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Abstract

This paper presents a framework to solve the constrained black-box simulation optimization problem that

arises from the optimal energy-e�cient design of single-mixed refrigerant natural gas liquefaction process

using reliable process simulator. Kriging surrogate model is used to introduce simple, computationally

inexpensive, and e�ective algebraic formulations with reliable derivatives to the black-box objective and

constraints functions. The algebraic surrogate optimization problem is embed into a nonlinear programming

(NLP) model in GAMS. The NLP problem is solved using e�cient multi-start gradient-based optimization

with CONOPT local solver to determine a candidate of decision variables for which the true functions are

calculated in the rigorous simulation. The single-mixed refrigerant process is analyzed considering 1-to-

3-stage expansion and phase separation to assess potential energy savings. The present approach results

show that more expansion stages can provide energy savings from 10.02 to 14.71 % comparing 2-stage and

3-stage expansion system with 1-stage. This optimization framework is more e�ective and consistent than

Particle Swarm Optimization and Genetic Algorithm given the same budget of simulation evaluations for

the considered simulation optimization problems resulting in 12.02 to 34.69 % savings.

Keywords: Simulation optimization, Kriging, Process simulation, Surrogate-based optimization, Natural

gas liquefaction, Mathematical programming.

1. Introduction1

Modeling and simulating complex systems rigorously with pure symbolic formulations and analytical2

methods can become very complicated with increasing size and complexity of the model, which can be a3

system of nonlinear algebraic or algebraic-di�erential equations. Therefore, much of today's engineering4

applications uses rigorous computer codes (simulation) to describe complex systems employing state-of-the-5

art numerical methods, in a black-box fashion [1]. In other words, for a given input x ∈ Rn, the simulation6

calculates the response variables of interest y ∈ Rp, in which n and p are the number of independent and7

dependent variables in the simulation, respectively. Although very e�cient to describe in details complex8
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systems that would otherwise have to be simpli�ed or approximated, a drawback of using black-box models9

is the lack of symbolic formulation of the model equations and the analytical derivatives that are useful10

for optimization, for example. The use of simulation may also introduce noise to the calculations due to11

convergence and approximations of numerical methods [2]. In that sense, the optimization models that12

require simulations to calculate the objective function and/or constraints are often referred to as simulation13

optimization problem [3]. A simpli�ed version of this class of problems can be described as to �nd an x∗ ∈ Rn14

that solves globally the following constrained problem15

min
x∈D

f(x)

s.t. g(x) ≤ 0,

(1)

in which the objective function f : Rn 7→ R and constraints g : Rn 7→ Rq, in which q is the number of16

constraints, are somewhat expensive to calculate, slightly noisy, and black-box functions, i.e. there is no17

available mathematical expression for f or g, but for a given x ∈ D ⊆ Rn the value of f(x) and g(x)18

are calculated in a computer code simulation with some noise. Besides being expansive to calculate and19

black-box, these functions that relies on the simulation can be noisy due to numerical approximations and20

convergence tolerance, which can jeopardize the calculation of accurate approximate derivatives and, there-21

fore, the use of gradient-based optimization methods directly [2]. Also, the lack of analytical formulations of22

the optimization problem prevents the derivation of rigorous upper and lower bounds of the functions that23

are used for deterministic global optimization [4].24

Knowing that the functions in the simulation optimization problem as in Eq. (1) are expensive to calcu-25

late, black-box, and noisy, methods like gradient-based with stochastic approximation, direct search, random26

search, and response surface are suited to solve it [3]. The latter group of methods, also known as surrogate-27

based optimization, has shown promising results in recent years [5]. The main idea behind these methods is28

to construct surrogate models, also known as meta-models or response surfaces, of the simulation-dependent,29

black-box functions from the optimization problem. These cheaper-to-evaluate surrogate functions are used30

to determine a candidate solution of the black-box optimization problem via optimization of either an acqui-31

sition function or the surrogate functions directly [6]. The latter approach has been investigated extensively32

with important classic works. For instance, Kushner [7] considered the probability of improvement to �nd33

promising next iterates to optimize the unknown function. Sacks et al. [8] analyzed maximizing the inte-34

grated mean squared error, the maximum mean squared error, and entropy of the surrogate model to guide35

the search. Jones el al. [9] used an e�cient global optimization approach to the expected improvement36

acquisition function. Schonlau et al. [10] developed a general acquisition function for the constrained prob-37

lem, which is a generalization of the expected improvement criterion averaged by the joint probability of38

constraints being feasible.39

More recently, boosted by recent advances in machine learning models, the surrogate-based optimization40

approaches that solves the surrogate optimization problem directly to guide the search toward the opti-41
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mization of the true functions have gained popularity. Besides machine learning models, such as arti�cial42

neural networks, random forests, radial basis functions, polynomials, etc., the kriging [11] surrogate model43

has driven researches' attention as it is an interpolating model, which has few parameters to adjust, is44

cheap to evaluate, and has explicit algebraic formulation. Some important contributions to this surrogate-45

based optimization �eld of research includes Davis and Ierapetritou [12], which developed a kriging-based46

optimization with response surface model optimization for local re�nement. Caballero and Grossmann [2]47

proposed a trust-region algorithm using kriging surrogate models of slightly noisy black-box functions em-48

bedded with implicit (non-noisy simulation functions) and algebraic equations in nonlinear programming49

(NLP) problems and solved each sub-problem with SNOPT solver. The approach was applied to the design50

of distillation columns, sequence of distillation columns, and production of phthalic anhydride from o-xylene.51

Cozad et al. [13] proposed the ALAMO software, which uses a global mixed-integer nonlinear programming52

(MINLP) approach to symbolic regression considering an ensemble of surrogates and aiming simple function53

formulation that can be e�ciently used for optimization. Boukouvala and Floudas [4] developed an iterative54

framework, called ARGONAUT, composed by bounds tightening, sampling, surrogate function selection,55

global optimization of the surrogate-embedded NLP problem using ANTIGONE solver, and collection of56

new sampling points until convergence. Wang and Iearapetritou [14] proposed a kriging-based framework57

for the optimization of stochastically constrained problems. The main contribution of this work was to58

present the �feasibility-enhanced Expected Improvement� acquisition function, which explicitly improves59

the feasibility knowledge while searching for a new sample point. Quirante et al. [15] embedded process60

simulator to generalized disjunctive programming problems considering integer variables and using kriging61

surrogate model for noisy black-box functions and implicit equations for non-noisy ones. The logic-based62

Outer Approximation solver was employed with SNOPT for NLP sub-problems using TOMLAB-MATLAB63

interface, and the approach was applied to the synthesis of vinyl chloride monomer production process.64

Schweidtmann and Mistos [16] proposed the MAiNGO software, which is a deterministic global optimiza-65

tion solver for NLP problems with arti�cial neural networks surrogate models embedded. The solver uses66

