆ I, is a frame for its closed span, with a common
lower frame bound for all those frames, it can be proved that {fi}i∈I contains a
Riesz basis; cf. [18]. Frames with this property are called Riesz frames.

The condition (vi) in Theorem 2.8 (frequently called ω-independence) is stronger
than just linear independence. To illustrate that point, we state some more equiv-
alent characterizations of Riesz bases. For notational convenience, we consider a
frame {fn}∞n=1. For N ∈ N, the finite subfamily {fn}Nn=1 is automatically a frame
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for the finite dimensional space span{fn}Nn=1. Denote the optimal lower bound for
that frame by AN and the frame operator by

SN : span{fn}Nn=1 → span{fn}Nn=1, SNf =
N∑
n=1

< f, fn > fn.

The equivalence between (i), (ii) and (iii) below is due to Kun and Lim [41] (a fast
direct proof of (ii)⇒ (i) is in [11], and (iii) ⇒ (i) is in [22]) and the equivalence
between (iii) and (iv) is a consequence of the sequence {AN}∞N=1 being decreasing
when {fn}∞n=1 is linearly independent. When we speak about a family {fn}∞n=1

being linearly independent, it means that every finite subfamily is linearly indepen-
dent.

Theorem 2.9. Let {fn}∞n=1 be a frame for H. For N ∈ N, let AN denote the
optimal lower frame bound for {fn}Nn=1. Then the following are equivalent:

(i) {fn}∞n=1 is a Riesz basis for H.
(ii) {fn}∞n=1 is linearly independent and < f, S−1

N fn >→< f, S−1fn > as N →
∞, ∀f ∈ H, ∀n ∈ N.

(iii) {fn}∞n=1 is linearly independent and infN∈NAN > 0.
(iv) {fn}∞n=1 is linearly independent and limN→∞AN exists and is positive.

Remark. An important consequence of Theorem 2.9 is stated in Theorem 4.7. The
condition (ii) in Theorem 2.9 is motivated by the observation that it usually is
difficult to invert the frame operator S, which makes it hard to find the frame
coefficients < f, S−1fn >. Thus it is natural to try to approximate the frame coef-
ficients using coefficients that are “easy” to calculate. The coefficients < f, S−1

N fn >

are “easy” to calculate in the sense that S−1
N can be found using finite-dimensional

linear algebra, but in light of Theorem 2.9, < f, S−1
N fn > is not well suited to

approximate < f, S−1fn > for general frames (most of the frames of interest turn
out to be linearly independent; cf. Section 4.3). However, the approximation works
for Riesz frames. In [16] a “regularized version” is presented, which works for all
frames.

3. Frames of exponentials

Recall that the functions { 1√
2π
eimx}m∈Z constitute an orthonormal basis for

L2(−π, π). Thus {eimx}m∈Z is a frame for L2(−π, π) with bounds A = B = 2π.
More generally, for {λm}m∈Z ⊆ R, a frame for L2(−π, π) of the form {eiλmx}m∈Z
is called a frame of exponentials and an expansion

f(x) ∼
∑

cme
imx

is called a nonharmonic Fourier series. Recall that this is the context in which
frames were originally defined.

In this section we present some of the recent results for frames of exponentials.
We mainly include this section as background for the study of Gabor frames, so we
do not go into much detail.

3.1. Necessary and sufficient conditions. A sequence {λm}m∈Z ⊆ R is said to
be δ-separated if for all m 6= n,

|λm − λn| ≥ δ > 0.
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If {λm}m∈Z is a finite union of separated sets, we say that {λm}m∈Z is relatively
separated. A relatively separated sequence can repeat the same point a finite number
of times, but it cannot have an accumulating point. It is not hard to prove directly
that {eiλmx}m∈Z satisfies the upper frame condition if and only if {λm}m∈Z is
relatively separated.

