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FrameSLAM: from Bundle Adjustment to Realtime

Visual Mappping
Kurt Konolige and Motilal Agrawal

Abstract—Many successful indoor mapping techniques employ
frame-to-frame matching of laser scans to produce detailed local
maps, as well as closing large loops. In this paper, we propose a
framework for applying the same techniques to visual imagery.
We match visual frames with large numbers of point features,
using classic bundle adjustment techniques from computational
vision, but keep only relative frame pose information (a skeleton).
The skeleton is a reduced nonlinear system that is a faithful
approximation of the larger system, and can be used to solve
large loop closures quickly, as well as forming a backbone for
data association and local registration. We illustrate the working
of the system with large outdoor datasets (10 km), showing large-
scale loop closure and precise localization in real time.

I. INTRODUCTION

Visual motion registration is a key technology for many

applications, since the sensors are inexpensive and provide

high information bandwidth. We are interested in using it to

construct maps and maintain precise position estimates for

mobile robot platforms indoors and outdoors, in extended

environments with loops of more than 10 km, and in the

absence of global signals such as GPS. This is a classic

SLAM (simultaneous localization and mapping) problem. In

a typical application, we gather images at modest frame

rates, and extract hundreds of features in each frame for

estimating frame to frame motion. Over the course of even

100 m, moving at 1 m/sec, we can have a thousand images

and half a million features. The best estimate of the frame

poses and feature positions, even for this short trajectory, is

a large nonlinear optimization problem. In previous research

using laser rangefinders, one approach to this problem was to

perform frame-to-frame matching of the laser scans, and keep

only the constraints among the frames, rather than attempting

to directly estimate the position of each scan reading (feature)

[15], [25], [27].

Using frames instead of features reduces the nonlinear

system by a large factor, but still poses a problem as frames

accumulate over extended trajectories. To efficiently solve

large systems, we reduce the size of the system by keeping

only a selected subset of the frames, the skeleton. Most

importantly, and contrary to almost all current research in

SLAM, the skeleton system consists of nonlinear constraints.

This property helps it to maintain accuracy even under severe

reductions, up to several orders of magnitude smaller than the

original system. Figure 1 shows an example from an urban

round-about scene. The original system has 700 stereo frames

and over 100K 3D features. A skeleton graph at 5m intervals

eliminates the features in favor of a small number of frame-

frame links, and reduces the number of frames by almost an

Fig. 1. Skeleton reduction of a 100 meter urban scene. Full Bayes graph
is 700 frames (blue dots) and ∼100K features (cyan crosses). Frame-feature
links are in cyan – only one in 200 are shown for display. Original frames
are in blue (see inset for a closeup). The 133 reduced frames and their links
are in red. The reduced graph is solved in 35 ms.

order of magnitude. The full nonlinear skeleton can be solved

in 35 ms.

In this paper, we present frameSLAM, a complete visual

mapping method that uses the skeleton graph as its map

representation. Core techniques implemented in the system

include:

• Precise, realtime visual odometry for incremental motion

estimation.

• Nonlinear least-squares estimation for local registration

and loop closure, resulting in accurate maps.

• Constant-space per area map representation. The skeleton

graph is used for data association as well as map estima-

tion. Continuous traversal of an area does not cause the

map to inflate.

• Experimental validation. We perform small and large-

scale experiments, in indoor, urban, and rough-terrain

settings, to validate the method and to show realtime

behavior.

A. Related Work

There has been a lot of recent work in visual SLAM,

most of it concentrated on global registration of 3D features

(undelayed SLAM). One approach, corresponding to classical

EKF SLAM, is to use a large EKF containing all of the
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features [7], [8], [32]; another, corresponding to fastSLAM, is

to use a set of particles representing trajectories and to attach a

small EKF to each feature [10], [26]. EKF SLAM has obvious

problems in representing larger environments, because the size

of the EKF filter grows beyond realtime computation. Some

recent work has split the large filter into submaps [30], which

can then deal with environments on the order of 100 m, with

some indications of realtime behavior.

A scale problem also afflicts fastSLAM approaches: it is

unclear how many particles are necessary for a given environ-

ment, and computational complexity grows with particle set

size. Additionally, the 6 DOF nature of visual SLAM makes

it difficult for fastSLAM approaches to close loops. For these

reasons, none of these approaches has been tried in the type

of large-scale, rough-terrain geometry that we present here.

A further problem with feature-based systems is that they

lose the power of consensus geometry to give precise estimates

of motion and to reject false positives. The visual odometry

backbone that underlies frameSLAM is capable of errors of

less than 1% over many hundreds of meters [23], which has

not yet been matched by global feature-based systems.

In delayed SLAM, camera frames are kept as part of the

system. Several systems rely on this framework [13], [18],

[19]. The iSAM filter approach [19] uses an information filter

for the whole system, including frames and features. A nice

factorization method allows fast incremental update of the

filter. While this approach works for modest-size maps (∼1000

features), other techniques must be used for the large numbers

of features found in visual SLAM.

