
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis) 

Winter 2005 

Framework for Semantic Web Process Composition Framework for Semantic Web Process Composition 

Kaarthik Sivashanmugam 

John A. Miller 

Amit P. Sheth 
Wright State University - Main Campus, amit@sc.edu 

Kunal Verma 
Wright State University - Main Campus 

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis 

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons, 

Databases and Information Systems Commons, OS and Networks Commons, and the Science and 

Technology Studies Commons 

Repository Citation Repository Citation 
Sivashanmugam, K., Miller, J. A., Sheth, A. P., & Verma, K. (2005). Framework for Semantic Web Process 
Composition. International Journal of Electronic Commerce, 9 (2), 71. 
https://corescholar.libraries.wright.edu/knoesis/745 

This Article is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge-Enabled 
Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an 
authorized administrator of CORE Scholar. For more information, please contact library-corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F745&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu


 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 1 

Framework for Semantic Web Process Composition  
Kaarthik Sivashanmugam, John A. Miller, Amit P. Sheth, Kunal Verma 

Large Scale Distributed Information Systems (LSDIS) Lab,  
Computer Science Department 

The University of Georgia, Athens GA 30602-7404 
{kaart, jam, amit, verma}@ cs.uga.edu 

 
Abstract 
 Web services have been recognized to have the potential to revolutionize e-
commerce. The potential for businesses to be able to interact with each other on the fly is 
very appealing. To date, however, the activity of creating Web processes using Web 
services has been handled mostly at the syntactic level. Current composition standards 
focus on building the processes based on the interface description of the participating 
services. The limitation of such a rigid approach is that it does not allow businesses to 
dynamically change partners and services. We enhance the current Web process 
composition techniques by using Semantic Process Templates to capture the semantic 
requirements of the process. The semantic process templates can act as configurable 
modules for common industry processes maintaining the semantics of the participating 
activities, control flow, intermediate calculations, conditional branches and exposing it in 
an industry accepted interface. The templates are instantiated to form executable 
processes according to the semantics of the activities in the templates. The use of 
ontologies in template definition allows much richer description of activity requirements 
and more effective way of locating services to carry out the activities in the executable 
Web process. During discovery of services, we consider not only functionality, but also 
the QoS of the corresponding activities. Our unique approach combines the expressive 
power of the present Web service composition standards and the advantages of the 
semantic Web techniques for process template definition and Web service discovery. The 
prototype implementation of the framework for building the templates, carrying out 
semantic Web service discovery and generating the processes is discussed.  
 
Keywords: Web Services Composition, Semantic Web Process, Semantic Web Service 
Discovery, Semantic Process Templates, Ontologies, METEOR-S 
 
1. Introduction 
 

There has been significant excitement over the promise of Web services. The 
existence of standardized software components over the Internet that can be accessed, 
described and registered using XML based standards could lead to powerful applications 
spanning the Internet.  From the perspective of e-commerce, the idea of creating dynamic 
business processes on the fly (described as “dynamic trading processes” in [1]), would 
allow corporations to enable full-scale business process integration [2] further leveraging 
the power of the World Wide Web. There has been a flurry of activity in the area of Web 
services and in ways to assemble these Web services to create Web processes. Web 
Processes represent next generation technology for carrying out core business activities, 
such as e-commerce and e-services, and are created from the composition [3] of Web 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 2 

Services or other software components. Web processes encompass the ideas of both inter 
and intra organizational workflow. While there has been a significant progress in this 
area, there are a number of factors that prevent the wide scale deployment of Web 
services and creation of Web processes. The most inherent problems concern describing 
and discovering Web services. The current solutions and standards take a structural 
approach to describing Web services using XML based definitions [4]. The main problem 
with this approach is that, it is not possible to explicitly define the purpose of the Web 
services as intended by the Web service provider. "Formally self-described" [5, 6, 7, 8] 
semantic Web services are a solution to semantically describe and discover Web services. 
Most of the composition standards build on top of Web service description standards. 
Hence semantically describing a service could help in composing a process whose 
individual components are semantically described.  When all the tasks involved in a Web 
process are semantically described, we may call such process as Semantic Web Processes 
(SWP) [9]. 

 
As part of the METEOR-S project at the Large Scale Distributed Information 

Systems (LSDIS) Lab at the University of Georgia, we are using techniques from the 
semantic Web [10], semantic Web services [11] and earlier research in workflow 
management as part of the METEOR project [12, 13] to deal with the problems of 
semantic Web service description, discovery and composition. In particular, the 
METEOR-S project associates semantics to Web services, covering input/output, 
functional/operational descriptions, execution and quality, and exploits them in the entire 
Web process lifecycle encompassing semantic description/annotation, discovery, 
composition and enactment (choreography and orchestration) of Web services.  The 
current emphasis of the METEOR-S project has been on semantic annotation of Web 
services [14], semantic discovery infrastructure for Web services (MWSDI: METEOR-S 
Web Service Discovery Infrastructure) [15] and semantic composition of Web services 
(MWSCF: METEOR-S Web Service Composition Framework). This paper focuses on 
MWSCF.   
 

MWSCF aims at using the power of Web services to allow corporations to create 
processes that mirror today’s dynamic and ever-changing business needs. Corporations 
can expose their application software as Web services so that other corporations can 
dynamically find and invoke them. In order to precisely define a business or workflow 
process, several process specification languages have been created. Some of these 
standards are specifically designed for process composition using Web services. These 
standards are based on WSDL descriptions. They focus on creating static processes 
where in Web services to be used at different stages of processes are known at design 
time. However there is a need in representing the semantics of process requirements, so 
that partners and Web services can be dynamically discovered before the executable 
process is created. We have defined Semantic Process Templates (SPTs), which allow us 
to semantically define each activity involved in a process. With an SPT, an executable 
process can be generated with each activity bound to a concrete Web service 
implementation that conforms to the semantics of the activity. The main focus of this 
paper is one aspect – that of creating semantically enriched process templates, which can 
be refined into concrete executable processes based on the activity requirements. The 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 3 

most challenging problem in creating a process template is to capture the semantic 
capabilities of activities in the process, so that relevant Web services can be bound to 
activities of the process. We extend our previous efforts on semantic Web service 
description and discovery to describe the process template and to discover relevant Web 
services for each activity and to generate the executable process based on the discovered 
services. Using the approach stated and the framework discussed in this paper, semantic 
Web processes can be more effectively designed. This is a straightforward approach that 
is compatible with present industry standards for Web services.  

 
The key features and contributions of this paper are the following: 
 

• A comprehensive framework for composition of SWPs 
• Using process templates to store semantics of each activity in an SWP, and 
• Dynamic discovery of services based on semantics of each activity in the 

SWP and executable process generation. 
 

The rest of the paper is organized as follows. Section 2 discusses three of the most 
popular composition standards. We also present a sample of a typical Web process that 
will be used for illustrative purposes. Section 3 presents a detailed discussion of the 
components making up our composition framework.  It also briefly summarizes the steps 
involved in composing a semantic Web process. Key features of MWSCF are highlighted 
in section 4. Section 5 discusses related work. Conclusions and future work are presented 
in section 6.  
 
2. Background study 
 

In this section, we first present an overview of the present composition standards. 
Later, we provide a sample Web process and explain the implementation with respect to 
each of the presented composition standards. 
 
2.1. Overview of Present Standards for Process Specification 
 

The importance of the languages for Web service composition has increased due 
to their ability to enable enterprise application integration (EAI) and business process 
integration within and across organizations. So have the number of proposals for the Web 
service composition standards proposed by different vendors, organizations and 
consortia. These XML based standards are proposed for assembling a number of Web 
services to form a business process. The standards that are currently being considered for 
building processes using Web service composition include (among others) BPEL4WS 
[16], BPML [17] and DAML-S [5]. In spite of the fact that all of these standards aim to 
solve the problems related to process description, they differ in many aspects. Comparing 
these standards requires an in-depth study of application scenarios of the composed 
processes and the support of these standards for each of the scenarios. [18] compares 
these standards using a framework with a set of patterns that are representative of the 
recurring situations found in different workflow management systems and in the context 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 4 

of enterprise application integration. Comparison based on other criteria is available in 
[19, 20, 21, 22, 23, 24, 25]. The following sub-sections provide an overview of three 
major proposed standards; interested readers are referred to the above comparative 
studies for further information. 
 