In order for {eiλmx}m∈Z to be a frame for L2(−π, π), {λm}m∈Z has to satisfy
certain density conditions. Given a number r > 0, let n−(r) denote the minimal
number of points from {λm}m∈Z to be found in an interval of length r. The lower
Beurling density of {λm}m∈Z is defined by

D−({λm}m∈Z) := lim
r→∞

n−(r)
r

.

A fundamental result by Jaffard [39] and Seip [47] “almost” characterizes the frame
properties of {eiλmx}m∈Z in terms of D−({λm}m∈Z):

Theorem 3.1. For {eiλmx}m∈Z to be a frame, it is necessary that {λm}m∈Z is
relatively separated and D−({λm}m∈Z) ≥ 1, and it is sufficient that {λm}m∈Z is
relatively separated and D−({λm}m∈Z) > 1.

Seip also proves that if {λm}m∈Z is separated and D−({λm}m∈Z) > 1, then
{eiλmx}m∈Z contains a Riesz basis.

Theorem 3.1 is optimal in the sense that no conclusion is possible ifD−({λm}m∈Z)
= 1. For example, Seip proves that the sequence {λm} = {m(1 − |m|−1/2)}|m|>1

has density 1 and that {eiλmx}m∈Z is a frame for L2(−π, π). On the other hand,
the famous example of Kadec (cf. the discussion below),

λm :=


m− 1/4 if m > 0
m+ 1/4 if m < 0
0 if m = 0,

(8)

also gives a sequence with density 1, however, without generating a frame for
L2(−π, π). For a discussion of this example we refer to [51].

It is interesting to observe that for a family {λm}m∈Z, for which λm 6= λn
whenever m 6= n, the existence of a lower Riesz bound for {eiλmx}m∈Z, i.e., a
number A > 0 such that

A
∑
|cm|2 ≤ ||

∑
cme

iλm·||2(9)

for all finite sequences {cm}, automatically implies that {eiλmx}m∈Z is a Bessel
sequence. That is, the condition (9) is enough to guarantee that {eiλmx}m∈Z is
a Riesz basis for its closed span! This is a recent result by Lindner [43]. Since
Lindner’s proof is very short and elegant, we include it below.

Theorem 3.2. Suppose that {λm}m∈Z ⊆ R consists of distinct points and that
there exists a constant A > 0 such that (9) is satisfied. Then {eiλmx}m∈Z is a
Riesz basis for its closed span.

Proof. Consider λm, λn, where n 6= m. By assumption,

2A = A(|1|2 + |−1|2) ≤ ||eiλmx − eiλnx||2 =
∫ π

−π
|1− ei(λm−λn)x|2dx.
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Now, for x ∈]− π, π],

|1− ei(λm−λn)x| = | −
∞∑
k=1

[i(λm − λn)x]k

k!
| ≤ e|λm−λn)|·π − 1.

It follows that 2A ≤ 2π(e|λm−λn|·π − 1)2, implying that

|λm − λn| ≥
1
π

ln(

√
A

π
+ 1).

Thus {λm}m∈Z is separated, and therefore {eiλmx}m∈Z is a Bessel sequence.

3.2. Kadec’s 1/4-Theorem. The famous Kadec 1/4-Theorem [51] states that
if {λm}m∈Z ⊆ R and supm∈Z |λm − m| < 1

4 , then {eiλmx}m∈Z is a Riesz basis
for L2(−π, π). The example of Kadec (see (8)) shows that the conclusion fails
if sup |λm − m| = 1

4 . Combining the proof of Kadec’s Theorem in [51] with the
perturbation results for frames in [19], it is an easy matter to extend the result to
frames; cf. [1], [15].

Theorem 3.3. Let {λm}m∈Z, {µm}m∈Z ⊆ R. Suppose that {eiµmx}m∈Z is a frame
for L2(−π, π) with bounds A,B. If there exists a constant L < 1/4 such that

|µm − λm| ≤ L ∀m, and 1− cosπL + sinπL <

√
A

B
,

then {eiλmx}m∈Z is a frame for L2(−π, π) with bounds

A(1 −
√
B

A
(1− cosπL + sinπL))2, B(2− cosπL + sinπL)2.