McCormick relaxations in a reduced space employing the convex and concave envelopes of the nonlinear67

activation function. The framework was tested on four optimization examples: an illustrative function, a68

fermentation process, a compressor plant and the cumene production process. Thebelt et al. [17] developed69

a framework, called ENTMOOT, for embedding trained gradient boosted trees surrogate models into larger70

NLP problems and tested it on constrained global optimization test problems and on a fermentation process.71

Kim and Boukouvala [18] proposed a framework to simulation-based MINLP problems that uses adaptive72

sampling and surrogate modeling with one-hot encoding (without integer variables relaxation) that resulted73

in accurate and robust mixed-variable kriging and neural network models, which were e�ective surrogates74

for optimization. The approach was tested on MINLP benchmark problems and a chemical process synthesis75

case study.76
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One application of simulation optimization problem is in the design of natural gas liquefaction processes.77

These cryogenic refrigeration processes consist of cooling down the natural gas to about -160 °C at slightly78

above ambient pressure to liquefy, store, transport, and commercialize it safely [19]. These processes consume79

signi�cant amounts of energy and their optimal design are very important to reduce the cost of lique�ed80

natural gas (LNG) as its liquefaction is responsible for 40�60 % of the costs of the LNG value chain, depending81

on the site conditions and available liquefaction technology [20]. Also, they are of extreme importance82

currently as the natural gas demand is expected to increase 29.4 % from 2019 to 2040, accordingly to the83

International Energy Agency [21]. This expected increase in natural gas demand is mainly due to the84

increasingly global energy consumption, which is expected to go from 603 to 715 trillion MJ per year from85

2019 to 2040 [21], and for it being a cleaner and economically competitive energy source compared to other86

fossil fuels, such as oil and coal.87

The natural gas liquefaction process that uses a mixture operating in a single refrigeration cycle and88

explores its temperature range of evaporation as heat sink to cool and liquefy both the natural gas stream89

and itself in a multi-stream heat exchanger (MSHE) is called single-mixed refrigerant (SMR) process. From90

the simulation point of view, the main modeling challenges in this process come from the vapor-liquid91

equilibrium calculations at below ambient temperature and the Pinch-like calculation in the multi-stream92

heat exchangers considering phase change and rigorous thermodynamic calculations at cryogenic conditions.93

Therefore, it is useful to employ chemical process simulators, where all of these di�cult calculations are94

performed with state-of-the-art methods, equations, and empirical coe�cients. The optimization part of95

the problem consists of choosing the process degrees of freedom, such as refrigerant composition and the96

thermodynamic cycle conditions to improve a process metric of interest. For that, optimization techniques97

have been used extensively in the past decade, as reported in the annotated bibliography from Austbø et al.98

[22].99

Some of the important contributions on optimal design of SMR natural gas liquefaction process that100

used optimization techniques to reliable black-box process simulator are now reviewed. Lee [23] developed a101

sequential methodology for the systematic synthesis of mixed-refrigerant systems by a combined mathemat-102

ical programming and thermodynamic approach and applied to the SMR liquefaction process with 1-stage103

compression and multi-stage expansion. Nogal et al. [24] investigated, using a Genetic Algorithm (GA),104

the optimal design of mixed refrigerant cycles that included multistage refrigerant compression, 1-to-4-stage105

expansion, multiple refrigeration cycles, full enforcement of the minimum temperature di�erence in heat106

exchangers, simultaneous optimization of variables, and consideration of capital costs. Aspelund et al. [25]107

tackled the optimal design of SMR process for natural gas liquefaction with 1-stage compression and 1-stage108

expansion using a hybrid optimization approach of Taboo Search and Nelder-Mead algorithm. Wahl et al.109

[26] investigated the optimization of a simple 1-stage compression and 1-stage expansion SMR natural gas liq-110

uefaction process using a time-e�cient Sequential Quadratic Programming routine connected to the process111
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simulator. Hwang et al. [27] proposed a generic liquefaction superstructure model to express various types112

of liquefaction cycles, from which 27 feasible con�gurations were optimized to reduce compression power113

consumption. Thermodynamic calculations were in sequential modular fashion, using the Peng-Robinson114

equation of state, and a hybrid optimization framework consisting of GA and SQP was used. Khan and Lee115

[28] investigated the e�ectiveness of Particle Swarm Optimization (PSO) in simulation optimization problems116

in the optimal design of SMR natural gas liquefaction process with 4-stage compression and 1-stage expan-117

sion. He et al. [29] proposed and optimized a novel SMR cycle integrated with natural gas liquids recovery118

process for small-scale LNG plant using a GA. Khan et al. [30] investigated the performance of a sequential119

coordinate randomization search method for optimizing SMR natural gas liquefaction process. Moein et al.120

[31] minimized total required work of the commercial APCI-SMR natural gas liquefaction process, which121

includes a 3-stage compression with phase separation and a 3-stage expansion systems, using a GA. Park122

et al. [32] optimized the Korea SMR process, which considers a 3-stage compression with phase separation123

and 2-stage expansion systems and 2-phase expander for LNG stream, using a modi�ed coordinate descent124

methodology. Austbø and Gundersen [22] minimized the power consumption of a simple 1-stage compression125

and 1-stage expansion SMR process for natural gas liquefaction using four di�erent constraint formulations126

to handle the trade-o� between investment and operating costs using SQP with multiple starting points.127

More recently, Pham et al. [33] developed a knowledge-inspired hybrid optimization of a modi�ed SMR128

natural gas liquefaction process with 2-stage compression with phase separation and 2-stage expansion with-129

out phase mixing targeted for o�shore applications. Na et al. [34] analyzed the performance of a modi�ed130

DIRECT algorithm to optimize an SMR natural gas liquefaction process with 3-stage compression and 2-131

stage expansion. Pham et al. [35] investigated the energy enhancement of SMR natural gas liquefaction132

process with 4-stage compression with phase separation and 1-stage expansion using knowledge-based opti-133

mization. Qyyum et al. [36] investigated the e�ect of replacing the throttling valve of Joule-Thomson e�ect134

with hydraulic turbine in the energy e�ciency enhancement of an SMR natural gas liquefaction process with135

4-stage compression and 1-stage expansion. Qyyum et al. [37] analyzed the performance of a hybrid modi�ed136

coordinate descent algorithm to cope with the optimization of an SMR natural gas liquefaction process with137

4-stage compression with phase separation and 1-stage expansion. Ali et al. [38] investigated the performance138

of a meta-heuristic vortex search algorithm for the optimization of an SMR natural gas liquefaction process139

with 4-stage compression with phase separation and 1-stage expansion. Ali et al. [39] examined surrogate-140

assisted modeling and optimization of the SMR natural gas liquefaction process with 4-stage compression and141