2.1.1 BPEL4WS 
 

The Business Process Execution Language for Web Services {BPEL4WS) [16] is 
a language to specify business processes and business interaction protocols. It superseded 
XLANG [26] and WSFL [27] as a standard for Web services flow specification. The 
model and XML-based grammar provided by BPEL define the interactions between a 
process and its partners using Web services interfaces. BPEL also defines the states and 
logic of coordination between these interactions and systematic ways of dealing with 
exceptional conditions. The business interaction protocols are called abstract processes. 
They are used to specify public and visible message exchange between different parties 
involved in a business protocol, but they do not reveal the internal behavior or the 
implementation of the involved parties. The executable processes on the other hand are 
like workflow descriptions represented using basic and structured activities specifying a 
pattern of execution of Web services. The process model defined by BPEL is based on 
the WSDL service description model. The services (described as partners in BPEL) that 
are invoked by the process and the services that invoke the process are represented using 
their WSDL description. An executable process can be a Web service by itself and the 
interface of that process can be represented using WSDL. 
 
2.1.2 BPML 
 

The Business Process Modeling Language (BPML) [17] is based on an abstract 
model and grammar for expressing abstract and executable business processes. Using 
BPML, enterprise processes, complex Web services and multi-party collaborations can be 
defined. A process in BPML is a composition of activities that perform specific 
functions. The process directs the execution of these activities. It can also be a part of 
another composition by defining it as a part of a parent process or by invoking it from 
another process. Each activity (both simple and complex) in the process has a context, 
which defines common behavior for all activities executing in that context. Hence a 
process can be defined as a type of complex activity that defines its own context for 
execution. The BPML specification defines 17 activity types, and three process types. 
The different process types are nested processes which are defined to execute within a 
specific context and whose definitions are a part of context definition, exception 
processes to handle exceptional conditions in executing a parent process and 
compensation processes to provide compensation logic for their parent processes. Each 
process definition may specify any of the three ways of instantiating a process: in 
response to an input message, in response to a raised signal, or invoked from an activity. 
BPML specifications support importing and referencing service definitions given in 
WSDL. It also suggests standardizing BPML documents by using RDF for semantic 
meta-data, XHTML and the Dublin Core metadata to improve human readability and 
application processability. 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 5 

 
2.1.3 DAML-S 
 

The DAML-based Web Service Ontology (DAML-S) [5] is an initiative to 
provide an ontology markup language expressive enough to semantically represent 
capabilities and properties of Web services. DAML-S is based on DAML+OIL and the 
aim is to discover, invoke, compose, and monitor Web services. It defines an upper 
ontology appropriate for declaring and describing services by using a set of basic classes 
and properties. In DAML-S, each service can be viewed as a Process and its Process 
Model is used to control the interactions with the service. Using the Process Ontology’s 
sub-ontologies, Process Ontology and Process Control Ontology, it aims to capture the 
details of the Web service operation. The Process Ontology describes the inputs, outputs, 
preconditions, effects, and component sub-processes of the service. Process Control 
Ontology is used to monitor the execution of a service. However, the current version 
(version 0.7) of DAML-S does not define the Process Control Ontology. DAML-S also 
categorizes three types of processes. The first type is an atomic process, which do not 
have any sub-processes and can be executed in a single step. The second type is a simple 
process, which is not invocable as it is used as an abstraction for representing an atomic 
or composite process. A composite process is the third type, which is decomposable into 
sub-processes. A composite process uses several control constructs to specify how inputs 
are accepted and how outputs are returned.  
 

There is a need to compare and analyze the features of these languages in detail to 
frame a single and powerful and interoperable standard for composing processes. Web 
processes should be dynamic and flexible enough to adapt to the changes in demands 
from customers or market forces. To meet this requirement, BPEL and BPML, abstract 
the service references in the process from actual service implementations. This helps in 
selecting a correct service implementation for each activity during process deployment 
(deployment-time binding) or execution (execution-time binding). However, the present 
composition standards like BPEL and BPML are lacking in an important aspect, 
semantically representing the activity components of a process.  

 
We handle this problem by capturing semantics of the activities in the process 

template. The activities are not bound to Web service implementations but defined using 
semantic descriptions. Before deployment or execution of the process, the services that 
satisfy the semantic requirements are discovered and bound to the activities in the process 
template. Using the interfaces and message types supported by the services, an executable 
process is generated. Any process management system in an organization will demand a 
powerful discovery algorithm integrated into the process management system. This 
demand becomes critical when the size and the number of services available in the Web 
are taken into consideration. Our approach supports precise semantics based discovery of 
Web services. The following section details a sample business process. Composition of 
this process using our framework is discussed in the subsequent sections. 
 
 
 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 6 

 
2.2 Sample Web Process 
 

Let us consider an example for a typical Web process in the e-business domain, 
an electronic toy manufacturer processing a distributor's order. The manufacturer hosts an 
application (getOrderPriceAndDeliveryDate) where the distributor can query for the 
price and date of delivery by specifying an order. The manufacturer, upon receiving the 
order details, processes the order and returns the details that the distributor is querying 
for. Based on the details returned by the application, the distributor can place the actual 
order (using an application placeOrder) keeping the returned details as the agreement 
between the manufacturer and the distributor. The applications, 
getOrderPriceAndDeliveryDate and placeOrder, have several intermediate steps, which 
are to be carried out by services within and outside the manufacturer’s organization. For 
brevity, we have considered only the getOrderPriceAndDeliveryDate application in our 
example. In the getOrderPriceAndDeliveryDate application, when the distributor places 
an order, the manufacturer checks the inventory to verify if it has enough goods to satisfy 
the order. In case there is enough stock then the manufacturer contacts its delivery partner 
for a date of delivery and its agreement database or accounts department to fix a price for 
the order. Based on the price returned by the delivery partner and the fix price stages, the 
price for the order is finalized. Then, the possible delivery date and the finalized price are 
returned to the distributor. In the other case, when there is not enough stock in the 
inventory, the manufacturer contacts its supplier partner for the required components.  
Then the manufacturer contacts its delivery partner to arrange for delivery of components 
to its manufacturing site and later to deliver the products to the distributor. The price and 
delivery date are returned to the distributor. The following figure depicts this process in 
detail. 

Figure 1: Sample Web Process1 (getOrderPriceAndDeliveryDate) 
 

                                                 
1 I, O respectively represent inputs and outputs of each acivity. Rec and Rep are the inputs to be received by 
the process and output produced by the process 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 7 

This above-mentioned procedure for order processing can be implemented as an 
SWP. This process may span across several organizations. In this example, the process 
design will happen in the manufacturer’s organization. When the process is statically 
composed as a workflow, then the supplier partner and delivery partner services are 
decided before hand and integrated in the process along with manufacturer’s intra 
organizational services such as fix price, assembly line, inventory, etc. Due to the 
dynamic nature of the business, hard coding the business logic and participating services 
may not be efficient. This process should be able to be integrated with any potential 
delivery partner or supplier partner. The present standards support this kind of design, but 
they impose a restriction on the interface provided by these potential partners. In BPEL, it 
is assumed that if a service needs to be a part of a process instance, then it should provide 
the interface specified by the WSDL’s port type2 construct in the process definition. We 
attempt to solve this problem by specifying the process as templates during process 
design. Such templates are independent of the service description and process definition 
standards. Hence any service that satisfies the semantic requirements of an activity (in the 
template) can be used to carry out that activity in the process. Before execution, the 
process templates are used to instantiate an executable process in any of the process 
definition standards and executed accordingly.  