The advantage of this theorem compared to the original version also lies in the
fact that we obtain frame bounds. Good values for the frame bounds are essential
for estimates of the speed of convergence in algorithms involving frames; cf. [33].
Recently, Theorem 3.3 has been used to construct Riesz bases for weighted L2-
spaces consisting of solutions to certain Sturm-Liouville problems; cf. [35].

4. Gabor frames

As mentioned in the last section, the fact that { 1√
2π
eimx}m∈Z constitutes an

ONB for L2(−π, π) is the starting point for the theory for frames of exponentials.
By a change of variable, {ei2πmx}m∈Z constitutes an ONB for L2(0, 1). Observe
that we can easily obtain an orthonormal basis for L2(R) by cutting R into intervals
of length 1 and taking an orthonormal basis corresponding to each interval. More
precisely, the set of functions

{ei2πm(x−n)1]0,1[(x− n)}m,n∈Z = {ei2πmx1]0,1[(x − n)}m,n∈Z
is an orthonormal basis for L2(R). This leads to the general definition of a Gabor
frame: given parameters a, b ∈ R and a function g ∈ L2(R), a frame for L2(R) of the
form {ei2πmbxg(x−na)}m,n∈Z is called a Gabor frame. The term “Weyl-Heisenberg
frame” is also used. Using the operators “translation” resp. “modulation” acting
on functions g ∈ L2(R) by

(Tag)(x) = g(x− a), a > 0, resp. (Ebg)(x) = e2πibxg(x), b > 0,

a Gabor frame can be written

{ei2πmbxg(x− na)}m,n∈Z = {EmbTnag}m,n∈Z.
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The origin of Gabor frames goes back to the paper [32], where Gabor proposes
expanding signals f as a series f(x) =

∑
cm,ne

i2πmbxg(x − na), where g is the
Gaussian. The idea was to use the expansion for communications: instead of trans-
mitting the function f , one could send the coefficients cm,n. The original idea has
apparently not been developed very far, but Gabor frames have proved very useful
in many other contexts. For a collection of research articles about Gabor systems
(theory and applications) we refer to [31]. Another important source of informa-
tion is the book [34] by Gröchenig, where Gabor frames are used in the context of
time-frequency analysis.

4.1. Sufficient conditions. Sufficient conditions for {EmbTnag}m,n∈Z to be a
frame for L2(R) have been known for about 10 years; cf. [37], Theorem 4.1.5:

Theorem 4.1. Let g ∈ L2(R) and suppose that there exist constants A,B > 0 such
that ∑

k 6=0

||
∑
n∈Z

TnagTna+k
b
g||∞ < A ≤

∑
n∈Z
|g(x− na)|2 ≤ B for a.e. x ∈ R.(10)

Then {EmbTnag}m,n∈Z is a frame for L2(R).

In particular, the condition (10) implies that

sup
x

∑
k 6=0

|
∑
n∈Z

g(x− na)g(x− na− k/b)| < inf
x

∑
n∈Z
|g(x− na)|2.(11)

Later, Ron and Shen [46] were able to give a complete characterization of Gabor
frames. Given g ∈ L2(R), consider the matrix-valued function

M(t) := (g(t− na−m/b))m,n∈Z .
Observe that M(t)M(t)∗ is a positive matrix.

Theorem 4.2. {EmbTnag}m,n∈Z is a frame for L2(R) with bounds A,B if and only
if

AI ≤M(t)M(t)∗ ≤ BI a.e.

Theorem 4.2 is related to another interesting result by Ron and Shen, saying
that {EmbTnag}m,n∈Z is a frame for L2(R) if and only if {Em

a
Tn
b
g}m,n∈Z is a Riesz

basis for its closed span. We refer to [46].
Theorem 4.2 is difficult to apply in its full generality. However, the condition on

the matrix M(t)M(t)∗ is in particular satisfied if it is diagonal dominant. This leads
to a sufficient condition for {EmbTnag}m,n∈Z to be a frame; see Theorem 4.3 below.
An independent proof (which even delivers Gabor frames for subspaces of L2(R))
can be found in [8]. The advantage of the result compared to Theorem 4.1 is that
(10) is replaced by a condition comparing

∑
k 6=0 |

∑
n∈Z g(x − na)g(x− na− k/b)|

and
∑

n∈Z |g(x− na)|2 pointwise. The formulation below is taken from [8].