1-stage expansion. The process optimization was carried out using a surrogate-assisted modeling approach142

that was optimized using GA and PSO. Lee et al. [40] performed, using a GA, the design and optimization143

of 3-stage compression with phase separation and 1-stage expansion SMR natural gas liquefaction process144

with several steady-state operation regimes, depending on the load variation using a GA. He et al. [41]145

proposed a comprehensive optimization and comparison between 2-stage compression with phase separation146
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and 2-stage expansion SMR and parallel nitrogen expansion natural gas liquefaction processes from the per-147

spectives of speci�c energy consumption, exergy e�ciency, techno-economy, and operational �exibility using148

a GA. Qyyum et al. [42] proposed an energy-and-cost-e�cient 2-stage expansion SMR process for natural149

gas liquefaction and compared it to the dual-mixed-refrigerant process. Nikkho et al. [43] optimized two150

mini-scale modi�ed 3-stage compression with phase separation, 2-stage expansion SMR natural gas lique-151

faction processes using a GA. Santos et al. [44] investigated the optimization of a 4-stage compression with152

phase separation, 1-stage expansion SMR natural gas liquefaction process employing an augmented number153

of decision variables with Nelder-Mead derivative-free optimization method, considering valve and hydraulic154

turbine expansion. Later the methodology was improved in Santos et al. [45], in which a kriging-assisted155

global search scheme that included the optimization of the probability of feasible improvement acquisition156

function to �nd promising candidates to run the local search with Nelder-Mead algorithm.157

Most of the present literature on optimal design of the SMR natural gas liquefaction process have re-158

lied on global optimization meta-heuristics, mainly GA, to investigate more sophisticated aspects of the159

processes, such as energy-e�cient, robust, and �exible design, process �ow diagram modi�cations, and eco-160

nomic analysis. Although meta-heuristics are powerful tools for complex optimization problems [46], these161

methods usually require lots of functions evaluations and lack deterministic convergence proof. Given the162

present review on methods for black-box optimization problems and single-mixed refrigerant natural gas163

liquefaction process design and considering the particularities of the simulation optimization problem from164

this design task toward minimum energy consumption using reliable chemical process simulators, surrogate165

modeling can be used to introduce symbolic formulation to the optimization problem functions that then166

can be embedded in mathematical programming setup and solved using classical and e�cient gradient-based167

optimization or deterministic global optimization. Di�erently from what was done in [39] and [45], which168

optimized the surrogate optimization problem or acquisition function based on the surrogate models using169

global optimization meta-heuristics, the present approach explore the mathematical information introduced170

by the surrogate models. It means that, generic regression models are �tted to data generated from the rig-171

orous simulation and used to replace the black-box functions f and g by surrogates f̂ and ĝ̂ĝg that introduce172

analytical formulation to those functions with reliable derivatives that can be used for e�cient gradient-based173

optimization of the resulted nonlinear programming problem.174

The objective of the present paper is to propose an e�ective utilization of kriging surrogate models175

to replace the process-simulator-dependent, black-box objective and constraints functions and introduce176

explicit algebraic formulation to the optimization problem. The proposed framework consists of a three-177

piece program: the main program in MATLAB that stores the sampled data at the rigorous simulation-178

dependent functions, �ts and updates the kriging models, calls the process simulator for rigorous function179

evaluations of candidates, and calls GAMS for solving the surrogate optimization nonlinear programming180

problem; the simulator program in Aspen HYSYS that contains the processes models and calculates the181
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rigorous functions of the optimization problem; and the algebraic modeling system in GAMS that contains182

the surrogate optimization problem implemented explicitly, receives the current NLP problem parameters183

from the main program, and returns the solution to it. One novelty of the present approach to make the184

liquefaction process simulation optimization e�ective using surrogate models is to divide the multi-stream185

heat exchangers, which are modeled like Pinch calculations with phase change and non-ideal solutions, so186

that the temperature driving force between hot and cold composite curves are calculated for each segment187

of the heat exchanger instead of the whole. This leads to better behaved functions that are well adjusted by188

the surrogate models for the sake of optimization.189

To test the optimization methodology, the single-mixed refrigerant natural gas liquefaction process de-190

sign considering 1, 2, and 3 expansion stages is investigated. The decision variables in these simulation191

optimization problems are the refrigerant component �ow rate, the condensation and evaporation pressure,192

and the expansion temperature of the multi-component refrigerant in the refrigeration cycle. The considered193

constraint is that a minimum temperature driving force of 3 °C must be assured throughout every multi-194

stream heat exchanger. Also, phase separation is considered in between compression stages to explore the195

energy savings from condensation along the refrigeration cycle. The optimization results from the present196

methodology are compared with two global meta-heuristic optimization approach, which are Particle Swarm197

Optimization and Genetic Algorithm. The energy e�ciency of multi-stage expansion is investigated jointly198

with a thermodynamic analysis of entropy generation. The computational aspects of the present approach is199

analyzed with respect to prediction time of the kriging models, and convergence of the proposed algorithm.200

This paper is organized so that in Section 2 the kriging model and the surrogate optimization problem201

are de�ned and derived. Section 3 describes in detail the single-mixed refrigerant natural gas liquefaction202

process with 1-to-3-stage expansion system as well as its simulation considerations, constraints, degrees of203

freedom, and optimization. Section 4 presents the optimization framework that includes sampling, kriging204

model �tting, and e�cient derivative-based optimization of the surrogate problem. Section 5 provides the205

results of the present optimization approach to the natural gas liquefaction design problem, jointly with an206

energy and thermodynamic e�ciency analysis of multi-stage expansion, a performance comparison with two207

well-established meta-heuristic for global optimization, Particle Swarm Optimization and Genetic Algorithm,208

and the computational aspects of the algorithm.209

2. Kriging-based constrained optimization210

To solve the black-box constrained simulation optimization problems as in Eq. (1), a framework that uses211

kriging models as surrogates of the objective function f and constraints g to introduce a simple and e�cient212

algebraic formulation of the black-box functions for e�cient gradient-based optimization is presented in this213

section. The �rst step of this method is to derive the kriging model of f and g. For simplicity, in Sections214

2.1, the kriging model is derived only for f , but the same process can be extended easily for gi, i = 1, .., q. In215
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Section 2.2 the surrogate optimization problem in algebraic form is derived, which is implemented in GAMS216

to be solved with state-of-the-art optimization solvers.217

2.1. Kriging Model218

For mathematical background on the surrogate model used in this surrogate-based optimization frame-219

work, the kriging model is derived as the best linear unbiased predictor, Gaussian process regression model220

following the derivation of Sacks et al. [8], Lophaven et al. [47], Stein [48], and Santos et al. [45].221

First, consider the following regression222

f̂(x) = βββTFFF(x) + z(x) (2)

in which FFF : Rn 7→ Rp is a combination of p linear or nonlinear functional forms that approximates f , βββ ∈ Rp223

are the p regression coe�cients, and z is the error between the true function and the regression model given224

by a stochastic function with zero mean and covariance between two points z(x(i)) and z(x(j)) given by225

cov
(
z(x(i)), z(x(j))

)
= σ2R(θθθ,x(i),x(j)),

where σ2 is the process variance and R(θθθ,p,x(i),x(j)) is the correlation model with parameters θθθ ∈ Rn.226