The delayed filter of [13], [18], like our approach, keeps

only the frames – visual feature matching between frames

induces constraints on the frames. These constraints are

maintained as a large, sparse information filter, and used to

reconstruct underwater imagery over scales of 200-300m. It

differs from our work in using a large linear filter instead of a

reduced skeleton of nonlinear constraints: the incremental cost

of update grows linearly with map size, and is not proposed

as a realtime approach.

Since these techniques rely on linear systems, they could

encounter problems when closing large loops, where the

linearization would have to change significantly.

A very recent paper by Steder et al. [33], and earlier

work by Kelly [37] has a very similar approach to skeleton

systems. They also keep a constraint network of relative pose

information between frames, based on stereo visual odometry,

and solve it using nonlinear least square methods. However,

their motion is basically restricted to 4 degrees of freedom,

and the matching takes place on near-planar surfaces with

downward-looking cameras, rather than the significantly more

difficult forward-looking case.

Another related research area is place recognition for

long-range loop closure. Recently, several new systems have

emerged that promise realtime recovery of candidate place

matches over very large databases [5], [29].

II. SKELETON SYSTEMS

We are interested in localizing and mapping using just stereo

cameras, over large distances. There are three tasks to be

addressed:

1) Local registration. The system must keep track of its

position locally, and build a registered local map of the

environment.

2) Long-range tracking. The system must compute reason-

able long-range trajectories with low error.

3) Global registration. The system must be able to rec-

ognize previously-visited areas, and re-use local map

information.

As the backbone for our system, we use visual odometry
(VO) to determine incremental motion of stereo cameras. The

principle of VO is to simultaneously determine the pose of

camera frames and position of world features by matching the

image projections of the features (Figure 2), a well-known

technique in computational vision. Our research in this area

has yielded algorithms that are accurate to within several

meters over many kilometers, when aided by an IMU [1], [2],

[23].

In this paper, we concentrate on solving the first and third

tasks. VO provides very good incremental pose results, but

like any odometry technique, it will drift because of the

composition of errors. To stay registered in a local area, or

to close a large loop, requires recognition of previous frames,

and the ability to integrate current and previous frames into

a consistent global structure. Our approach is to consider the

large system consisting of all camera frames and features as a

Bayes net, and to produce reduced versions – skeletons – that

are easily solvable but still accurate.

A. Skeleton Frames

Let us consider the problem of closing a large loop, which

is at the heart of the SLAM technique. This loop could contain

thousands of frames and millions of features – for example,

one of our outdoor sets has 65K stereo pairs, each of which

generates 1000 point features or more. We can’t consider

closing this loop in a reasonable time; eventually, we have

to reduce the size of the system when dealing with large-scale

consistency. At the same time, we want to be able to keep

locally dense information for precise navigation. Recognition

of this problem has led to the development of sub-maps, small

local maps that are strung together to form a larger system [3],

[30]. Our system of reductions has a similar spirit, but with

the following key differences.

• No explicit submaps need to be built; instead, skeleton
frames form a reduced graph structure on top of the

system.

• The skeleton structure can scale to allow optimization of

any portion of the system.

Fig. 2. Stereo frames and 3D points. VO estimates the pose of the frames
and the positions of the 3D points at the same time, using image projections.
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Fig. 3. Skeleton reduction as a Bayes net. System variables are in black, measurements are in red: each measurement represents one constraint. The initial
net (a) contains camera frames ci and features qi that give rise to image points. In (b), most of the features are marginalized out, yielding measurements
between the frames. In (c), some of the intermediate frames have also been marginalized.

• The skeleton frames support constraints that do not

fully specify a transformation between frames. Such

constraints arise naturally in the case of bearing-only

landmarks, where the distance to the landmark is un-

known.

Since there are many more features than frames, we want to

reduce feature constraints to frames constraints; and after this,

to reduce further the number of frames, while still maintaining

fidelity to the original system. The general idea for computing

a skeleton system is to convert a subset of the constraints

into an appropriate single constraint. Consider Figure 3, which

shows a Bayes net representation of image constraints. When

a feature qj is seen from a camera frame ci, it generates a

measurement zij , indicated by the arrows from the variables.

Now take the subsystem of two measurements z00 and z10,

circled in (a). These generate a multivariate gaussian PDF

p(c0, c1, q0|z00, z01). We can reduce this PDF by marginal-

izing q0, leaving p(c0, c1|z00, z01). This PDF corresponds to a

synthetic constraint between c0 and c1, which is represented

in Figure 3(b) by the circled nodes. In a similar manner, a

PDF involving c0 – c3 can be reduced, via marginalization, to

a PDF over just c0 and c3, as in Figure 3(c).

It is clear that the last system is much simpler than the

first. As with any reduction, there is a tradeoff between

simplicity and accuracy. The reduced system will be close

to the original system, as long as the frame variables are

not moved too far from their original positions. When they

are, the marginalization that produced the reduction may no

longer be a good approximation to the original PDF. For this

reason, the form of the new constraint is very important. If it

is tied to the global position of the frames, then it will become

unusable if the variables are moved from their original global

position, say in closing a loop. But, if the constraint uses

relative positions, then the frames can be moved anywhere,

as long as their relative positions are not displaced too much.