Theorem 4.3. Let g ∈ L2(R), a, b > 0 and suppose that

A := inf
x∈[0,a]

∑
n∈Z
|g(x− na)|2 −

∑
k 6=0

|
∑
n∈Z

g(x− na)g(x− na− k

b
)|

 > 0

B := sup
x∈[0,a]

∑
k∈Z
|
∑
n∈Z

g(x− na)g(x− na− k

b
)| <∞.
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Then {EmbTnag}m,n∈Z is a frame for L2(R) with bounds A
b ,

B
b .

It is easy to find examples where Theorem 4.3 can be applied but where the
condition in Theorem 4.1 is not satisfied; cf. [8]:

Example 4.4. Let a = b = 1 and define

g(x) =


1 + x if x ∈ [0, 1[
1
2x if x ∈ [1, 2[
0 otherwise.

For x ∈ [0, 1[ we have∑
n∈Z
|g(x− n)|2 = g(x)2 + g(x+ 1)2 =

5
4

(x+ 1)2

and ∑
k 6=0

|
∑
n∈Z

g(x− n)g(x− n− k)| = (1 + x)2,

so by Theorem 4.3 {EmTng}m,n∈Z is a frame for L2(R) with bounds A = 1
4 , B = 9.

But infx∈[0,1]

∑
n∈Z |g(x− n)|2 = 5

4 and∑
k 6=0

||
∑
n∈Z

TngTn+kg||∞ = 4,

so the condition (10) is not satisfied.

It is interesting to observe that the frame properties for {EmbTnag}m,n∈Z de-
pend heavily on the numbers a, b. Feichtinger and Janssen [30] have constructed a
function g ∈ L2(R) for which {EmbTnag}m,n∈Z satisfies the upper frame condition
for any two rationals a, b > 0, while for any β > 0 and any rational c > 0 the family
{EmβTncαg}m,n∈Z does not satisfy the upper frame condition.

4.2. The Balian-Low Theorem and Wilson bases. We define the Fourier
transform of g ∈ L1(R) by

ĝ(γ) =
∫
R
g(x)e−2πiγxdx.(12)

As usual, the Fourier transform is extended to a unitary mapping of L2(R) onto
L2(R).

A famous result about Gabor frames states that {EmbTnag}m,n∈Z can only be
a frame for L2(R) if ab ≤ 1; and if {EmbTnag}m,n∈Z is a frame, it is a Riesz basis
if and only if ab = 1 (see [37], p. 657). For a Riesz basis {EmbTnag}m,n∈Z, the
Balian-Low Theorem ([37], Th. 4.3.7) states that(∫

R
|xg(x)|2dx

)(∫
R
|γĝ(γ)|2dγ

)
=∞.

In words, the Balian-Low Theorem means that a function g generating a Gabor
Riesz basis cannot be well localized in both time and frequency. In particular, the
Gaussian g(x) = e−x

2
does not generate a Gabor Riesz basis for ab = 1. On the

other hand, it has been proved by Seip and Wallsten that the Gaussian generates a
frame whenever ab < 1; cf. [48], [49]. The fact that one can construct Gabor frames
that are well localized in both time and frequency is just one motivation for the
study of those frames.
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Daubechies, Jaffard and Journé [27] have proved that if one is ready to give up
the Gabor structure, it is possible to obtain a well localized orthonormal basis: if
g ∈ L2(R) is chosen such that ĝ is real valued and {EmTn/2g}m,n∈Z is a frame with
bounds A = B = 2, then the collection of functions {ψl,k}l≥0,k∈Z defined by