Now, assuming some continuity about the function f , one would expect that the correlation between points227

that are closer to each other is greater than those that are far apart. That notion is translated into the228

correlation model. There are many correlation models, also known as kernels, that obey this intuition (see229

[8] for more details), and in this work the Gaussian correlation is used230

R(θθθ,x(i),x(j)) = exp

[
−

n∑
h=1

θθθh

(
x

(i)
h − x

(j)
h

)2
]
, (3)

where θθθh > 0 is the hth component of the parameters that scales how the correlation between points changes231

with respect to the hth component of their distance squared.232

In the present paper, the regression model chosen is FFF(x) = 1, so that p = 1 and the kriging predictor is233

called ordinary kriging. This regression model simplicity usually is enough for good prediction [2] because234

the behavior of the data is incorporated in the error model z(x). Now, suppose there are m sampled235

points X = [x(1) ... x(m)]T , where x(i) ∈ D ⊆ Rn,∀i = 1, ...,m is the ith sampled point. And, for236

all these points, the value of y(i) ∈ R| y(i) = f(x(i)),∀i = 1, ...,m so that Y = [y(1) ... y(m)]T and237

g(i) ∈ Rq| g(i) = g(x(i)),∀i = 1, ...,m so that G = [g(1) ... g(m)]T are available. Then, it is possible to de�ne238

R(θθθ) ∈ Rm×m as the matrix of stochastic-process correlations between z at sampled points, which isRi,j(θθθ) =239

R(θθθ,p,x(i),x(j)), i, j = 1, ...,m, and r(x, θθθ) ∈ Rm such that r(x, θθθ) = [R(θθθ,x(1),x) ... R(θθθ,x(m),x)]T .240

Finally, deriving the kriging model as the best linear unbiased predictor (see Stein [48], Lophaven et al. [47]241

or Santos et al. [45] for a complete derivation) in Eq. (2) becomes242

f̂(x) = β̂ + r(x)TR−1(Y− 1β̂), (4)
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where, 1 is a column vector of m entries of ones,243

β̂ =
1TR−1Y

1TR−11
, (5)

is the generalized least square solution of the regression coe�cient,244

σ̂2 =
1

m
(Y− 1β̂)TR−1(Y− 1β̂), (6)

is the process variance, and245

ŝ2(x) = σ̂2

(
1− r(x)TR−1r(x) +

(1− 1TR−1r(x))2

1TR−11

)
, (7)

is the expected mean squared error of the predictor.246

With Eqs. (4), (5), (6), and (7) it is possible to predict the value of the function f at untried points x247

and estimate the prediction error. It remains unknown, however, the parameters θθθ of the correlation matrix248

in Eq. (3). Notice that an approach of minimization of prediction error to determine the model parameters249

is not possible because kriging as in Eq. (4) interpolates the data for any θθθ > 0, see Santos et al. [45]250

for proof to this remark. Then, those parameters are determined by maximum likelihood of the model, i.e.251

maximizing the probability of the data given the model, p(f̂(x)|x, θθθ,p). The likelihood is given by252

L(θθθ,p|X,Y) =
1

(2π)m/2(σ̂2)m/2|R|1/2
exp

[
−(Y− 1β̂)TR−1(Y− 1β̂)

2σ̂2

]
. (8)

Taking the natural log of Eq. (8), substituting β̂, inverting the sign, removing the constant terms and after253

some algebra, the maximum likelihood problem becomes254

min
θθθ

ψ(θθθ) = |R|1/mσ̂2, (9)

in which |R| is the determinant of R.255

2.2. Surrogate Optimization Problem256

The surrogate model de�ned by Eqs. (4) and (5) with θθθ parameters given by the solution of the problem257

in Eq. (9) can be written easily in symbolic formulation to be used explicitly in algebraic modeling language258

software, such as GAMS, where state-of-the-art global optimization solvers can be used. The kriging model259

in algebraic formulation becomes260

f̂(x) = β̂ +
m∑
i=1

αααi e
−

∑n
j=1 θθθj(xj−Xi,j)

2

, (10)

where β̂ is given by Eq. (5), and ααα = R−1(Y− 1β̂).261

Nevertheless, the problem of interest is the constrained optimization in Eq. (1), so that one wants to �nd262

a candidate that not only is promising for minimizing f , but also meets the inequality constraints g. For263
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this reason, the kriging constraints that are ĝ̂ĝg(x) ≤ 0 has to be satis�ed. Thus, the constrained surrogate264

optimization problem in algebraic form becomes265

min
x∈D

β̂ +

m∑
i=1

αααi e
−

∑n
j=1 θθθj(xj−Xi,j)

2

s.t. β̂(c)
c +

m∑
i=1

αcαcαc
(c)
i e−

∑n
j=1 θcθcθc

(c)
j (xj−Xi,j)2 ≤ 0, c = 1, ..., q.

(11)

It is worth mentioning that for a given set of dataX, Y, andG and trained kriging models for f and g, i.e.266

θθθ and θcθcθc, the parameters β̂, β̂c, ααα, and αcαcαc are constant. Therefore, the proposed kriging-based constrained267

optimization methodology transforms the black-box constrained simulation optimization problem given in268

Eq. (1) into two simpler optimization problems that are to adjust the models parameters to the data as in269

Eq. (9) and optimize the constrained surrogate optimization problem to �nd a promising candidate as in270

Eq. (11).271

3. Natural gas liquefaction process272

The case study and motivating problem for the proposed kriging-based optimization framework is the273

optimal design of single-mixed refrigerant natural gas liquefaction processes. These processes consist of274

using a multi-component refrigerant operating in a refrigeration cycle to produce heat sink to cool down and275

liquefy the natural gas stream. The considered process �ow diagram of 1-to-3-stage expansion single-mixed276

refrigerant natural gas liquefaction is illustrated in Figure 1. The refrigeration cycle includes a 4-stage277

compression system with intermediate cooling and phase separation for possible condensate. The liquid278

phase is compressed in the pumps P-1, P-2, P-3, and P-4 and the vapor phase in the compressors K-1, K-2,279

K-3 and K-4. No phase mixing is considered, which means that the refrigerant heavy condensate is mixed280

together and goes through the hot pass in the multi-stream heat exchanger separately from the light vapor281

phase. Then, the streams are mixed back together in the cold pass inside the cryogenic heat exchanger282

as they vaporize. The third expansion stage is possible thanks to a phase separation of stream 11v, for283

which the condensed phase is sub-cooled and expanded in valve V-3, whereas the lighter vapor phase is �rst284

lique�ed then sub-cooled to be expanded in valve V-4.285

3.1. Process Simulation286

The described single-mixed refrigerant natural gas liquefaction processes is rather di�cult to model and287

simulate mainly because it involves Pinch-like calculations in each multi-stream heat exchangers considering288

phase change, cryogenic conditions, and non-ideal mixtures. In other words, these heat exchangers are289

discretized in energy segments, where vapor-liquid equilibrium calculations are performed to determine the290

temperature of every stream and, therefore, the temperature pro�les in these operation units. And, for the291

sake of process feasibility considering the Second Law of Thermodynamics, the hot streams temperatures292