 
The idea of customizable processes and using process templates has been 

discussed earlier in [1]. It proposes three architectures/modalities for managing inter-
organizational business processes. One of the architectures envisions Process Portal 
hosted by an enterprise or an organization for its customers. It manages a variety of 
customizable processes in which a subscribing company or a trading partner might do an 
individual activity. The second architecture is the Process Vortex for specialized markets 
where interactions are controlled by some third party. The business processes in the 
process vortex are designed to incorporate different trading models and they are available 
as templates that can be used to customize processes. The Dynamic Trading Process 
architecture defined as the third architecture is a virtual market place for different 
products spanning across multiple industries. In this architecture, processes can be 
constructed based on customer's needs. It supports flexible and dynamic trading 
processes that are composed upon requests from customers and are based on the QoS 
requirements specified by the customer. The framework discussed in our present work 
can be used to design processes in any of these modalities. In our system, the processes 
can be defined using semantic templates and the users of the process or provider of the 
process can customize and generate executable process. 

 
The next section explains the METEOR-S composition framework and 

demonstrates how it can be used to design the getOrderPriceAndDeliveryDate SWP. 
 
3. METEOR-S Web Service Composition Framework (MWSCF)  

 
This section describes the MWSCF. There are four major components in 

MWSCF: the Process Builder, the Discovery Infrastructure (MWSDI), XML repositories 
                                                 
2 PortType construct in WSDL is used to group operations 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 8 

and the Process Execution Engine. The process builder constitutes a designer and a 
process generator. It provides a graphical user interface to design/open process templates 
and passes it to the process generator, which uses MWSDI and data in XML repositories 
to convert the template into an executable process. The METEOR-S Web Service 
Discovery Infrastructure (MWSDI) is used to access a community of Web service 
registries and semantically search for Web services. The generated executable process is 
then executed using a process execution engine. The XML repositories in the architecture 
are used to store ontologies, activity interfaces and process templates. The details of each 
of these components are discussed in the following sections. Figure 2 shows the overall 
architecture of MWSCF.  
 

 
Figure 2: Web Service Composition Framework 

 
3.1 METEOR-S Web Service Discovery Infrastructure (MWSDI) 

 
Web services are advertised in registries. The initial focus of Universal 

Description, Discovery and Integration [28] specifications was geared towards working 
with a Universal Business Registry (UBR), which is a master directory for all publicly 
available Web services. However, the new version of the UDDI specification [29] 
recognizes the need for existence of multiple registries and the need for interactions 
among them. A large number of registry/repository implementations for electronic 
commerce, each focusing on registering services of interest to respective sponsoring 
groups, are also anticipated. Hence, the challenge of dealing with hundreds of registries 
(if not thousands) during service publication and discovery becomes critical. Searching 
for a particular Web service would be very difficult in an environment consisting of 
hundreds of registries. This search would involve locating the correct registry in the first 
place and then locating the appropriate service within that registry. 
 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 9 

Finding the right services would be easier if the registries were categorized based 
on domains with each registry maintaining only the Web services pertaining to that 
domain. If the registries are specialized like this, it would be possible to use domain 
specific ontologies. As a result all the service definitions pertain to that registry may be 
forced to conform to that ontology and search for services in that domain can be carried 
out in a relevant registry. In addition, adding semantics to the domain-registry association 
will help in efficiently locating the right registries based on query requirements. In 
MWSDI, we use a specialized ontology called the Registries Ontology, which maintains 
relationships between all domains in MWSDI, and associates registries to them (see [15] 
for details).  
 

Improving service discovery also involves adding semantics to the Web service 
descriptions and registering these descriptions in the registries. Adding semantics to Web 
service descriptions can be achieved by using ontologies that support shared vocabularies 
and domain models for use in the service description. Using domain specific ontologies, 
the semantics implied by structures in service descriptions, which are known only to the 
writer of the description (provider of web service), can be made explicit. Hence, while 
searching for a Web service, relevant domain specific ontologies can be used to enable 
semantic matching of services. MWSDI provides support for this kind of matching by 
relating both Web service descriptions and user requirements to ontologies. It also 
provides an infrastructure for accessing multiple registries. The registries are provided by 
different registry operators and they may support their own domain specific ontologies 
for their registries. The registries may also want to offer their own version of semantic 
publication and matching algorithms. Along with that, each operator may also provide 
value added services for the registry users.  
 

We have implemented MWSDI to demonstrate this scalable infrastructure of Web 
service registries for semantic publication and discovery of services. It is implemented as 
a P2P network of UDDI registries. The MWSDI prototype system allows different 
registries to register in a P2P network and categorize registries based on domains. These 
registries in turn support domain specific ontologies and provide value added services for 
performing registry operations. MWSDI supports semantic publication of services. The 
inputs and outputs of the services are semantically annotated and these annotations are 
captured in UDDI. To perform semantic discovery according to the original 
implementation, the users can annotate the inputs and outputs of the service requirements 
and the discovery process in a UDDI will result in the services that match these semantic 
requirements. This discovery algorithm has been extended later in [14] that also supports 
annotating each operation in a WSDL file with a concept in functional ontology along 
with the annotation of preconditions and effects of that operation. Hence during 
discovery the service requirements are semantically annotated by associating it with 
concepts in ontologies that represent operation, inputs, outputs, preconditions and effects 
of the service. The discovery mechanism supported in MWSCF is based on all these 
kinds of annotations in addition to input and output semantics. Using the MWSDI with 
the semantic publication and discovery algorithms can significantly improve upon the 
current standards in Web service registration and discovery. MWSDI provides the 
flexibility to search for Web services based on ontologies. The present implementation of 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 10 

MWSCF uses MWSDI for semantic discovery. However, the discussion and use of 
Registries Ontology will be a future work. MWSDI architecture has been implemented on 
a cluster of SUN workstations as peer-to-peer network using the JXTA [30] framework. 
Xindice [31], a native XML database that comes with JWSDP [32] is used for 
implementing UDDI registries in MWSDI. UDDI4J [33] is used for accessing UDDI 
registries during publication and discovery. 

 
3.2 Process Builder 
 

The process builder implemented in Java has a designer that assists in composing 
semantic Web process templates. WSDL4J [34] has been used for processing WSDL 
files. The Jena tool kit (DAML API) has been used to building and processing ontologies. 
The designer supports three different approaches to specify an activity in the process 
template. Each activity in the process can be specified using a 

 
• Web service implementation, 
• Web service interface, or  
• Semantic activity template. 

 
3.2.1 Specifying an Activity using a Web Service Implementation 

 
Static composition of a process is done by specifying activities using concrete 

Web service implementations. This type of composition is discussed in one of our 
previous projects called SCET [35]. MWSCF allows binding an activity to a WSDL file 
and a relevant operation in it. For example, in the process discussed in section 2.2, the 
process creator knows the details of the intra organizational activities like 
checkInventory, fixPrice, etc. These activities can be carried out using intra-
organizational services. Hence, the process creator with the knowledge of intra-
organizational services can map intra-organizational activities to a WSDL file and an 
operation in it. Even if the service interface or implementation changes, as long as the 
URL of the WSDL and the name of the operation do not change, MWSCF can associate 
the activity with that operation. During process generation, the portType and message 
details are extracted from the WSDL and used in the generated executable process. 
 