ψl,k(x) =


g(x− k) for l = 0√

2g(x− k/2) cos(2πlx) for l > 0, k + l even√
2g(x− k/2) sin(2πlx) for l > 0, k + l odd

constitutes an orthonormal basis for L2(R)! {ψl,k}l≥0,k∈Z is called a Wilson basis.
Observe that

ψl,k =


E0Tkg for l = 0
1√
2
(ElTk/2g + E−lTk/2g) for l > 0, k + l even

−i√
2
(ElTk/2g − E−lTk/2g) for l > 0, k + l odd;

i.e., the functions in the Wilson basis consist of linear combinations of the functions
in the Gabor system {EmTn/2g}m,n∈Z. By choosing g such that(∫

R
|xg(x)|2dx

)(∫
R
|γĝ(γ)|2dγ

)
<∞,

we have obtained an orthonormal basis circumventing the Balian-Low Theorem.
We refer to [3] and [27] for more information, especially to [27] for a construction
of a suitable function g.

Observe that the important feature of the system {ψl,k}l≥0,k∈Z is that it is
an orthonormal basis. It is not complicated to construct frames with a similar
structure:

Proposition 4.5. Suppose that {EmbTnag}m,n∈Z is a frame with upper bound B.
Then the collection of functions

{gn}n∈I = {g(x− na)}n∈Z ∪ {cos(2πmbx)g(x − na), sin(2πmbx)g(x− na)}m∈N,n∈Z
is a frame for L2(R) with upper bound B.

For the proof, it is easy to see that the pre-frame operator corresponding to
{gn}n∈I in Proposition 4.5 is bounded and surjective, so the result follows by The-
orem 2.5.

4.3. Irregular Gabor systems and open problems. In connection with a Ga-
bor system {EmbTnag}m,n∈Z, one usually thinks about the points (mb, na) as a
lattice in R2. Given a sequence of distinct points {(λn, µn)} ⊆ R2, one could also
consider the family {ei2πλnxg(x − µn)}, which is usually called an irregular Gabor
system. Very little is known about frame properties of {ei2πλnxg(x − µn)}. The
purpose of this section is to present some of the known results and point out some
of the open problems.

By letting | · | denote the euclidian norm in R2, the definition of a relatively
separated set from Section 3 can also be used for a set {λm}m∈Z ⊆ R2. By letting
n−(r) denote the minimal number of points from {λm}m∈Z to be found in a ball
with radius r/2, the lower density is defined by

D−({λm}m∈Z) = lim
r→∞

n−(r)
r2

.
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Christensen, Deng and Heil proved that for {ei2πλnxg(x− µn)} to be a frame, it
is necessary that {(λn, µn)} is relatively separated and that D−({(λn, µn)}) ≥ 1;
cf. [20], Theorems 1.1, 3.1. For a regular Gabor system {EmbTnag}m,n∈Z the latter
assumption corresponds exactly to the condition ab ≤ 1. It is known that if ab > 1,
then {EmbTnag}m,n∈Z is not complete in L2(R). One could therefore expect that
{ei2πλnxg(x − µn)} must be incomplete whenever D−({(λn, µn)}) < 1. However,
Benedetto, Heil and Walnut have shown that this is false, by construction of sets
{(λn, µn)} with arbitrarily small density and yet such that {ei2πλnxg(x − µn)} is
complete; cf. [3], Th. 2.6.

Also, Ramanathan and Steger have proved that the density must be exactly one
in order to obtain a Riesz basis; cf. [45], Cor. 4.

No practically useful condition for {ei2πλnxg(x−µn)} to be a frame is known. But
based on an abstract theory for atomic decomposition, Feichtinger and Gröchenig
[29] have shown that for g “sufficiently nice”, every “well-spread” family {(λn, µn)}
will give rise to a Gabor frame:

Theorem 4.6. Choose a non-zero function g ∈ L2(R) such that∫
R

∫
R
| < ExMyg, g > |dxdy <∞.(13)

Then there exists an open set U ⊂ R2 such that {ei2πλnxg(x− µn)} is a frame for
L2(R) for every separated set {(λn, µn)} ⊆ R2 for which⋃

n

[(λn, µn) + U ] = R2.