10



Figure 1: Process �ow diagram of single-mixed refrigerant natural gas liquefaction process with 4-stage, phase-separated

compression system and 1-to-3-stage expansion system, respectively in (i), (ii), and (iii).

have to be e�ectively higher than the cold ones throughout the heat exchangers. For rigorous calculations,293

these processes are modeled and simulated in Aspen HYSYS® V9 using Peng-Robinson equation of state,294

which is appropriate for hydrocarbons mixtures, such as the natural gas and the refrigerant mixtures.295

The natural gas stream NG is considered to be at 8, 000 kPa and 32 °C, and its composition is presented296

in Table 1 as well as other simulation parameters and considerations. A basis of calculation of 1 kg h−1 for297

the natural gas mass �ow rate is used. The refrigerant is a mixture of nitrogen, methane, ethane, propane,298

and i-pentane, and their component mass �ow rates are optimization decision variables. The discharge and299

suction pressures of the multi-stage compression Pdis and Psuc are decision variables of the optimization300

problem, and the pressure ratio of each compression stage is given by (Pdis/Psuc)
1/4, which is the ratio301

between the discharge and suction pressures divided by 4 stages in series. Notice that the pressure of vapor302

streams �subscript v� matches the liquid ones �subscript l� from 1 to 8. Finally, the temperatures of303

every hot stream leaving a multi-stream heat exchanger are considered to be the same to match practical304

constructions. The expansion temperatures are also degrees of freedom in the simulation and decision305

variables in the optimization problem, except the temperature of the last expansion, which is �xed to -149.2306

°C to guarantee the LNG pressure, molar vapor fraction, and temperature requirements exposed in Table 1.307
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Table 1: Summary of simulation parameters and considerations, adapted from Pham et al. [35]

Natural gas feed condition

Property Condition

Temperature 32 °C

Pressure 8,000 kPa

Flow rate 1.0 kg h−1

Composition Molar fraction

Nitrogen 0.0022

Methane 0.9133

Ethane 0.0536

Propane 0.0214

i-Butane 0.0046

n-Butane 0.0047

i-Pentane 0.0001

n-Pentane 0.0001

Design parameters and considerations

Intermediate cooling temperature 40 °C

Intermediate cooling pressure drop 0.0 kPa

LNG molar vapor fraction 8.0 %

LNG temperature -158.6 °C

LNG pressure 120.0 kPa

Compressor adiabatic e�ciency 0.75

Pump adiabatic e�ciency 0.75

Thermodynamic property package Peng-Robinson

MSHE pressure drop (hot stream) 100.0 kPa

MSHE pressure drop (cold stream) 10.0 kPa

Minimum temperature approach 3 °C

308

One practical constraint in the natural gas liquefaction process is that the minimum temperature approach309

between hot and cold composite curves throughout the multi-stream heat exchangers must be greater than310

or equal to 3 °C to avoid Second Law of Thermodynamic violation and impractically big heat exchange311

area [20]. Another constraint is that all molar vapor fraction in compression inlet streams must be 1, which312

means that only vapor is allowed in compressors to avoid physical damage. However, this constraint is always313

assured once �ash separators are considered before each compression stage. Even though this adds cost to314

the process, these separators are considered unpenalized to investigate possible energy savings due to phase315

separation.316
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3.2. Process Optimization317

Given the process description, considerations, constraints, and degrees of freedom, it is possible to de�ne318

an optimization problem from which the solution are decisions for the optimal natural gas liquefaction pro-319

cesses. As elaborated in Section 3.1, the decision variables of this optimization aremi, i ∈ REFR ={nitrogen320

(N), methane (C1), ethane (C2), propane (C3), i-pentane (iC5)} the mass �ow rate of component i in the321

set of refrigerants REFR, and Psuc, Pdis, and Texp`=1,...,Ne−1
the suction and discharge pressures and the322

mixed-refrigerant temperatures of expansion. The index ` refers to the expansion stage, and Ne is the total323

number of expansion stages. Then, the decision variables for all expansion scenarios are x = [mi∈REFR,324

Psuc, Pdis, Texp`=1,...,Ne−1
], so that x ∈ Rn is the input vector of decision variables to the simulation and325

n = 7 +Ne− 1 is the dimension of the problem.326

Knowing that the work consumption is the most relevant spending in the natural gas liquefaction process,327

then the design problem is to �nd x∗ ∈ Rn that minimizes the following optimization problem328

min
x∈D

f(x) =

∑
p∈PM Wp(x)

ṁNG

s.t. g`(x) = 1− mink=1,...,Nk {Th`,k(x)− Tc`,k(x)}
3

≤ 0, ` = 1, ..., Ne

D = [xlb, xub],

(12)

in which, for a given x, Wp(x) is the work consumption of the pressure manipulator unit p in the set of329

compressors and pumps PM , Th`,k(x) and Tc`,k(x) are the temperature of hot and cold composite curves330

in the `th MSHE at energy segment k, Nk is the number of energy segments in the MSHE composite curves331

calculations, D is a box constraint for the decision variables bounded by xlb and xub, and ṁNG is the mass332

�ow rate of the natural gas stream. Notice that the value of Wp(x) as well as Th`,k(x) and Tc`,k(x) are333

obtained in the black-box chemical process simulator, and so is f(x) and g(x). Then, f(x) and g(x) are334

known only at sampled points and make the optimization problem equivalent to Eq. (1). Table 2 presents the335

values chosen for lower and upper bounds of x for scenarios (i), (ii), and (iii) given by [0.33xbase, 1.66xbase],336

where xbase is a heuristically determined base case. In other words, the bounds are determined to be between337

2/3 below and above the base case. Note also that most of these bounds are selected to diminish the search338

region toward promising regions, rather than for physical or operational constraint, and it implicates in339

easier optimization problem and more stable simulations convergence. In addition, the lower bound of mN340

is rounded to 0 to consider the case of a heavier multi-component refrigerant, i.e. without nitrogen, and the341

expansion temperatures are adjusted to guarantee decreasing temperature from up to downstream expansion342

stage.343

The kriging model requires some continuity about the black-box function. That may not be the case for g344

as reported in Santos et al. [45] because this function is the minimum temperature driving force between the345

hot and cold composite curves throughout the whole multi-stream heat exchanger, where multi-component346

streams undergo phase change. For that, we propose to discretize each g` function in K sections, which347
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Table 2: Lower and upper bounds on the decision variables for the three scenarios