The key technique introduced in this paper is the derivation of

reduced relative constraints that are an accurate approximation

of the original system.

A reduced system can be much easier to solve than the

original one. The original system in Figure 1 has over 100K

(vector) variables, and our programs run out of space trying to

solve it; while its reduced form has just 133 vector variables,

and can be solved in 35 ms.

III. NONLINEAR LEAST SQUARES ESTIMATION

The most natural way to solve large estimation problems is

nonlinear least squares (NLSQ). There are several reasons why

NLSQ is a convenient and efficient method. First, it offers an

easy way to express image constraints and their uncertainty,

and directly relates them to image measurements. Second,

NLSQ has a natural probabilistic interpretation in terms of

Gaussian multinormal distributions, and thus the Bayes net

introduced in the previous section can be interpreted and

solved using NLSQ methods. This connection also points the

way to reduction methods, via the theoretically sound process

of marginalizing out variables. Finally, by staying within a

nonlinear system, it is possible to avoid problems of premature

linearization, which are especially important in loop closure.

These properties of NLSQ have been of course been ex-

ploited in previous work, especially in structure-from-motion

theory of computer vision (Sparse Bundle Adjustment or SBA

[36]), from which this research draws inspiration. In this

section, we describe the basics of the measurement model,

NLSQ minimization, variable reduction by marginalization,

and the “lifting” of linear to nonlinear constraints.

A. Frames and Features

Referring to Figure 2, there are two types of system

variables, camera frames ci and 3D features qj . Features are

parameterized by their 3D position; frames by their position

and Euler roll, pitch, and yaw angles:

qj = [xj , yj , zj]
⊤ (1)

ci = [xi, yi, zi, φi, ψi, θi]
⊤. (2)

Features project onto a camera frame via the projection equa-

tions. Each camera frame ci describes a point transformation

from world to camera coordinates as a rotation and translation

pi = Ripw+ ti; we abbreviate as the 3x4 matrix Ti = [Ri|ti].
The projection [u, v]⊤ onto the image is given by





u
v
1



 = KTi

[

qi
1

]

, (3)

where K is the 3x3 camera intrinsic matrix [16].

For stereo, Equation (3) describes projection onto the refer-

ence camera, which by convention we take to be the left one.

A similar equation for [u′, v′]⊤ holds for the right camera,

with t′i = ti+[B, 0, 0]⊤ as the translation part of the projection
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matrix.1 We will label the image projection [u, v, u′, v′]⊤ from

ci and qj as zij .

B. Measurement Model

For a given frame ci and feature qj , the expected projection

is given by

zij = h(xij) + vij , (4)

where vij is gaussian noise with covariance W−1

ij , and for

convenience we let xij stand for ci, qj . Here the measurement

function h is the projection function of Equation 3. Typically

W−1 is diagonal, with a standard deviation of a pixel.

For an actual measurement z̄ij , the induced error or cost is

∆z(xij) = z̄ij − h(xij), (5)

and the weighted square cost is

∆z(xij)
⊤Wij∆z(xij). (6)

We will refer to the weighted square cost as a constraint. Note

that the PDF associated with a constraint is

p(z|xij) ∝ exp(
1

2
∆z(xij)

⊤Wij∆z(xij)). (7)

Although only frame-feature constraints are presented, there

is nothing to prevent other types of constraints from being

introduced. For example, regular odometry would induce a

constraint ∆z(ci, cj) between two frames.

C. Nonlinear Least Squares

The optimization problem is to find the best set of model

parameters x – camera frames and feature positions – to

explain vectors of observations z̄ – feature projections on the

image plane. The nonlinear least squares method estimates

the parameters by finding the minimum of the sum of the

constraints (Sum of Squared Errors, or SSE):

f(x) =
∑

ij

∆z(xij)
⊤Wij∆z(xij). (8)

A more convenient form of f eliminates the sum by con-

catenating each error term into a larger vector. Let ∆z(x) ≡
[∆z(x00)

⊤, · · · ,∆z(xmn)⊤]⊤ be the full vector of measure-

ments, and W ≡ diag(W00, · · · ,Wmn) the block-diagonal

matrix of all the weights. Then the SSE equation (8) is

equivalent to the matrix equation

f(x) = ∆z(x)⊤W∆z(x). (9)

Assuming the measurements are independent under x, the

matrix form can be interpreted as a multinormal PDF p(z|x),
and by Bayes’ rule p(x|z) ∝ p(z|x)p(x). To maximize the

likelihood p(x|z), we minimize the cost function (9) [36].

Since (9) is nonlinear, finding the minimum typically in-

volves reduction to a linear problem in the vicinity of an initial

solution. After expanding via Taylor series and differentiating,

we get the incremental equation

Hδx = −g, (10)

1We assume a standard calibration for the stereo pair, where the internal
parameters are equal, and the right camera is displaced along the camera
frame X axis by an amount B.