We refer to [17] for a unified presentation of the Feichtinger/Gröchenig theory
and the proof of Theorem 4.6. It can be proved that (13) is satisfied for a dense set of
functions g ∈ L2(R). Unfortunately the Feichtinger/Gröchenig theory does not give
much information about how to choose an appropriate set U , so Theorem 4.6 is at
the moment mainly theoretically interesting. However, the Feichtinger/Gröchenig
theory has many attractive features (it actually delivers discrete expansions in a
very large class of Banach spaces), and it would certainly be worthwhile to search
for easily verifiable conditions for the theory to apply.

Let us end this section with a few words about a conjecture by Heil, Ramanathan
and Topiwala [36]: it says that if {(λn, µn)} is a finite set of distinct points and g
is a non-zero function in L2(R), then {ei2πλnxg(x − µn)} is linearly independent.
The conjecture is proved under some extra assumptions in [36]. Later, Linnell [44]
was able to prove it in the case where {(λn, µn)} is a lattice (or a subset thereof),
i.e., for

{(λn, µn)} = {(mb, na)}N,Mn=1,m=1.

Thus, finite subsets of a Gabor frame {EmbTnag}m,n∈Z for L2(R) will be linearly
independent. The general conjecture is still open.

Intuitively, one would expect the optimal lower frame bound for a finite subfamily
{EmbTnag}Nm,n=1 of a Gabor frame {EmbTnag}m,n∈Z to converge to the optimal
lower bound for {EmbTnag}m,n∈Z when the subfamily gets larger, i.e., for N →∞.
Surprisingly, this is not true:
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Theorem 4.7. Suppose that ab < 1 and that {EmbTnag}m,n∈Z is a frame for
L2(R). Let AN denote the optimal lower bound for {EmbTnag}Nm,n=1. Then

AN → 0 as N →∞.

Proof. As observed before, the assumption ab < 1 implies that {EmbTnag}m,n∈Z is
not a Riesz basis. By Linnell’s result, {EmbTnag}m,n∈Z is linearly independent. By
Theorem 2.9 we conclude that AN → 0 as N →∞.

5. Wavelet frames

The dilation operators Da acting on ψ ∈ L2(R) are defined by

(Daψ)(x) =
1√
a
ψ(
x

a
), x ∈ R, a > 0.

From the mathematical point of view, the main question in wavelet analysis is to
construct a function ψ such that

{DajTbkψ(x)}j,k∈Z = { 1
aj/2

ψ(
x

aj
− kb)}j,k∈Z

constitutes a frame (or Riesz basis) for L2(R) with prescribed properties. The
importance of wavelets actually delivers a good argument for the study of frames.
It is proved in [24] that no orthonormal basis {DajTbkψ}j,k∈Z having a C∞-mother
wavelet ψ which is exponentially decreasing exists. However, frames of this type
exist! As an example, Daubechies mentions the famous Mexican hat wavelet

ψ(x) = (1 − x2)e−x
2/2.

It is known that the Mexican hat wavelet for a given value of a > 0 generates a
wavelet frame {DajTbkψ}j,k∈Z for all sufficiently small values of b > 0.

The theory for wavelets has developed rapidly over the last 10 years, mainly
due to the success of multiresolution analysis. There is a vast literature about
multiresolution analysis, so we will not discuss that subject here but just refer
to the classical monograph [25] by Daubechies and the more recent book [50] by
Wojtaszczyk. Instead, we will discuss shortly the extension - the theory for frame
multiresolution analysis - proposed by Benedetto and Li. For more information
about wavelets in theory and practice we refer to the collections of research articles
[2], [23].