1-stage expansion 2-stage expansion 3-stage expansion

x xbase xlb xub xlb xub xlb xub

mN [kg·h−1] 0.250 0.000 0.415 0.000 0.415 0.000 0.415

mC1 [kg·h−1] 0.600 0.198 0.996 0.198 0.996 0.198 0.996

mC2 [kg·h−1] 1.000 0.330 1.660 0.330 1.660 0.330 1.660

mC3 [kg·h−1] 1.200 0.396 1.992 0.396 1.992 0.396 1.992

miC5 [kg·h−1] 1.800 0.594 2.988 0.594 2.988 0.594 2.988

Psuc [kPa] 250.0 82.50 415.0 82.50 415.0 82.50 415.0

Pdis [kPa] 4000 1320 6640 1320 6640 1320 6640

Texp1 [°C] -50 - - -83.00 -16.50 -80.00 -16.50

Texp2 [°C] -110 - - - - -130.0 -80.10

makes it more likely to be well behaved functions. Then, the optimization problem becomes348

min
x∈D

f(x) =

∑
p∈PM Wp(x)

ṁNG

s.t. gκ(x) = 1− mink∈Ωκ {Th`,k(x)− Tc`,k(x)}
3

≤ 0, κ = 1, ...,K ×Ne

D = [xlb, xub],

(13)

in which κ is the set of K × Ne divisions in g, and Ωκ is the set of the Nk points from composite curves349

calculations that belongs to section κ. Also, the number of constraints increases from Ne to K ×Ne in the350

proposed optimization formulation.351

4. Optimization Framework352

A framework is proposed in this paper to solve black-box constrained optimization problems as in Eq.353

(1), which is tested in the energy-e�cient optimal design of single-mixed refrigerant natural gas liquefaction354

processes with 1-to-3 expansion stages. This approach uses kriging surrogate models as presented in Section355

2.1 to substitute the black-box objective function and constraints and introduce algebraic formulation to the356

black-box problem as presented in Section 2.2. The surrogate optimization model is, then, implemented in357

GAMS, where it is solved with state-of-the-art, derivative-based, global solvers. Figure 2 illustrates how the358

optimization framework operates.359

Before anything in this optimization framework, MATLAB and Aspen HYSYS are connected via object360

linking and embedding technology using the MATLAB built-in function �actxserver� to create in its envi-361

ronment a component object model (COM) server of the HYSYS application with the process simulation362
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Figure 2: Algorithmic building blocks of present kriging-based optimization framework.

variables and methods. In other words, the simulation objects like streams, operations, and solver become363

exposed to the programming environment so that each x∗ generated in the MATLAB is sent to the simula-364

tion by setting their values in the respective objects features (mass �ow rate, temperature, pressure). Then,365

after converging the simulation, the objects features that contain the values to calculate the objective and366

constraints functions are accessed in the programming environment to compute f∗ and g∗.367

Then, the �rst step of this approach is to make an initial sample in D to adjust the surrogate models.368

For that, Latin Hypercube algorithm is used to maximize the minimum distance between points and �ll in369

m0 points in the design space. For each sample point in X, the rigorous simulation is performed to calculate370

Y and G. Also, the simulation evaluations counter m receives m0, k ← 0.371

Given the initial data X, Y, and G, the kriging models are adjusted for f and g as in Eq. (10) to372

maximize the likelihood of the model given the data. The maximum likelihood optimization problem in Eq.373

(9) is solved with the MATLAB implementation of a interior-point method in the built-in function fmincon374

to determine the θθθ and θcθcθc parameters of the kriging models. The initial guess for the algorithm is θθθh = 1 for375

h = 1, ..., n. Notice that these parameters are not readjusted, but in between iterations the kriging models376

are updated with the same θθθ to the current X, Y, and G, unless log-likelihood function ψ(θθθ) becomes at377

least 10 times greater than the value obtained in the adjusting parameter optimization problem in Eq. (9).378

In other words, if the model with current parameters is not likely to have generated the available data, a379

new parameter adjustment will be performed.380

Given the kriging models jointly with the maximum likelihood θθθ parameters, the surrogate optimization381

problem as in Eq. (11) is solved in GAMS, where the algebraic kriging models are implemented explicitly.382
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To do that, the programming environment has to communicate with the algebraic modeling language system383

to send the model parameters that change every iteration (β̂, β̂c, ααα, αcαcαc, X, and possibly θθθ and θcθcθc). This384

communication is performed via GDX (GAMS Data eXchange) �les that provide an interface to read and385

write values of GAMS symbols such as sets, parameters, variables, and equations. Then, the GAMS program,386

which has the surrogate optimization problem implemented, is run from MATLAB to solve the NLP problem387

and to write the solution results (x∗, f̂∗, ĝ̂ĝg∗) also in GDX �les that are read in MATLAB. Any global solver388

that deals with nonconvex NLP problems can be used for this optimization problem. However, there is no389

point to spent too much resource and time on global NLP solvers with provable global optimality, such as390

Baron [49], because the solution of the surrogate optimization problem in Eq. (11) is an approximation391

of the true black-box constrained optimization problem in Eq. (1). Therefore, the multi-start NLP solver392

MSNLP from Ugray et al. [50] with CONOPT [51] solver for local search is selected, and the reasoning393

behind this choice is that it is fast to converge to (at least) a good local minimizer. The starting points in394

the multi-start approach are generated using a normal probability distribution from an initial coarse search395

to de�ne a promising region within which random starting points are concentrated.396

After solving the surrogate optimization problem, the rigorous simulation is performed at the solution397

returned to the programming environment from GAMS x∗ to calculate f∗ and g∗, and the simulation398

evaluations counter m is iterated. Then, the current values of x∗, f∗, and g∗ are appended to the data X,399

Y, and G, and the incumbent solution (xminxminxmin, fmin, gmingmingmin) is updated if the solution is improved (f∗ < fmin400

and g∗ ≤ 0). From the extended data, the kriging models parameters β̂, β̂c, ααα, and αcαcαc are updated and401

the algorithm iterates until the maximum number of sampled points mf is achieved or if the surrogate402

optimization fails (f∗ > fmin even for infeasible g∗ > 0) �ve times to provide a promising candidate to solve403

the true black-box optimization problem.404
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5. Results405

In this section, the results from the kriging-based optimization framework proposed in Section 4 applied406

to the optimal design of single-mixed refrigerant natural gas liquefaction processes with 1, 2, and 3 expansion407

stages are reported. The considered parameters of the optimization approach are initial sample size m0 =408

10n, which is a classical number for the kriging surrogate model [9], maximum number of samples (function409

evaluation budget) mf = 20n, number of decision variables n = 7 + Ne − 1, number of sections into which410

each multi-stream heat exchanger is divided K = 10. The box-constrained design space D is given by the411

lower and upper bounds on the decision variables at Table 2, and the computer program to compute f and412

g is the natural gas liquefaction processes simulations in Aspen HYSYS. The computer used to run this413

framework has a Intel Core i7-9750H processor with 16 GB of RAM.414

Table 3 presents the best results of decision variables, and objective function from �ve optimization runs415

for each of the three scenarios that accounts for the only randomness present in the proposed framework,416

which is the initial m0 samples of X. The best net work consumption found for these processes are 0.2571,417