3.2.2 Specifying an Activity using a Web Service Interface 

 
An activity can also be specified using a Web service interface. If an activity is 

linked to a Web service interface, during process generation, a concrete service that 
implements the interface could be used to carry out the activity. Service discovery for this 
kind of activity results only in the activities that implement the interface. Discovering 
services that implement interfaces has been suggested in [36]. UDDI is a registry and not 
a repository and hence it does not allow publishing the interface definitions. Popular or 
industry specific interfaces can be published in UDDI using tModels that will have 
references to the interface definitions. All the services that implement that interface will 
indicate the conformance to that interface by binding the tModel using binding template 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 11 

constructs in UDDI. During discovery process, the tModel that represent an interface can 
be used and all the services that implement this interface can be discovered. In MWSCF, 
during the creation of process templates, process creator can specify activities using Web 
service interfaces. During process generation a service can be selected from the list of 
services that implement the interface. The portType and message details of the 
implementing services are retrieved and used during process generation. In MWSCF, 
Web service interfaces are stored in a XML repository. The interfaces in the interface 
repository are identified using the same id as that of the tModels in UDDI that represent 
each of these interfaces. The user while designing a process can browse (shown in figure 
3) through these interfaces and select an interface and an operation in the interface to link 
to an activity. The identifier (same as tModel id) of the interface is used during a UDDI 
search to retrieve services that implement the interface. 

 

 
Figure 3: Browser to Web Service Interfaces 

 
The user in addition to specifying the interface and an operation may also 

optionally specify the discovery details and QoS requirements for that activity. The 
discovery details are the details based on which UDDI registries can be queried. The 
UDDI specification supports searching for services based on name of the business or 
services (keywords, wildcard character and qualifiers), categorization (in taxonomies), 
characterization (technical fingerprint), etc. These details in addition to the interface 
details are used during discovery of Web services for an activity. For example, if a 
tModel representing a technical fingerprint is specified in the discovery details of an 
activity, then a tModelBag is constructed using this tModel and the tModel that represents 
the interface. The constructed tModelBag is used during service search. Future work 
involves using Registries Ontology [15] in the template. The discovery details are given 
in an XML representation of the API supported by UDDI specifications.  



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 12 

 
The QoS requirements may also be specified by using a XML file. The QoS 

details are used in ranking the discovered services. The process creator can use this 
ranking to select an appropriate service to carry out an activity. The details are given in 
section 3.2.7. An example for this kind of activity could be DeliveryPartnerService 
discussed in sample web process in section 2.2. If there is a standard interface for this 
activity, it can be cached in the XML repository. This will act as a repository of Web 
service interfaces. Then during the process template design, the activity for delivery 
service can be specified using that interface.  
 
3.2.3 Specifying an Activity using a Semantic Activity Template 

 
In the third approach, the requirements for an activity are given using its semantic 

characteristics. In the previous approach (section 3.2.2), the activity is specified using an 
interface, meaning that an operation in the interface to carry out the activity and the data 
type (complex or simple) for input and output of the activity is stated in the activity 
requirements. When the activity is specified as a semantic activity template, the activity 
requirements are given as the semantics of the inputs/outputs (IO) along with the 
functional semantics of the activity are specified. The functional semantics of an activity, 
its IO, its preconditions and effects are represented using ontological concepts. The 
services that conform to these semantic characteristics are discovered and ranked. The 
process creator can select a service from the list of discovered services. This approach of 
specifying the activities requires that all services that are considered for discovery are 
semantically annotated by which each operation in a WSDL file, its inputs, and outputs 
are mapped to ontological constructs and having additional tags for preconditions and 
effects of the operations. With this methodology, capabilities of each operation in a 
WSDL file can be captured. These semantic details in a WSDL file could be published in 
a UDDI. Hence, given a set of requirements based on these semantic details, the services 
that match these requirements could be more precisely found. A detailed discussion is 
presented in [14]. The data types of input and output are optional and could be used as a 
weighted component by the semantics driven service selection algorithm. As in the 
previous approach (section 3.2.2), the discovery details and QoS requirements could be 
specified for the semantic activity template too. These discovery details are combined 
with the semantic requirements and search is performed within an appropriate registry. 
The QoS requirements may be used to rank the resulting services. The figure 4 shows the 
user interface window to specify an activity as a semantic activity template.  

 
In our example discussed in section 2.2, the activity for DeliveryPartnerService 

could be specified as a semantic template. The input and output of the activity can be 
represented using a standard vocabulary or ontology. A domain ontology for the domain 
Cargo Services, for example, could be used for this requirement annotation. Our work 
like most other work in semantic Web research is based on rich framework for ontology 
engineering and re-use. The Cargo Services ontology may encompass concepts like Air 
Cargo Services, Cargo Insurance, Maritime Cargo Services, Rail Cargo Services and 
Trucking. Hence, using such ontology, the semantics of an activity are specified. During 
service discovery, the service implementations that have used this ontology and annotate 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 13 

their descriptions will be semantically compared with the requirements and ranked. The 
process creator can select one of the discovered services based on the ranking and the 
activity under consideration is bound to this Web service. 

 
Figure 4: Semantic Activity Template Specification Interface 

 
3.2.4 Process Composition 
 

When composing a generic process template, the process creator specifies the list 
of activities and control flow constructs to link the activities. After finalizing the 
template, the user can save the template for future use or can find service 
implementations for each activity in the template. Though the templates could be used 
during run-time to find services for each activity, at present MWSCF only support 
deployment time binding. This is because the initial implementation of MWSCF uses an 
engine that supports deployment time binding. Though the builder supports different 
approaches to design, the focus of this work is on the approach discussed in section 3.2.3, 
where an activity is designed using semantic templates. If the process template has 
activities that are specified using semantic templates then it is called a semantic process 
template. 

 
3.2.5 Semantic Process Template 

 
The semantic process template is a collection of activities, which can be linked 

using control flow constructs. A sample process template (in XML) format is shown in 
figures 5 and 6. The process templates in MWSCF have BPEL-like syntax. For 
representing control flow, the template uses the BPEL constructs. Other constructs in the 
template like invoke-activity, criteria, semantic-spec, discovery-spec etc. are not a part of 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 14 

the BEPL specifications. They are MWSCF specific constructs independent of any 
process specification standard that are used to generate executable processes. In addition 
to template creation a WSDL is created that represents the description for the desired 
process and it is generated using a WSDL editor. This WSDL is then linked to the 
process template. The template can be explained as follows: 

  
• Process-template is the root element that encloses the entire template 

definition. It has different attributes representing different ontologies or other 
name spaces. 

• The control constructs (<sequence>, <flow>, <switch> etc.) are used to 
represent control flow in the template. They do not need translation and they 
are used as is during the process generation phase.  

• In the example discussed in section 2.2, the inputs and outputs of the 
respective activities Receive Order Details and Return Details are represented 
as messages in the WSDL file (shown in section 3.4) of the process. The 
receive and reply constructs in the process template are linked to an operation 
in the WSDL representing process description (using the attribute process-
wsdl-operation) created by the process creator. The messages that are to be 
received and returned by the process are captured in that WSDL file. They 
will be translated to containers3 in the generated executable process.  

• The invoke-activity elements in the process template are translated into 
corresponding invoke elements in the generated processes. The invoke-activity 
elements in the template are of three types:  

1. ServiceImpl, if the activity is specified using a concrete Web 
service implementation, 

2. WSInterface, if the activity is specified using a Web service 
interface, and  

3. SemanticTemplate, if the activity is specified using a semantic 
activity template. 

Based on the discovery4 criteria (semantic-spec, discovery-URL, tModel id, 
discovery-spec) and QoS criteria (qos-spec) specified for each of the 
activities, the relevant services to carry out each activity are discovered and 
selected (discussed in section 3.2.6). Service discovery is needed only for 
activities of types WSInterface and SemanticTemplate. ServiceImpl type does 
not need discovery as the location of WSDL (wsdl-URL) and the name of the 
operation (operation-name) to invoke are given in the template itself The 
invoke elements in the generated executable process will have other details 
like portType, operation, input and output containers, etc. that are extracted 
from the WSDL description of the service that is selected to carry out the 
activity.  