5.1. A sufficient condition. A sufficient condition for {DajTbkψ}j,k∈Z to be a
frame can be found in [37], Theorem 5.1.6. The generalization below is very similar
to the way Theorem 4.1 was extended to Theorem 4.3. It appeared (without proof)
in [8].

Theorem 5.1. Let a > 1, b > 0 and ψ ∈ L2(R) be given. Suppose that

A := inf |γ|∈[1,a]

∑
n∈Z
|ψ̂(anγ)|2 −

∑
k 6=0

∑
n∈Z
|ψ̂(anγ)ψ̂(anγ + k/b)|

 > 0,

B := sup|γ|∈[1,a]

∑
k,n∈Z

|ψ̂(anγ)ψ̂(anγ + k/b)| <∞.

Then { 1
aj/2ψ( xaj − kb)}j,k∈Z is a frame for L2(R) with bounds A

b ,
B
b .
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Proof. We only sketch the proof. The starting point is [37], Theorem 5.1.6, where
it is proved that if f̂ is a continuous function with compact support,∑

j,k∈Z
| < f,DajTkbψ > |2

=
1
b

∫
R
|f̂(γ)|2

∑
n∈Z
|ψ̂(anγ)|2dγ

+
1
b

∑
k 6=0

∑
n∈Z

∫
R
f̂(γ)f̂(γ − ank/b)ψ̂(a−nγ)ψ̂(a−nγ − k/b)dγ.

Now, using Cauchy-Schwarz first on the integral and then on the sum over k, we
obtain

R := |
∑
k 6=0

∑
n∈Z

∫
R
f̂(γ)f̂(γ − ank/b)ψ̂(a−nγ)ψ̂(a−nγ − k/b)dγ|

≤
∑
n∈Z

∑
k 6=0

∫
R
|f̂(γ)|2 · |ψ̂(a−nγ) · ψ̂(a−nγ − k/b)|dγ

1/2

×

∑
k 6=0

∫
R
|f̂(γ − ank/b)|2 · |ψ̂(a−nγ)| · ψ̂(a−nγ − k/b)|dγ

1/2

=
∑
n∈Z

(∗)(∗∗).

The terms (*) and (**) are actually identical (use the change of variable γ →
γ + ank/b in (**)), so by changing the summation index n→ −n, k → −k,

R ≤
∑
n∈Z

∑
k 6=0

∫
R
|f̂(γ)|2 · |ψ̂(a−nγ) · ψ̂(a−nγ − k/b)|dγ

=
∫
R
|f̂(γ)|2

∑
k 6=0

∑
n∈Z
|ψ̂(anγ)ψ̂(anγ + k/b)|dγ.

Therefore, using the assumptions, we obtain∑
j,k∈Z

| < f,DajTkbψ > |2

≥ 1
b

∫
R
|f̂(γ)|2

∑
n∈Z
|ψ̂(anγ)|2 −

∑
k 6=0

∑
n∈Z
|ψ̂(anγ)ψ̂(anγ + k/b)|

dγ

≥ A

b
||f ||2

with a similar upper estimate. Since they hold on a dense subset of L2(R), the
conclusion follows.

Remark. There is one remarkable difference between Theorem 5.1 and the similar
result for Gabor frames (Theorem 4.3): in the condition for the lower bound in
Theorem 4.3 it is the sum over k of |

∑
n∈Z g(x− na)g(x− na− k

b )| that has to be
subtracted from

∑
n∈Z |g(x − na)|2. That is, the absolute sign is outside the sum

over n. This is in contrast to the condition in Theorem 5.1, where the absolute sign
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is inside the sum over n. The condition in Theorem 4.3 is clearly the best, since
the position of the absolute sign opens up for possible cancellations. For a = 2,
it is known that the condition in Theorem 5.1 can be replaced with a condition
where the absolute sign is outside; cf. [24], Theorem 2.9. It would be interesting if
Theorem 5.1 above could be generalized that way.