0.2262, and 0.2193 kW per kilogram of natural gas being lique�ed per hour, respectively for scenarios (i), (ii),418

and (iii). It represents a speci�c net work consumption of 925.5, 814.2, and 789.3 kJ per kilogram of natural419

gas. These quantitative results show the e�ectiveness of the optimization framework to �nd energy-e�ective420

alternatives to the single-mixed refrigerant natural gas liquefaction process.421

From the optimization results in Table 3, it is possible to conclude that the single-mixed refrigerant422

natural gas liquefaction process bene�ts from more expansion stages from the energy consumption point of423

view. Not only the net work consumption decreased with the number of expansion stages, but also the total424

expected size of the multi-stream heat exchangers (UA) decreased from 657.7 to 550.0 and 543.0 kJ/(°C h)425

and their total heat duty from 2912 to 2545 and 2406 kJ/h. In other words, the inclusion of more expansion426

stages in the designed liquefaction processes diminished the work consumption, therefore the electricity427

and compressors size, and diminished the multi-stream heat exchangers with respect to total heat transfer428

and expected area. These results are both factors of cost-e�ective as well as energy-e�cient process. The429

main reason behind this improvement is the improved thermodynamic e�ciency of the process with more430

expansion stages. Table 4 presents the results of entropy generation in each operating unit. The reader is431

invited to see Santos et al. [45] or Smith et al. [52] for more details on the calculation of entropy generation432

in this analysis.433

In fact, the total entropy generation is signi�cantly smaller with more expansion stages, from 0.5634 to434

0.4377 W/°C for scenario (i) and (iii). The most relevant thermodynamic e�ciency gain takes place in the435

compressors, coolers, multi-stream heat exchangers, and mixers. Therefore, the additional expansion stages436

with phase separation enable formation of intermediary mixed-refrigerant with di�erent composition in each437

multi-stream heat exchanger and guarantee a better match between composite curves, as presented in Figure438

3, more e�cient inter-cooled compression system, and smoother mixing processes. The phase separation in439
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Table 3: Optimization results for single-mixed refrigerant natural gas liquefaction with 1, 2, and 3 stages of expansion

Decision variables Scenario (i) Scenario (ii) Scenario (iii)

mN [kg·h−1] 0.1429 0.1582 4.633E-2

mC1 [kg·h−1] 0.4167 0.4426 0.4512

mC2 [kg·h−1] 0.8586 0.9533 1.004

mC3 [kg·h−1] 0.8173 1.198 0.8333

miC5 [kg·h−1] 1.805 1.735 1.609

Psuc [kPa] 350.3 282.8 302.2

Pdis [kPa] 2944 2660 3654

Texp1 [°C] - -24.31 -30.08

Texp2 [°C] - -120.2

Optimization results

Net work consumption
[

kJ
kg NG

]
925.5 814.2 789.3

MSHE-1 minimum temperature approach [°C] 3.000 3.003 3.010

MSHE-2 minimum temperature approach [°C] - 3.003 3.008

MSHE-3 minimum temperature approach [°C] - - 3.010

MSHE-1 expected area (UA)
[

kJ
°C·h

]
657.7 223.2 286.1

MSHE-2 expected area (UA)
[

kJ
°C·h

]
- 326.8 231.8

MSHE-3 expected area (UA)
[

kJ
°C·h

]
- - 25.07

MSHE-1 heat duty [kJ/h] 2912 1315 1271

MSHE-2 heat duty [kJ/h] - 1230 1007

MSHE-3 heat duty [kJ/h] - - 127.7

between compression stages appeared only in the last two stages in accordance with previous works [45]. It440

is because the multi-component refrigerant is too light to condense at lower pressure levels, even though the441

optimal values of decision variables in Table 3 show preference to heavier compositions of mixed-refrigerant.442

In scenario (i), 9.34 % of the mass �ow rate is compressed in pump P-3 and 27.82 % in P-4. In scenario (ii),443

11.51 % of the mass �ow rate is compressed in P-3 and 21.08 % in the P-4. In scenario (iii), 20.56 % of the444

mixed-refrigerant mass �ow rate is compressed in P-3 and 18.19 % in the P-4. These results are conclusive445

to show the importance of phase separation in the energy saving in the compressors K-3 and K-4 as 32.59446

up to 38.75 % of the mixed refrigerant �ow rate is removed from compressors system.447

Optimization comparison. Now, in order to evaluate the performance of the proposed optimization method-448

ology applied to the optimal design of SMR natural gas liquefaction process, its results are compared to449

the ones from the well-established global optimization meta-heuristics of Particle Swarm Optimization and450
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Table 4: Entropy generation analysis

Op. Name

Scenario (i) Scenario (ii) Scenario (iii)

Sgen [W/°C] % Sgen [W/°C] % Sgen [W/°C] %

K-1 5.21E-02 9.25 4.66E-02 10.13 4.60E-02 10.51

K-2 5.09E-02 9.03 4.53E-02 9.84 4.44E-02 10.14

K-3 4.58E-02 8.13 4.04E-02 8.78 3.71E-02 8.48

K-4 3.51E-02 6.23 3.27E-02 7.11 2.98E-02 6.81

C-1 2.15E-02 3.82 1.69E-02 3.67 1.88E-02 4.30

C-2 3.03E-02 5.38 2.81E-02 6.11 3.63E-02 8.29

C-3 5.02E-02 8.91 3.89E-02 8.45 3.54E-02 8.09

C-4 3.49E-02 6.19 2.99E-02 6.50 2.93E-02 6.69

MSHE-1 1.06E-01 18.87 4.10E-02 8.91 2.93E-02 6.69

MSHE-2 - - 6.14E-02 13.34 3.52E-02 8.04

MSHE-3 - - - - 1.14E-02 2.60

V-1 3.84E-02 6.82 3.84E-02 8.35 3.89E-02 8.89

V-2 4.43E-02 7.86 1.04E-02 2.26 1.47E-02 3.36

V-3 - - 2.53E-02 5.50 1.61E-02 3.68

V-4 - - - - 6.10E-03 1.39

S-1 - - - - - -

S-2 - - - - - -

S-3 0.00E+00 0.00 0.00E+00 0.00 0.00E+00 0.00

S-4 0.00E+00 0.00 0.00E+00 0.00 0.00E+00 0.00

S-5 0.00E+00 0.00 0.00E+00 0.00 0.00E+00 0.00

S-6 - - - - 0.00E+00 0.00

P-1 - - - - - -

P-2 - - - - - -

P-3 4.70E-04 0.08 5.25E-04 0.11 1.20E-03 0.27

P-4 9.72E-04 0.17 6.36E-04 0.14 7.31E-04 0.17

MIX-1 3.50E-03 0.62 3.20E-03 0.70 4.80E-03 1.10

MIX-2 4.87E-02 8.64 4.81E-04 0.10 6.80E-04 0.16

MIX-3 - - - - 1.50E-03 0.34

TOTAL 0.5634 100.0 0.4601 100.0 0.4377 100.0
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(a) Scenario (i).