• Input and output container details of the invoke elements in the executable 
processes are generated from the data flow details provided by the user 
(shown in figure 11). Data flow is not specified in the template. While the 

                                                 
3 called Variable is BPEL version 1.1 
 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 15 

process creator manually selects a service for an activity, data flow may be 
specified between the selected service and other services that had been 
selected for other activities. 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 16 

 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 17 

Figure 5: Sample Process Template Listing 1 

 
Figure 6: Sample Process Template Listing 2 

 
• The business protocol data (like inventory-availability) that are used as 

variables in process control (like conditional statements) need not be explicitly 
assigned in the process template. Instead, during process generation, the user 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 18 

can map output from any of the participating service to that variable. These 
details are translated into <assign> and <copy> tags in the final generated 
executable process.  

• Other details given by the user for discovery (semantic-spec, discovery-spec 
and qos-spec) and ranking (ranking-details) for activities during process 
design are present in the process template under the criteria element. 
semantic-spec element is used to give the semantics of the activity. qos-spec is 
used to specify the QoS criteria of the activities. The ranking-weights element 
is used to assign weights to rank the discovered services. Detailed discussion 
on discovery and ranking is given in the following section. The discovery-spec 
element in the template (figure 6) refers to a XML representation of the query 
supported by UDDI specification to find services. These details are used 
during discovery process  For example in the process template (figure 6), 
since discovery-spec element is given in conjunction with an activity of type 
WSInterface, when finding Web services for the activity 
DeliveryPartnerService, all the services that implement the interface and that 
are categorized under the category ‘US’ in the geo3166-2 taxonomy are 
discovered and ranked.  

 
3.2.6 Service Ranking and Selection 
 

Web service selection is a crucial aspect of process composition. Hence the Web 
service discovery algorithms in our system are supplemented with a good ranking 
scheme. The service selection is based on the discovery details for the activity provided 
by the user. The user could specify the discovery URL for each activity. This discovery 
URL could point to a market place registry, a private enterprise registry, a domain 
registry, or a Universal Business Registry. The service discovery will be carried out in 
that registry. Future work will involve using Registries Ontology for registry selection. 
Registry selection can also be based on the registries ontology as proposed in MWSDI. 
Since discovery could result in a large number of candidate services, we have 
implemented a ranking mechanism that will help the process creator to select appropriate 
services. The ranking of services for each activity can be based on the semantic matching 
of activity requirements with the service specifications and on the satisfiability of service 
in terms of QoS requirements of the activity. Our approach requires that each service 
registered with UDDI is linked to a semantically annotated WSDL description and that 
the WSDL descriptions are linked to WSEL [27] (Web Service Endpoint Language) files 
that have the QoS details of all the operations in the service. WSEL is an XML format for 
the description of non-operational and behavioral characteristics of service endpoints, 
like quality-of-service or security properties. This specification is under development and 
at present no specification exists for this language. WSFL [27] specification envisions the 
need for this language and suggests using it in conjunction with an activity in a process to 
describe endpoint properties and enable better matchmaking. We have taken this idea and 
linked each WSDL file to a WSEL file, which has the QoS specifications of the 
operations defined in the WSDL file. 

 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 19 

If an activity is specified as a semantic activity template then the overall ranking 
of a service for this activity is the weighted arithmetic mean of the ranking values in two 
dimensions. The first dimension is based on the Semantic Matching. The second 
dimension is the QoS criteria matching. Semantic matching is performed while ranking if 
the activity is specified as a semantic template. However, the QoS based ranking can be 
done if the activity is specified as a service interface or semantic template. Semantic 
matching on the semantic template of the activity is done against the operations, inputs, 
outputs, preconditions and effects of the services available. The ranking on semantic 
matching is based on the weights assigned by the process creator to the individual 
semantic parts of the activity namely operations, inputs, outputs, preconditions and 
effects. The assigned weights are normalized before calculation (at least one weight must 
be non-zero). During discovery the semantic criteria of the activity (defined as semantic 
template) are matched against the semantic details of the services registered in UDDI. 
The weights corresponding to the matched semantic parts are used to rank the services. 
The formula used in MWSCF to calculate the ranking value for semantic matching is 
shown in figure 7. It calculates the weighted arithmetic mean of individual semantic parts 
(operation, inputs, outputs, preconditions and effects). 

 

 
Figure 7: Formula for Calculating Overall Semantic Matching Value 

 
Let us consider a sample calculation of overall semantic matching value using the 

semantic specifications of an activity given in the process template (in figure 6). The 
template refers to four different ontologies, namely, LSDIS-ToyManufacturing, LSDIS-
OrderPlacement, LSDIS-FunctionalOnt, LSDIS-CargoServices that are published in 
UDDI and identified by a tModel id. The same tModel id is used to index the ontologies 
in the ontology repository. The semantic specifications of the activity 
QuerySupplierPartner are given in semantic-spec element named semantic-1. It specifies 
that the candidate Web services for that activity should have an operation that conforms 
to the concept getOrderDetailsForOrderToyParts in the ontology represented by 
namespace LSDIS-FunctionalOnt and takes two inputs and produces two outputs. It also 
specifies the semantics of the inputs and outputs using ontological constructs. The 
semantic specifications of this activity states that one of the inputs of the 
QuerySupplierPartner should conform to the OrderCount concept (class) in the LSDIS-
OrderPlacement ontology. The other input should conform to ToyIdentifier concept in 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 20 

LSDIS-ToyManufacturing ontology. Outputs of this activity should conform to 
PickupDate and PickupLocationIdentifier in LSDIS-CargoServices ontology. 

 
In the process template, the operation, inputs, outputs of the activity 

QuerySupplierPartner are annotated. Hence the process creator can assign weights to 
these semantic parts (in ranking-weights element). The semantics of preconditions and 
effects are not specified in the semantic requirement specification of 
QuerySupplierPartner and hence weights are also not assigned for the precondition and 
effects. In this example, the weights are assigned only to three parts (i=3) inputs, outputs 
and operation. The weights assigned in the template are 30, 20 and 50 respectively. The 
semantic specifications are matched against WSDL descriptions of the services in UDDI 
registry identified by the URL given in discovery-URL attribute. Let is consider how to 
calculate the semantic matching value between the semantic requirements of this activity 
and an operation in a candidate WSDL file that takes two inputs and produces two 
outputs with the following semantics: 

 
1. The functionality of the operation in the candidate WSDL is mapped to 

LSDIS-FunctionalOnt:getDetailsForOrderToyParts. The functional semantics 
of the service (operation in WSDL) exactly matches with the functional 
semantics of the activity. Hence the semantic matching value of the service, 
M1 is 1. 

2. One of the inputs of the operation in candidate WSDL is annotated using  
LSDIS-ToyManufacturing:ToyIdentifier and the other input is annotated using 
LSDIS-OrderPlacement:OrderCount. In this case the input semantics of the 
service (represented by the WSDL) exactly match to the inputs semantics of 
the activity QuerySupplierPartner in the process template. The semantic 
matching value M2 is 1. 

3. One of the outputs of the operation of interest is annotated with LSDIS-
CargoServices:PickupDate and the other output is annotated with LSDIS-
CargoServices:PickupLocationDetails which is a concept in the ontology that 
is 2 levels up in the hierarchy of subClassOf relationships. One of the outputs 
of the service represented by the operation in WSDL match exactly one of the 
outputs of the activity QuerySupplierPartner and the other output does not 
match exactly. For exact semantic matching the semantic matching value is 1 
and for non-exact matches the semantic matching value is calculated using a 
linear function that decides the semantic matching value based on the 
subClassOf hierarchy. The final semantic matching value M3 is the average of 
semantic matching values of the two outputs. In the example the value of M3 
is (1+0.8)/2 = 0.9. The subClassOf hierarchy and linear function used in this 
implementation can be extended with a better function that can be used to 
characterize two concepts separated in an ontology by a number of named 
relationship properties. 

4. The overall semantic matching value between the activity 
QuerySupplierPartner in the process template and the operation of interest in 
candidate WSDL, MS is the weighted arithmetic mean of the individual 
semantic parts, (1 * 50 + 1 * 30 + 0.9 * 20 ) / (50+30+20) = 0.98.  