Marginalization

Linear

Nonlinear
Constraints

Lifting

Constraint

p(z|x)

ML: x∗

Appendix A

z̄ − h(xij)

p(x|z), x = x̂

p(z|x), x = x̂ Appendix A

p(x1|z), x1 = x̂1

x̂1 − x1

x̂1 − T0x1

Fig. 4. Reduction process diagram. Nonlinear measurements constraints
induce a Gaussian PDF over z, which is converted to a PDF over the system
variables x. Reduction gives a smaller PDF over just x1, which corresponds
to the linear constraint x̂1 − x1. Lifting relativizes this to x̂1 − T0x1.

where g is the gradient and H is the Hessian of f with respect

to x. Finally, after getting rid of some second-order terms, we

can write Equation (10) in the Gauss-Newton form

J⊤WJ δx = −J⊤W∆z, (11)

with J the Jacobian ∂h/∂x, and the Hessian H approximated

by J⊤WJ .

In the nonlinear case, one starts with an initial value x0,

and iterates the linear solution until convergence. In the

vicinity of a solution, convergence is quadratic. Under the

Maximum Likelihood (ML) interpretation, at convergence H
is the inverse of the covariance of x, that is, the information

or precision matrix. We will write J⊤WJ as Λ to emphasize

its role as the information matrix. In the delayed-state SLAM

formulation [13], Λ serves as the system filter in a non-iterated,

incremental version of the SSE problem.

D. Nonlinear Reduction

At this point we have the machinery to accomplish the

reduction shown in Figure 3, eliminating variables from the

constraint net. Consider all the constraints involving the first

two frames (∆z(ci, qj) for i = 0, 1). Figure 4 diagrams

the process of reducing this to a single nonlinear constraint

∆z(c0, x1). On the left side, the NSLQ process induces a PDF

over the variables x, with an ML value of x̂. Marginalization

of all variables but x1 gives a PDF over just x1, which

corresponds to the linear constraint x̂1 − x1. The “lifting”

process relativizes this to a nonlinear constraint. Mathematical

justification for several of the steps is given in Appendix A.

The following algorithm specifies the process in more detail.
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Constraint Reduction

Input: set of constraints

∆z(xi, · · · )
⊤W∆z(xi, · · · ) in variables c0, x1,n,

where c0 (at least) is a frame variable.

Output: constraint ∆z(c0, x1)
⊤W ′∆z(c0, x1) that

represents the same PDF for c0, x1.

1) Fix c0 = 0 (the origin).

2) Solve Eq. (11) in ∆z(xi, · · · ) to get an estimated

mean x̂i and Hessian Λ̂.

3) Convert Λ̂ to a reduced information matrix Λ̂1 for

x1 by marginalizing all variables x2,n.

4) Lift the linear constraint in x1 to a nonlinear

constraint ∆z(c0, x1) = x̂1 − T0x1 with weight

Λ̂1 – T0 is the transformation to c0’s coordinates.

In step 1, we constrain the system to have c0 as the origin.

Normally the constraints leave the choice of origin free, but

we want all variables relative to c0’s frame.

The full system (minus c0, which is fixed) is then solved in

step 2, generating estimated values µ̂ for all variables, as well

as the information matrix Λ̂. These two represent a gaussian

multivariate distribution over the variables x1,n. Next, in step

3, the distribution is marginalized, getting rid of all variables

except x1. The reduced matrix Λ̂1 represents a PDF for x1

that summarizes the influence of the other variables.

Step 4 is the most difficult to understand. The information

matrix Λ̂1 is derived under the condition that c0 is the origin.

But we need a constraint that will hold when intermixed with

other constraints, where c0 may be nonzero. The final step

lifts the result from a fixed c0 to any pose for c0. Here’s how

it works. Steps 2 and 3 produce a mean x̂1 and information

matrix Λ̂1 such that exp[1
2
(x̂1 − x1)

⊤Λ̂1(x̂1 − x1)] is a PDF

for x1. This PDF is equivalent to a synthetic observation on

x1, with the linear measurement function h(x1) = x1. Now

replace h(x1) with the relativized function h(c0, x1) = T0x1,

where T0 transforms x1 into c0’s coordinates. When c0 = 0,

this gives exactly the same PDF as the original h(x1). And

for any c0 6= 0, we can show that the constraint ∆z(c0, x1)
produces the same PDF as the constraints ∆z(xi, · · · ) (see

Appendix A).

What is interesting about ∆z(c0, x1) is its nonlinear nature.

It represents a spring connecting c0 and x1, with precisely

the right properties to accurately substitute for the larger

nonlinear system ∆z(c0, x1, · · · ). The accuracy is affected by

how closely the reduced system follows two assumptions that

were made:

• The displacement between c0 and x1 is close to x̂1.

• None of the variables x2,n participate in other constraints

in the system.

These assumptions are not always fully met, especially the

second one. Nonetheless, we will show in experiments with

large outdoor systems that even very drastic variable reduc-

tions, such as those in Figure 1, give accurate results.

E. Marginalization

In Step 3 we require the reduction of an information

matrix Λ̂ to extract a marginal distribution between two

of the vector variables. Just deleting the unwanted variable

rows and columns would give the conditional distribution
p(c0, x1|x2, · · · ). This distribution significantly overestimates

the confidence in the connection, compared to the marginal,

since the uncertainty of the auxiliary variables is disregarded

[12]. The correct way to marginalize is to convert Λ̂ to its

covariance form by inversion, delete all but the entries for

c0 and x1, and then invert back to the information matrix.