(b) Scenario (ii).

(c) Scenario (iii).

Figure 3: Temperature pro�les in the multi-stream heat exchangers

Genetic algorithm with the same budget of simulation evaluations, as presented in Table 5. The parameters451

were set as default of the MATLAB implementation of these algorithms and with n number of particles,452

or individuals, and 20 iterations. To deal with the constraints of the optimization problem in Eq. (13) a453

simple barrier penalization is applied proportional to the constraint violation multiplied by a penalization454

parameter equal to 1000, as in [45], to guarantee feasible solutions. Knowing that these methods depend on455

randomness, each algorithm was applied 5 times for each simulation.456

From the results in Table 5 it is possible to infer that the present methodology is more e�cient (lower457

best result of objective function) and more consistent (lower mean value and standard deviation of objective458

function) for all three scenarios of the single-mixed refrigerant natural gas liquefaction process design. The459

energy savings of the results from the present optimization method in comparison with the ones from Particle460
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Table 5: Comparison between present optimization framework with PSO and GA

1-stage-expansion SMR 2-stage-expansion SMR 3-stage-expansion SMR
````````````Opt. Run

Obj. function
Present PSO GA Present PSO GA Present PSO GA

Run 1 0.2571 0.2920 0.2954 0.2262 0.2998 0.3102 0.2198 0.3219 0.3403

Run 2 0.2572 0.3192 0.3926 0.2262 0.3018 0.2954 0.2200 0.3166 0.3361

Run 3 0.2571 0.3312 0.3449 0.2262 0.2836 0.2737 0.2203 0.2984 0.3760

Run 4 0.2571 0.3339 0.4166 0.2272 0.2903 0.4157 0.2197 0.2927 0.3665

Run 5 0.2571 0.3167 0.3300 0.2262 0.2907 0.3080 0.2193 0.2761 0.3443

Results analysis

Best result 0.2571 0.2920 0.2954 0.2262 0.2836 0.2737 0.2193 0.2761 0.3361

Mean result 0.2571 0.3186 0.3559 0.2264 0.2932 0.3206 0.2198 0.3011 0.3526

Standard deviation 5.49E-05 1.49E-02 4.36E-02 3.89E-04 6.68E-03 4.93E-02 3.46E-04 1.66E-02 1.57E-02

Savings (%) - 12.02 13.03 - 20.29 17.39 - 20.48 34.69

Execution

time (min)
4.22 3.35 4.296 6.25 5.90 5.99 14.05 9.42 9.626

Swarm Optimization and Genetic Algorithm are signi�cant, from 12.02 to 34.69 %.461

Even though the present methodology involves additional steps other than function evaluation and de-462

termination of next iteration steps, like kriging model �tting and surrogate problem optimization, the mean463

execution times are competitive with Particle Swarm Optimization and Genetic Algorithm. The �rst reason464

for that is due to the computation e�ort to predict value of f and g in the kriging surrogate model being465

way smaller than the simulation. For instance, the mean elapsed time of computing f and g at the 10n466

initial points goes from 1.4 to 3.1 seconds, depending on the simulation, whereas for f̂ and ĝ̂ĝg it is in the467

order of magnitude of 10−4 seconds. This allows fast solution time of the surrogate problem in GAMS468

using multi-start gradient-based local search. The other reason is the convergence of the present approach,469

illustrated in Figure 4. This convergence is indicated by the objective function value at iterates f(x∗) (black470

curve) converging to the incumbent solution fmin (blue curve), and the minimum distance of the iterate471

x∗ to the previous data X (red line) converging to zero. The optimization progress of the present method472

is fast because the kriging models capture the behavior of the black-box functions, specially in promising473

regions (feasible and low values of f). This happens as the sampling comes from the surrogate optimization474

solution, and is concentrates in these promising regions. One can think of this as an active learning process,475

where the surrogate models not only learn the black-box functions behavior but also choose where to learn476

more.477
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(a) Scenario (i).

(b) Scenario (ii).

(c) Scenario (iii).

Figure 4: Optimization progress of the proposed method for each considered simulation-optimization problem.
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6. Conclusions478

This paper presented an optimization framework to solve the constrained black-box simulation optimiza-479

tion problem that arises from the optimal energy-e�cient design of the single-mixed refrigerant natural gas480

liquefaction process with 1, 2, and 3 expansion stages, using reliable process simulator. In this approach, the481

kriging model is adjusted to data generated from the process-simulator-dependent, black-box functions of the482

simulation optimization problem to introduce simple, computationally inexpensive, and e�ective algebraic483

formulations to the black-box objective and constraint functions. The constrained surrogate optimization484

problem is solved in GAMS using state-of-the-art e�cient gradient-based multi-start local optimization with485

CONOPT local solver to determine a candidate of decision variables for which the true functions are calcu-486

lated in the rigorous simulation. The surrogate problem optimization guides the sampling towards learning487

the rigorous functions near promising regions for solving the original simulation optimization problem.488

This optimization framework was applied to the natural gas liquefaction design using the process sim-489

ulator Aspen HYSYS for rigorous simulations, MATLAB for the main program that handles with linking,490

data storage, and model �tting, and GAMS for implementing and solving the NLP surrogate optimization491

problems. The best net work consumption found for these processes are 0.2571, 0.2262, and 0.2193 kW per492

kilogram of natural gas being lique�ed per hour, respectively for scenarios (i), (ii), and (iii), and the total493

expected size of the multi-stream heat exchangers (UA) decreased from 657.7 to 550.0 and 543.0 kJ/(°C h)494

and their total heat duty from 2912 to 2545 and 2406 kJ/h. In other words, the inclusion of more expansion495

stages made the designed liquefaction processes more cost-e�ective as well as energy-e�cient, mainly because496

of the thermodynamic e�ciency of the process.497

From comparing the present approach to global optimization meta-heuristics of Particle Swarm Optimiza-498

tion and Genetic Algorithm, it is evident that, for the same budget of simulation evaluations, the present499

approach is more e�cient and more consistent with signi�cant numerical improvement of 12.02 to 34.69 %500

of energy savings. The main reasons for the better e�ciency is the low computation e�ort to predict the501

functions f and g using the kriging surrogate model (from 1.4 to 3.1 seconds in the simulation to the order502

of magnitude of 10−4 seconds for f̂ and ĝ̂ĝg) that allows fast execution time of the surrogate optimization503

problem in GAMS. The other reason is the convergence of the present approach, which is relatively fast504

because the kriging models capture the behavior of the black-box functions, specially in promising regions,505

and uses it e�ciently for optimization.506

Although it was tested only for single-mixed refrigerant natural gas liquefaction process design, the507

proposed optimization approach is suitable for any constrained black-box simulation optimization problem,508

once it provides computationally cheap-to-evaluate surrogate models (kriging) of the objective and constraints509

functions with simple symbolic formulation that can be embedded to tradition NLP problems.510
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