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 21 

 
The next dimension in overall ranking is based on the QoS requirements of each 

activity. Each activity of types WSInterface and SemanticTemplate may be linked to 
requirements specification that defines the QoS parameters of that activity. For 
simplicity, our present work considers four different QoS parameters, which are the 
subset of QoS details that we have identified in one of our previous work [37]. The 
different QoS specification parts used in ranking are: 

 
• Task Delay Time 
• Task Process Time 
• Task Realization Cost 
• Task Reliability Measure 
 

In addition to QoS, the WSEL file can also support representing boundary values5 
and possible values for the input and output parameters of each operation. However, our 
present discovery method does not take boundary values into consideration. In our 
present implementation, each WSDL is lined to a WSEL file representing QoS of 
different operations defined in WSDL. The following figure shows a sample WSEL file. 

 

 
Figure 8: Sample WSEL Details of a Service  

 
When specifying the requirements of an activity in a process the process creator 

can specify QoS criteria of the activity. The QoS requirements are specified with 
qualifiers. In our implementation, all services in UDDI may be linked to WSDL files and 
each of the WSDL files may be linked to WSEL files with QoS details of the service. A 
sample QoS requirements specification is shown in the template in figure 6 under qos-
spec element. Each of the QoS parameter in the requirements description of an activity is 
given a weight. For every service that is discovered for an activity, the QoS compatibility 
is checked and using the weight for each QoS parameter the ranking value of the service 
is calculated for the activity. The formula for calculating QoS matching of an activity is 
shown in figure 9. It calculates the weighted arithmetic mean of individual QoS criteria. 

 
Considering the sample template (figure 6) and the activity named 

QuerySupplierPartner in it, the qos-spec indicates that there is only one QoS requirement 

                                                 
5 For example if a service 'TakeOrder' has an operation that takes order for some product X and if the 
maximum order that it can handle as input is 1000, it can specify that the value for the input parameter for 
this service should be less than 1000. Also if the input takes any enumerated value set it could be specified 
in the WSEL file. These details help users in properly discovering and selecting appropriate services. 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 22 

and it states that the delay-time for the activity should be less than 90 milliseconds. The 
QoS matching value of the candidate services are calculated using a matching function. If 
for a candidate service the QoS matching value is 0.9 (calculated using a function 
considering the compatibility between QoS specification of the services and QoS criteria 
of the activity) then the value of MQ is calculated as (0.9 * 100) / 100 = 0.9, where 100 is 
the weight given to QoS specification delay-time. 
 

 
Figure 9: Formula for Calculating Overall QoS Matching Value 

 
After calculating the ranking values (MS and MQ) for the Semantic Matching and 

QoS dimensions, weights assigned by the user for each of these dimensions are used to 
calculate the overall ranking. The overall ranking value is the weighted arithmetic mean 
of the ranking values in each dimension. In the example discussed above, for the activity 
QuerySupplierPartner, the weights for Semantic matching and QoS matching are 
respectively 75 and 25. The overall ranking value is hence calculated as (0.98 * 75  + 0.9 
* 25) / (75 + 25) = 0.96. The services are ranked based on the calculated overall ranking 
values of the services and the process creator can select one from the list of services (see 
figure 10): 

 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 23 

 
Figure 10: Service Ranking Display Window for an Activity 

 
 
3.2.7 Process Generation 

 
After designing the template, the process creator can generate an executable 

process. This involves finding services pertinent to each activity in the process, retrieving 
their WSDL file, and extracting relevant information, establishing data flow and 
generating the process. The discovery of services is done for each activity independent of 
other activities. The process designer helps in finding Web services for each activity in 
the process. The creator can then link services to incorporate data flow in the process. For 
this purpose, after obtaining control flow requirements between two services, the process 
generator assists the user in establishing explicit data flow link between output 
parameters of one service to the input parameters of the other.  

 
The interface in MWSCF that assists in establishing data flow is shown in the 

figure 11. If the process creator wants to specify the data flow link between two 
activities, the respective Web service descriptions can be fed to the graphical user 
interface that can be used to establish the data flow between the activities in the process. 
Then the process creator has to manually specify the mapping between output parameters 
of one service to the input parameters of the other.  

 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 24 

 
Figure 11: Interface to Establish Data Flow  

 
The porttype data extracted from the WSDL of the process (created by process 

creator), the data flow requirements obtained from the user and the control flow 
constructs in the templates are used to generate an executable process. The WSDL 
descriptions of the participating Web services are also retrieved. These WSDL files will 
be used during deployment time binding. During the process generation phase the process 
WSDL file6 is updated with the service link details. A sample executable BPEL process 
that is generated from the template shown in section 3.2.5 can be found in the appendix. 
 
3.3 XML Repositories 
  
 In MWSCF, we have a pool of XML repositories that are used for managing 
(storing, searching and reusing/sharing) the following 

 
• Ontologies which are used during annotation of services and annotation of 

semantic activity templates, 
• Semantic process templates which can be opened, edited and saved back 

for later use, and 
• Activity/service interfaces in WSDL syntax. 

 
All data (ontologies, interface definitions and process templates) are based on 

XML and since they are meant for sharing and re-use, using XML repositories will be of 
much use in this regard. The ontologies in the repositories are identified using the 
                                                 
6 WSDL file describing the process. It is designed by the process creator. It has the details of the inputs, 
outputs and operations of the process 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 25 

tModelIds. tModels are published in UDDI to represent and refer to ontologies. In another 
XML repository, the process templates are categorized and stored. The categorization 
(taxonomy or ontology) is stored in the same XML repository as that of the process 
templates. Each category in the categorization has an identifier. The XML repository for 
storing process templates has different collections based on these identifiers and each 
process template is categorized by storing the template under a particular collection that 
represents a category. There is also an interface repository that stores the WSDL interface 
definitions which can be browsed and selected to link to an activity during the process 
design. Using these repositories during process design, service discovery or process 
generation gives the user a powerful environment to compose a process. Xindice is used 
for implementing these XML repositories. 
 
3.4 Execution Engine 

 
The generated executable BPEL4WS process can be executed in any BPEL 

execution engine. As the work to develop our own execution engine is underway, at 
present MWSCF has been implemented and tested using BPWS4J orchestration server. 
Deploying a process in BPWS4J [38] engine requires a BPEL file containing the process 
definition, a WSDL description7 for the process and the other WSDL descriptions of the 
web services that a part of the process. The WSDL descriptions of the participating 
services are needed for deployment time binding. Using the WSDL files of the 
participating services and other details, an in-memory model [39] of the process is 
generated. Since the present release of BPWS4J does not allow deploying a process 
without a BPEL file, we have used the BPWS4J printer class to write the in-memory 
model of the process into a BPEL file. This file is then validated using the tool validator 
that comes with BPWS4J. Once it is validated, it is deployed in the BPWS4J engine and 
it can be invoked like any other Web service. 

 
3.4. Summary of Steps in Semantic Process Composition 

 
This section summarizes how Semantic Web Processes are designed (using process 
templates), composed and executed.  

 
 

                                                 
7 created by the process composer (shown in Figure 14) 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 26 

 
Figure 12: Process WSDL 

 
1. The WSDL description for the desired process is generated using a WSDL 

editor. In the example discussed in section 2.2, the activities Receive Order 
Details and Return Details will be represented in the WSDL file of the 
process. The process template will be linked to this file. The process template 
shown in section 3.2.5 is linked to the operation 
getOrderPriceAndDeliveryDate in this WSDL file. This WSDL file can be 
annotated and published as a Web service. 

2. A process template is opened or created in the process designer.  
3. Activities are added to the template and control flow constructs are added to 

the templates (if needed). 
4. Activities may be semantically annotated using two XML files representing 

discovery details and QoS specifications are linked to them. 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 27 

5. Services are discovered (using discovery criteria), ranked (using semantic 
matching and QoS criteria) and selected for each activity. 

6. Data flow between services is established (based on the selected service). 
7. The executable process is generated by the process generator using the WSDL 

of the process, the process template and the WSDL files of the participating 
services. 