5.2. Frame multiresolution analysis. Frame multiresolution analysis (FMRA)
was introduced by Benedetto and Li [4]. The purpose of the theory is to construct
frames for L2(R) of the form {D2jTkψ}j,k∈Z. Formally, an FMRA is defined as a
multiresolution analysis (MRA), with the condition “{Tkφ}k∈Z is a Riesz basis for
V0” replaced by a frame condition:

Definition 5.2. An FMRA for L2(R) consists of a sequence of closed subspaces
{Vj}j∈Z ⊆ L2(R) and a function φ ∈ V0 such that

(i) · · ·V−1 ⊆ V0 ⊆ V1 · · · .
(ii) ∪jVj = L2(R) and ∩jVj = 0.
(iii) f ∈ Vj ⇔ [t→ f(2t)] ∈ Vj+1.
(iv) f ∈ V0 ⇒ Tkf ∈ V0, ∀k ∈ Z.
(v) {Tkφ}k∈Z is a frame for V0.

The starting point for the construction of an FMRA is a function φ ∈ L2(R)
which is a frame for span{Tkφ}k∈Z. Given φ ∈ L2(R), define the function

Φ(x) :=
∑
k

|φ̂(x+ k)|2.

Theorem 5.3. Let φ ∈ L2(R). Then {Tkφ}k∈Z is a frame for span{Tkφ}k∈Z if
and only if there exist constants A,B > 0 such that

A ≤ Φ(x) ≤ B a.e. on {x : Φ(x) 6= 0}.

Theorem 5.3 is due to Benedetto and Li (with a superfluous assumption removed
in [12]). In words, the condition means that

∑
k |φ̂(x+k)|2 has to be bounded below

and above, away from its zero-set. Given a function φ such that {Tkφ}k∈Z is a frame
for span{Tkφ}k∈Z, define the spaces Vj by

V0 = span{Tkφ}k∈Z, Vj = {f ∈ L2(R) | [t→ f(2−jt)] ∈ V0}.
Observe that V0 will always be a pure subspace of L2(R): in [20] it is proved that
translates of a single function never can constitute a frame for all of L2(R). A
sufficient condition for {Vj , φ} to be an FMRA was given in [4], Theorem 4.6:

Theorem 5.4. Suppose that φ ∈ L2(R), that {Tkφ}k∈Z is a frame for V0, and that
|φ̂| > 0 in a neighborhood of zero. If there exists a function H ∈ L∞(0, 1) such that

φ̂(γ) =
1√
2
H(

γ

2
)φ̂(

γ

2
),

then {Vj , φ} is an FMRA.

Note the similarity between Theorem 5.4 and the results for an MRA; cf. [50], Th.
2.13! We now turn to the question about construction of a frame {D2jTkψ}j,k∈Z
based on a given FMRA. Let Wj denote the orthogonal complement of Vj in Vj+1.
As for an MRA, the main question (when an FMRA has been constructed!) is
to find a wavelet ψ such that {Tkψ}k∈Z is a frame for W0. This implies that
{D2jTkψ}j,k∈Z is a frame for L2(R); cf. [4], Theorem 5.11.
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Benedetto and Treiber [6] have proved that the existence of such a function ψ
depends solely on the “size” of a certain set Γ:

Theorem 5.5. Let {Vj , φ} be an FMRA and let

Γ := {x ∈ [0, 1] : Φ(2x) = 0,Φ(x) > 0,Φ(x+
1
2

) > 0}.

Then the following holds:
(i) If Γ has positive Lebesgue measure, there does not exist a function ψ ∈ L2(R)

such that {Tkψ}k∈Z is a frame for W0.
(ii) If Γ has vanishing Lebesgue measure, then there exists a function ψ ∈ L2(R)

such that {Tkψ}k∈Z is a frame for W0.

In the case (ii) Benedetto and Treiber also show how to define a suitable function
ψ. Furthermore, given a candidate for ψ, one can always check whether {Tkψ}k∈Z
is a frame using Theorem 5.3.

For practical purposes the advantage of an FMRA compared to an MRA is that
the underlying filter bank can be narrow band. We refer to [5] for a more detailed
discussion.
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