A shortcut to this procedure is the Schur complement [14],

[31], [21], which is also useful in solving sparse versions of

Equation (9). We start with a block version of this equation,

partitioning the variables into frames c and features q:

[

H11 H12

H⊤
12 H22

] [

δc
δq

]

=

[

−J⊤
c Wc∆z(c)

−J⊤

q Wq∆z(q)

]

(12)

Now we define a reduced form of this equation:

H̄11δc = −g, (13)

with

H̄11 ≡ H11 −H12H
−1

22
H⊤

12 (14)

−g ≡ −J⊤

c Wc∆z(c) −H12H
−1

22
J⊤

q Wq∆z(q). (15)

Here the matrix equation (13) involves only the variables c.
There are two cases where this reduction is useful.

1) Constraint reduction. The reduced Hessian H̄11 is the

information matrix for the variables c, with variables

q marginalized out. Equation (15) gives a direct way to

compute the marginalized Hessian in Step 3 of constraint

reduction.

2) Visual odometry. For the typical situation of many

features and few frames, the reduced equation offers an

enormous savings in computing NLSQ, with the caveat:

H22 must be easily invertible. Fortunately, for features

the matrix H22 is diagonal, since features only have

constraints with frames, and thus the Jacobian J in

J⊤WJ affects just H12.

IV. DATA ASSOCIATION AND LANDMARKS

The raw material for constraints comes from data associa-

tion between image features. We have implemented a method

for matching features across two camera frames that serves

a dual purpose. First, it enables incremental estimation of

camera motion for tracking trajectories (visual odometry).

Second, on returning to an area, we match the current frame

against previous frames that serve as landmarks for the area.

These landmark frames are simply the skeleton system that

is constructed as the robot explores an area – a reduced

set of frames, connected to each other by constraints. Note

that landmark frames are not the same as feature landmarks

normally used in non-delayed EKF treatments of VSLAM.

Features are only represented implicitly, by their projections

onto camera frames. Global and local registration is done

purely by matching images between frames, and generating

frame-frame constraints from the match.
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A. Matching Frames

Consider the problem of matching stereo frames that are

close spatially. Our goal is to precisely determine the motion

between the two frames, based on image feature matches.

Even for incremental frames, rapid motion can cause the same

feature to appear at widely differing places in two successive

images; the problem is even worse for wide-baseline matching.

The images of Figure 5 show some difficult examples from

urban and offroad terrain. Note the significant shift in feature

positions.

One important aspect of matching is using image features

that are stable across changes of scale and rotation. While

SIFT [24] and SURF [17] are the features of choice, they are

not suitable for real-time implementations (15 Hz or greater).

Instead, we use a novel multiscale center-surround feature

called CenSure. In previous research, we have shown that

this operator has the requisite stability properties, but is just

slightly more expensive than the Harris operator [23].

In any image feature matching scheme, there will be false

matches. In the worst cases of long-baseline matching, some-

times only 10% of the matches are good ones. We use the

following robust matching algorithm to find the best estimate,

taking advantage of the geometric constraints imposed by rigid

motion.

Consensus Match

1) Extract features from the left image.

2) Perform stereo to get corresponding feature posi-

tions in the right image.

3) Match to features in previous left image using

normalized cross correlation.

4) Form consensus estimate of motion using

RANSAC on three points.

5) Use NLSQ to polish the result over the two frames

(four images).

Three matched points give a motion hypothesis between the

frames [16]. The hypothesis is checked for inliers by projecting

all feature points onto the two frames (Equation 3). Features

that are within 2 pixels of their projected position are consid-

ered to be inliers – note that they must project correctly in all

four images. The best hypothesis (most inliers) is chosen and

optimized using the NLSQ technique of Section III-E. Some

examples are shown in Figure 5 with matched and inlier points

indicated.

This algorithm is used for both incremental tracking and

wide-baseline matching, with different search parameters for

finding matching features. Note that we do not assume any

motion model or other external aids in matching.

B. Visual Odometry

Consensus matching is the input to a visual odometry

process for estimating incremental camera motion. To make

incremental motion estimation more precise, we incorporate

several additional methods.

1) Key frames. If the estimated distance between two

frames is small, and the number of inliers is high, we

discard the new frame. The remaining frames are called

Fig. 5. Matching between two frames in an urban scene (top) and rough
terrain (bottom). Objects that are too close, such as the bush in the bottom
right image, cannot be found by stereo, and so have no features. Inlier matches
for the best consensus estimate are in cyan; other features found but not part
of the consensus are in magenta. The upper pair is about 5m distance between
frames, and there are moving objects. The lower pair has significant rotation
and translation.

key frames. Typical distances for key frames are about

0.1 - 0.5 meters, depending on the environment.

2) Incremental bundle adjustment. A sliding window of

about 10 keyframes (and their features) is input to the

NLSQ optimization. Using a small window significantly

increases the accuracy of the estimation [11], [23], [28],

[35].

3) IMU data. If an Inertial Measurement Unit is available,

it can decrease the angular drift of VO, especially tilt

and roll, which are referenced to gravity normal [23],

[34].