8. The process is validated, deployed and it is ready for invocation. 
 

 
Figure 13: Steps in Semantic Web Process Composition 

  
 Figure 13 shows different phases in the semantic Web process composition. In 
step 1 (design phase), the figure specifically shows designing a process using semantic 
activity templates. Steps 2 and 3 depict that for each activity a service is to be selected 
and the data flow is established if needed. These steps are done repeatedly until all the 
activities are bound to a Web service implementation and data flow is established. After 
this, the actual executable process is generated. 
 
4. Features of MWSCF 
 

The increasing pressure from the market and competitors force the companies to 
always strive for efficiency and improvement in their processes. This creates the need for 
an environment that helps building, analyzing and executing processes that is integrated 
deeply into the business itself. This environment has to provide interactive features for 
building processes based on business requirements and application semantics. As a step 
towards this aim, we have completed an initial prototype implementation of the 
framework as described in section 3 that has the following features: 
 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 28 

Semantically Enriched Service and Process Descriptions 
 

This framework supports building process templates in which activities may be 
semantically described. This helps in building the executable process, preserving the 
semantics of each activity. Each activity will be achieved using a Web service. Binding a 
service to an activity at the design time may not be easy (and appropriate) considering the 
number of similar Web services that will be available in the future and their 
heterogeneity. Present standards like BPEL and BPML provide limited forms of dynamic 
binding. These standards include portType descriptions in the process definitions. Hence, 
to carry out an activity, only the services that implement that portType can be used. This 
type of hard coded binding is not always suitable for ever-changing e-business 
applications. Using semantic descriptions not only helps in efficiently finding relevant 
Web services to execute each activity, it also helps in reasoning about them and use it for 
dynamic binding in a process. Using semantic templates optimized flow or process 
execution could be calculated and QoS trade-off analysis could be done. 
 
Configurable Processes 
 

MWSCF provides an architecture where the processes are represented using 
templates, which are not bound to concrete service implementations. This feature is 
present in almost all process modeling languages. Our designer tool, in addition, allows 
users to build a process template and configure each activity in the process template using 
its semantic requirements to build an executable process according to the requirements. 
Using the builder, users can open an existing process template and configure activities in 
that process. This improves the usability of generic processes for different situations and, 
in addition, it also enables personalization of the processes based on the configuration 
parameters. This will help in the success of new business models like outsourcing of Web 
processes. Off-the-shelf ready made template can be bought and used (with or without 
modifications) instead of building it from the scratch. Common processes can be made 
available for rent/lease using value added service features like easy configuration, 
friendly interface for configuration, etc. For example, let us consider a typical composite 
Web service example "Conference Booking". This is a Web process by itself as it 
involves several activities like booking travel tickets, booking hotel, registering for the 
conference, etc. An organization that specializes in this type of business can create an 
abstract Web process template. The clients of the organization can use this template to 
feed in parameters like QoS of each activity, ranking and discovery details, etc. to build 
the actual process. The organization can then execute this configured process in its own 
service execution engine and return the results back to user. Let us consider another 
example, in intra-enterprise process that takes an order and delivers some product to the 
customer. Depending on the price that the customer is willing to pay for the delivery 
service, QoS parameters of the task that is involved in product delivery, can be 
configured so that the execution engine selects a relevant service that handles the product 
delivery order satisfying the required QoS criteria.  
 
Comprehensive Framework for Web Service Composition 
 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 29 

The MWSCF provides a comprehensive framework for Web Service composition. 
The MWSCA extends full life-cycle support for achieving semantic Web processes by 
providing an infrastructure to assist a user starting from service publication and discovery 
(MWSDI) to designing a process (Process Designer) and executing it (Execution Engine). 
The designer interface that we have developed as a part of MWSCF provides to easy-to-
use interface. Using the built-in powerful discovery technique in the process designer, 
users can effectively compose a process. The framework provides graphical user 
interfaces where users can view the ranking of services and select the services for the 
activity that are appropriate for their requirements. A unique aspect of the framework is 
that it automatically retrieves the WSDL files for deployment and extracts information 
from them to generate the process. The generated executable process will preserve the 
semantics specified in the process template. All these user interfaces and features 
implemented, as a part of MWSCF will help in rapid and efficient development of Web 
processes.  
 
Adaptability to any Process Specification Standard 
  
 The present implementation of MWSCF allows constructing process template 
with BPEL-like syntax and the actual process is generated in BPEL syntax based on 
BPEL schema. However, the generated executable process can be made independent of 
BPEL syntax. The process generator is implemented as a separate module independent of 
other modules in the MWSCF. Hence a pluggable process generator module can replace 
the existing module that generates BPEL process. If the new process generator module is 
able to generate executable processes in other specifications based on a different schema, 
then it can be used in the framework to generate a process following a different standard. 
 
5. Related Work 
 

There have been few research efforts and commercial tools to automate business 
processes to dynamically compose Web services and to use semantic Web techniques in 
Web service composition. In this section, we will discuss the related work that deals with 
Web service composition and other research efforts that are related to our work. 
 

The main focus of our paper is creating semantic process templates and using it 
for executable process generation. There are a few papers that discuss process templates. 
For example, [40] discusses reusable process skeletons that implement some 
conversational logic. It argues that the notion of process templates and service libraries 
would help to speed up and ease the development of processes that incorporate B2B 
capability. In our work, we have discussed creating templates and storing them in a 
repository. To ease the discovery and usage of these templates we have categorized them. 
Taxonomies of processes have been discussed in [41]. It discusses classifying process 
instances depending on their characteristics, such as outcome of the process instance, 
duration of execution, etc. Our work discusses classifying the process templates based on 
their semantic capabilities.  
 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 30 

There are several systems that help in Web service composition. [42] discusses a 
platform where Web services are declaratively composed and executed in a peer-to-peer 
environment. It does not perform dynamic discovery. The user has to discover services 
and then define composition using state-chart diagrams. Then the composition can be 
executed in a P2P fashion with the help of peer software components coordinators for 
each constituent Web service. [43] discusses a case based reasoning mechanism for 
discovery of services to form a composite Web service. The participating services are 
selected based on the relationships between the services and the constraints involved. 
eFlow [44] is another system that allows composing, customizing and deploying e-
services. The process is modeled as a graph that defines the control and data flow. The 
nodes represent services in the process. A node could be either an ordinary node which is 
statically bound to a service or it could be a generic node which is specified with a 
configuration parameter and a list of services out of which one is bound to the node 
during run time. They have the notion of process templates and categorizing them in a 
hierarchy. eFlow also supports dynamic discovery technique using a mediator and the 
associated rules. Unlike our system neither the discovery mechanism nor the process 
templates in these systems is semantic. 
 

The fundamental assumption in our work of annotating process definition with 
ontologies is that the candidate services are semantically described and discovered. The 
need for semantics in service description has been discussed in quite a few of previous 
publications [5, 14, 45, 46]. DAML-S is a popular initiative in this direction to describe 
service capabilities using ontologies. A DAML-S based prototype for semi-automatic 
composition of services has been discussed in [47]. It provides a composer that will aid 
the user to select services for each activity in the composition and to create flow 
specifications to link them. Upon selecting a service, the services that can produce output 
that could be fed as the input of the selected service are listed after filtering based on 
profile descriptions. The user can manually select the service that he wants to fit in at a 
particular activity. After selecting all the services, the system generates a composite 
process in DAML-S. The execution is done by calling each service separately and 
passing the results between services according the flow specifications. This kind of step-
by-step composition of Web services using DAML-S descriptions has also been 
discussed in one of our previous papers [48]. It discusses using ontologies to solve the 
problems in discovery of Web services and to resolve the structural and semantic 
heterogeneity among these services. The discovery methodology and the set of 
algorithms discussed in this related work supports discovery of services based on 
functional requirements and operational metrics. Though all of these related work attempt 
to solve the same problem (semantic Web service discovery and composition) as that our 
work, the approach is different. Our work, instead of DAML-S, is based on the industry 
standards for Web services namely WSDL, UDDI and BPEL4WS. Our work does not 
discuss sequential composition where the service for an activity in the process is decided 
before deciding for the next activity. In our work, the entire composition can be defined 
as a template of semantically annotated activities, and the discovery of services for the 
activities need not be sequential. 
 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 31 