For a small enough set of frames, recent research has shown

that incremental bundle adjustment can be done very effi-

ciently using Hessian reduction [11], [28].

The third item is an interesting addition to NLSQ estima-

tion. The following equations describe IMU measurements of

gravity normal and yaw angle increments:

gi = hg(ci) (16)

∆ψi−1,i = h∆ψ(ci−1, ci) (17)

The function hg(c) returns the deviation of the frame c in pitch

and roll from gravity normal. h∆ψ(ci−1, ci) is just the yaw

angle difference between the two frames. Using accelerometer

data acting as an inclinometer, with a very high noise level to

account for unknown accelerations, is sufficient for (16) to

constrain roll and pitch angles and completely avoid drift. For

yaw angles, only a good IMU can increase the accuracy VO

estimates. In the experiments section, we show results both

with and without IMU aiding.

C. Wide Baseline Matching

To register a new frame against a landmark frame, we use

the same consensus matching technique as for visual odometry.
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Cross matches for the Versailles Rond dataset
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Fig. 6. Matching statistics on a 700 image urban scene. The number of
inliers in matches between frames is color-coded; inliers counts below 30 were
eliminated. Only the upper right triangle is used. Note the longer matching
areas where the vehicle goes along a straight stretch (a), and the very long
matches at the end as the car slows down along a straightway (b). The off-
diagonal (c) is the set of matched frames closing the loop.

This procedure has several advantages.

• Sensitivity over scale. The CenSure features are scale-

independent, and so are stable when there has been

significant viewpoint change.

• Efficiency. The CenSure features and stereo are already

computed for visual odometry, so wide baseline matching

just involves steps 3-5 of the Consensus Match algorithm.

This can be done at over 30 Hz.

• Specificity. The geometric consistency check almost guar-

antees that there will be no false positives, even using a

very low inlier threshold.

Figure 5 shows an example of wide baseline matching in the

upper urban scene. The distance between the two frames is

about 5m, and there are distractors such as cars and pedes-

trians. The buildings are very self-similar, so the geometric

consistency check is very important in weeding out bad

matches. In this scene, there are about 800 features per image,

and only 100 inliers for the best estimate match.

To analyze sensitivty and selectivity, we computed the inlier

score for every possible cross-frame match in the 700 frame

urban sequence shown in Figure 1. Figure 6 shows the results,

by number of inliers. Along the diagonal, matching occurs for

several frames, to an average of 10m along straight stretches.

The only off-diagonal matching occurs at the loop closure.

The lower scores on closure reflect the sideways offset of

the vehicle from its original trajectory. Consensus matching

produced essentially perfect results for this dataset, giving no

false positives, and correctly identifying loop closures.

D. Place Recognition

We implement a simple but effective scheme for recognizing

places that have already been visited, using the consensus

match just presented. This scheme is not intended to do

“kidnapped” recognition, matching an image against a large

database of places [5], [29]. Instead, it functions when the

system has a good idea of where it is relative to the landmark

frames that have been accumulated. In a local area, for

example, the system always stays well-registered, and has to
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Fig. 7. Skeleton graph for an indoor dataset (dataset courtesy of Robert Sim).
Distances are in meters. Dataset has 8,490 key frames (a small set of these
are shown in blue). The skeleton graph is shown in red; some of the longer-
range links are from landmark frame matching, and some are from reduction
eliminating frames. NLSQ computation for the skeleton graph takes 65 ms.

search only a small number of frames for matches. Over larger

loops, the method is linear in the size of the area it must search.

The main problem that arises is which landmark frames

should serve as candidates to match to the current frame.

Ideally, we would use the relative covariance estimates com-

puted from the Bayes net as a gate, that is, ∆x⊤W∆x < d,

where ∆x is the distance between the current frame cn and

a candidate landmark ci [9]. However, computing relative

covariance involves marginalizing all variables in the system

Hessian, and is too expensive to be done online [12]. Instead,

we use the skeleton to provide an approximate covariance that

is conservative. In the skeleton net, we find the shortest path

from cn to ci, and then compose the incremental covariances

along the path to get an estimate of the relative covariance.

An efficient search of the net (O(n log n)) can be done using

Dijkstra’s method [33]. In practice this method needs several

milliseconds on the largest graphs we have attempted; for very

large spaces, a hierarchical skeleton would be appropriate to

keep computational costs reasonable.

One property we would like to observe is that the space

consumed by the skeleton should be proportional to the area

visited. On continual movement in an area, the skeleton will

continue to grow unless frames are removed. Our method here

is to marginalize out any frames that are within a distance d
and angle a of an existing skeleton frame. As an example,

we show an indoor dataset consisting of 8,490 keyframes

in a small 12m x 12m area (Figure 7). The skeleton graph

was produced using a landmark distance of 2 meters and 10

degrees, reducing the graph to 272 frames with 23 cross-frame

links. The final skeleton graph is solved by NLSQ in 65 ms.

E. Realtime Implementation

Our VO system has been implemented and runs at 15 Hz

on 512x384 resolution stereo images using a 2 GHz processor,

and is in habitual use in demo runs on an outdoor robot [1],
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Fig. 8. Large-scale timings for a skeleton graph. The trajectory of the graph
was ∼10 km. The NLSQ time is linear in the size of the skeleton for this
graph.

[2], [23]. At this point we have implemented the rest of the

frameSLAM system only in processing logs, for which we

report timing results; we are transitioning the system to an

outdoor robot, and will report system results soon.

The main strategy for adding registration matches is to use

a dual-core machine: run VO on one core, and wide-baseline

matching and skeleton computations on another. Wide-baseline

matching is on an “anytime” basis: we match the current

keyframe against a set of candidates that pass the Mahalanobis

gate, until the next keyframe comes in, when we start matching

that. Whenever a good match is found, the system performs

an NLSQ update, either on the whole skeleton, or a smaller

area around the current keyframe, depending on the situation.

Of course, this strategy does not address the significant

problems of frame storage and retrieval for very large systems,

as done by recent place-recognition algorithms [5], [29]. It

may also miss some matches, since it does not explore all

possible candidates. But for skeletons of less than 10k frames,

where the frames can be kept in RAM, it works well.

For efficient calculation of the NLSQ updates, we use a

preconditioned conjugate gradient algorithm (PCG) that has

been shown to have good computational properties – in many

cases, the complexity increases linearly with the size of the

skeleton [20]. For the large outdoor dataset, Figure 8 plots the

PCG time against the size of the skeleton. Note that these are

for a very large loop closure of a combined 10 km trajectory

– typically only a small local area needs to be optimized.

V. EXPERIMENTS

It is important to test VSLAM systems on data gathered

from real-world platforms. It is especially important to test

under realistic conditions: narrow FOV cameras, full 3D mo-

tion, and fast movement, as these present the hardest challenge

for matching and motion estimation. For this research, we used

three widely different sources of stereo frames.

1) An indoor sequence consisting of 22K frames in a small

area, moving slowly (courtesy of Robert Sim [10]). The

stereo system had a wide FOV, narrow baseline, and was

purely planar motion.

2) An outdoor automobile sequence, the Versailles Rond

dataset (courtesy of Andrew Comport [4]). This dataset

has 700 frames with fast motion, 1 m baseline, narrow

FOV, covering about 400 meters.

Fig. 9. Top: Indoor dataset showing raw VO (green crosses are frames
and cyan dots are features) vs. frameSLAM result (red trajectory and blue
features). Note that the frameSLAM features correspond to a rectangular set
of rooms, while the VO results are skewed after the loop. Bottom: Versailles
Rond urban dataset. Blue is raw VO, red is frameSLAM result (see Figure 1
for cross-frame links). Note that the Z offset of the loop has been corrected.

3) Two outdoor rough-terrain sequences of about 5 km

each, from the Crusher project [6]. Baseline is 0.5 m,

narrow FOV, and fast, full 3D motion with lots of

bouncing on rough terrain. These datasets offer a unique

opportunity, for two reasons. First, they are autonomous

runs through the same waypoints; they overlap and cross

each other throughout, and end up at the same place for

a large loop closure. Second, the dataset is instrumented

with both IMU and RTK GPS data, and our frameSLAM

results can be computed for both aided and unaided VO,

and compared to ground truth.

A certain number of frames, about 2%, cannot be

matched for VO in this dataset. We fill in these values

with IMU data.

A. Planar Datasets

The indoor and Versailles Rond datasets were used through-

out the paper to illustrate various aspects of the frameSLAM

system. Because there is no ground truth, they offer just

anecdotal evidence of performance: the indoor dataset illus-

trates that the skeleton does not grow with continued traversal

of a region; the Versailles Rond dataset shows loop closure

over a significant distance. From the plots of Figure 9, the

improvement in fidelity to the environment is apparent. One

possible measure of the improvement is the planarity of the

trajectories. The table below lists the relevant statistics for the
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two runs. The timings are for NLSQ optimization of the entire

skeleton.

Length Key Skeleton Planarity (m) Time
(m) frames frames VO fS (ms)

Indoor 150 8.2K 272 0.15 0.11 65
Versailles 370 700 133 0.19 0.15 35

B. Crusher Datasets

The Crusher data comes from two autonomous 5 km runs,

which overlap significantly and form a loop. There are 20K

keyframes in the first run, and 22K in the second. Over

20 million features are found and matched in the keyframe

images, and roughly 3 times that in the total image set. Figure

10 (top) gives an idea of the results from raw VO on the two

runs. There is significant deviation in all dimensions by the

end of the loop (circled in red). With a skeleton of frames at

5m intervals, there were a total of 1978 reduced frames, and

169 wide-baseline matches between the runs using consensus

matching. These are shown as red links in the top plot.

The middle plot shows the result of applying frameSLAM

to a 5m skeleton. Here the red trajectory is ground truth for the

blue run, and it matches the two runs at the beginning and end

of the trajectory (circled on the left). The two runs are now

consistent with each other, but still differ from ground truth

at the far right end of the trajectory. This is to be expected:

the frameSLAM result will only be as good as the underlying

odometry when exploring new areas.

If VO is aided by an IMU (Section IV-B), global error is

reduced dramatically. The bottom plot shows the frameSLAM

result using the aided VO – note that the blue run virtually

overlays the RTK GPS ground truth trajectory.

How well does the frameSLAM system reduce errors from

open-loop VO? We should not expect any large improvement

in long-distance drift at the far point of trajectories, since

SLAM does not provide any global input that would correct

such drift. But, we should expect dramatic gains in relative

error, that is, between frames that are globally close, since

SLAM enforces consistency when it finds correspondences.

To show this, we compared relative pose of every frame pair

to ground truth, and plotted the results as a function of distance

between the frames. Figure 11 shows the results for both raw

and aided VO. For raw VO (top plot), the open-loop errors

are very high, because of the large drift at the end of the

trajectories (Figure 10, top). With the cross-links enforcing

local consistency, frameSLAM gives much smaller errors for

short distances, and degrades with distance, a function of yaw

angle drift. Note that radical reductions in the size of the

skeleton, from 1/4 to 1/400 of the original keyframes, have

negligible effect, proving the accuracy of the reduced system.

A similar story exists for IMU-aided VO. Here the errors

are much smaller because of the smaller drift of VO. But the

same gains in accuracy occur for small frame distances, and

again there is almost no effect from severe skeleton reductions

until after 300 meters.

VI. CONCLUSIONS

We have described frameSLAM, a system for visual SLAM

that is capable of precise, realtime estimation of motion, and
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Fig. 11. RMS error as a function of distance. For every pair of frames, the
error in their relative pose is plotted as a function of the distance between
the frames. Top: Unaided VO. The blue line shows poor open-loop VO
performance, even for short distances; frameSLAM (red lines) gives excellent
results for these distances. Skeleton reduction factor has negligible influence.
Bottom: IMU-aided VO.

also is able to keep track of local registration and global

consistency. The key component is a skeleton system of

visual frames, that act both as landmarks for registration,

and as a network of constraints for enforcing consistency.

frameSLAM has been validated through testing in a variety

of different environments, including large-scale, challenging

offroad datasets of 10 km.

We are currently porting the system to two live robot

platforms [6], [22], with the intent of providing completely

autonomous offroad navigation using just stereo vision. The

VO part of the system has already been proven over a year of

testing, but cannot eliminate the long-term drift that accrues

over a run. With the implementation of the skeleton graph, we

expect to be able to assess the viability of the anytime strategy

for global registration presented in Section IV-E.

APPENDIX A

NONLINEAR CONSTRAINT “LIFTING”

Let c0, x1 and q be a set of variables with measurement

cost function

∆z⊤Wi∆z (18)

and measurement vector z̄. For c0 fixed at the origin, let Λ̂1 be

the Hessian of the reduced form of (18), according to Step 3

of the Constraint Reduction algorithm. We want to show that

the cost function

∆z′
⊤

Λ̂i∆z
′ (19)

has approximately the same value at the ML estimate x̂1,

where z′(c0, x1) = T0x1 and z̄′ = x̂1. To do this, we show

that the likelihood distributions are approximately the same.
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Fig. 10. XYZ plot of two Crusher trajectories (blue and green) of about 5 km each. Top shows the raw VO, with cross-matched frames with red links. The
start and finish of both runs is at the left, circled in red; the runs are offset vertically by 20 m at the begninning to display the links. Note the loop closure
between the end of the blue run and the beginning of the green run. Middle shows the frameSLAM-corrected system for a 5m skeleton. The ground truth for
the blue run is in red. The relative positions of the green and blue runs have been corrected, and the loop closed. The bottom shows the excellent result for
IMU-aided VO.

The cost function (18) has the joint normal distribution

P (ẑ|x1,q) ∝ exp(−
1

2
∆z⊤Wi∆z) (20)

We want to find the distribution (and covariance) for the

variable x1. Let x = x1,q, and f(x) the cost function (18).

Expanding f(x + δx) in a Taylor series, the cost function

becomes

(ẑ − f(x))⊤W (ẑ − f(x)) (21)

≃ (ẑ − f(x) − Jδx)⊤W (ẑ − f(x) − Jδx) (22)

= δx⊤1 Λ̂1δx1 − 2∆zWJδx+ const, (23)

where we have used the Schur equality to reduce the first

term of the third line. As ∆z vanishes at x̂, the last form

is quadratic in x1, and so is a joint normal distribution over

x1. From inspection, the covariance is Λ̂−1

1
. Hence the ML

distribution is

P (x1|ẑ) ∝ exp(−
1

2
(x̂1 − x1)

⊤Λ̂1(x̂1 − x1)). (24)

The cost function for this PDF is (19) for c0 fixed at the origin,

as required. When c0 is not the origin, the cost function (18)

can be converted to an equivalent function by transforming

all variables to c0’s coordinate system. The value stays the

same because the measurements are localized to the positions

of c0 and x1 – any global measurement, for example a GPS

reading, would block the equivalence. Thus, for arbitrary c0,

(20) and (24) are approximately equal just when x1 is given

in c0’s coordinate system. Since (24) is produced by the cost

function (19), we have the approximate equivalence of the two

cost functions.
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