We believe that our composition methodology is better than other present 
frameworks, because the richness needed in representing services and data in the e-
business domain is captured well using ontologies. The use of ontologies to aggregate the 
products, services, processes and practices within the industry to realize successful net 
markets has been discussed in [49]. It argues that elements of commerce and relationships 
between them are used to model market places and identifies ontologies as the means to 
do that. It states that ontological engineering is the prime requisite for information and 
services aggregation. It encourages developing and using domain/industry specific 
ontologies. Representing the products and services using ontologies will help to 
understand them from the different viewpoints and roles with in that domain/industry. 
Another related work [50] discusses developing a Universal Business Language (UBL). 
UBL aims to define Business Information Entities at a semantic level. It is something 
similar to an ontology with a few restrictions [51]. Like ontologies, UBL is aimed to 
model the real world focusing on a domain (business) to enable semantic interoperability. 
Our paper discusses using standard vocabularies/ontologies to markup process templates 
for better interoperability and process generation. [52] identifies semantics as one of the 
important aspect that B2B protocol standards should aim to standardize. It also lists 
business content or vocabulary as one of the facets of semantics in B2B standards. 
Another related work [53] states that interoperating services need to agree upon 
vocabularies, document formats and conversation definitions. They add that, in addition 
to this, agreement has to be there between various horizontal and vertical industry 
segments to use the standard vocabularies and conversations. [8] proposes Web Services 
Modeling Framework (WSMF) to enable flexible and scalable e-commerce using Web 
Services. It discusses a conceptual model for developing, describing and composing Web 
services. It advocates using semantic Web techniques to deal with the problems of 
heterogeneity and scalability in e-commerce. It also discusses different types and 
approaches for scalable mediation between trading partners in e-commerce. We realize 
the importance of the mediation mechanism to deal with inherent heterogeneity in an 
open and flexible environment. This is a separate research direction. Hence we have 
deferred that for future work. However, our work reiterates the need for using semantics 
both in service description and abstract process definition to help make the vision of 
universal interoperability in e-business a reality.  
 
6. Conclusions and Future Work 
 

Web services have created a major wave in the IT industry. Several standards are 
being proposed, consortia have been created and academic research has increased rapidly. 
The obvious reasons are the immense power of Web services with regards to e-business 
and the commercial value behind them. The Web services are indeed useful for easier, 
faster integration, good in terms of return of investment (ROI), establishing friction free 
markets, rapid value added assembly of services, etc. However, some of the inherent 
problems of e-business like scalability and semantic interoperability are not solved by the 
service-oriented architecture provided by Web services. The convergence of ideas, 
findings, and results from various initiatives like ebXML, Semantic Web and Web 
services can bring about better solutions. 
 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 32 

Our work is on applying Semantic Web techniques to design e-business 
processes. Applying [54] Semantic Web findings to Web services technologies and use 
them for e-business could revolutionize the existing business models and the way they 
are carried out. This idea has received much attention and support both from academia 
and industry. For example, [55] addresses these problems with a framework that aims to 
align concepts known from the Semantic Web and the ebXML initiative and [56] 
discusses using Web services for implementing business processes and the need for 
Business Process Management to use Web services for dynamic e-businesses.  

 
Using Semantic Process Templates in MWSCF provides following advantages: 

• It helps in rapid process composition. The discovery of services need not 
be performed during template construction and can be delegated to the 
system.  

• It is not necessary to build a process from scratch. Templates can be 
configured and reused. 

• Process design is flexible as it is independent of web service portTypes. 
The change in partner interface without change in the semantics of the 
interface does not affect the process template or the discovery of services. 

• Process re-design is greatly facilitated.  
• Ready made templates can act as business/reference models and could be 

re-used by different organizations that want to implement same process 
with different services. 

 
Our work does not take into consideration the B2B protocol standards that are 

crucial for inter-enterprise collaboration and achieving public processes. Our work 
focuses on the private processes of the enterprises that need to incorporate few external 
services. It is also applicable for process composition that does not involve complex B2B 
protocol. We understand that typically business transactions occur using some B2B 
protocol standard [52] that defines the message formats exchanged, sequencing, security, 
etc. There are several domain specific (Rosetta Net [57]) and domain independent 
standards (ebXML BPSS [58]]) that focus on different aspects of the B2B protocol. In 
addition, there are Web services standards (WSCI8 [59], WS-CS [60]) to define message 
exchange in a business collaboration and choreograph the activities in the collaboration. 
These standards aim to improve the stateless synchronous/uncorrelated asynchronous 
model of interaction supported by WSDL. A multi-party collaboration is carried out 
either by using a global controller that coordinates various activities on behalf of the 
involved parties, or using a mechanism [61] that links a data and messages from visible 
public processes to the private organizational processes. In any case this is outside the 
scope of a process specification language like BPML or BPEL9 and as well as outside the 

                                                 
8 The convergence of complementary standards happened in the case of WSCI and BPML aims to provide 
comprehensive view of role of businesses in a collaboration and the flow of activities that characterize each 
business   
9 Abstract processes in BPEL are aimed to describe business protocols that specify the sequencing of 
messages exchanged by one particular partner with its other partners to achieve a business goal . However, 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 33 

scope of our work too. We foresee the convergence of standards like BPEL, WSCI, 
ebXML to realize a powerful e-commerce model. This convergence in conjunction with 
Semantic Web techniques will revolutionize the way businesses are done over the 
Internet. 

 
Future research directions that we are beginning to explore include the following: 

• Specifying collaboration in the process template and using an algorithm like the 
one discussed in [62] to check the compatibility of services to engage in a 
conversation. 

• Building own engine for better control over the process execution and performing 
sub-conversation within a process. 

• Extending process templates to capture the behavior of the intended process at 
high level and providing direct mapping to the formalisms like state charts or 
Petri nets etc. to enable process verification [63] and simulation [64, 65]. 

• Using a template in conjunction with other template [66] and a related analysis. 
• Incorporating important e-business aspects like negotiation [67], Service Level 

Agreements [68] and contracts [69] in template design, service discovery and 
process generation. 

• Specifying goal definition as a part of process template. Goal definitions will 
represent a business goal in high-level representation in some standard format like 
UML, and 

• Investigating possibilities to represent preconditions and effects in a more 
expressive way and using it effectively during service discovery and process 
generation. 

 
References  
 
[1] Sheth A., van der Aalst, Arpinar B., Processes driving the networked economy, IEEE 
CONCURR 7: (3) 18-31 JUL-SEP 1999. 
 
[2] Bussler C., B2B Integration Concepts and Architecture, ISBN 3-540-43487-9, 
Springer. 
 
[3] Benatallah B., Dumas M., Fauvet M. C. and Rabhi F.A. Towards Patterns of Web 
Services Composition. In S. Gorlatch and F. Rabhi (Eds): "Patterns and Skeletons for 
Parallel and Distributed Computing". 2002. Springer Verlag (UK). 
 
[4] Christensen E., Curbera F., Meredith G., Weerawarana S., Web Services Description 
Language (WSDL) 1.1, W3C Note 15 March 2001. 
 
[5] Ankolenkar A., Burstein M., Hobbs J. R., Lassila O., Martin D. L., McDermott D., 
McIlraith S. A., Narayanan S., Paolucci M., Payne T. R. and Sycara K., "DAML-S: Web 

                                                                                                                                                 
an abstract BPEL process defines the business protocol from the perspective of a single entity in the 
collaboration, while real world business collaboration need a peer-to-peer conversational model. 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 34 

Service Description for the Semantic Web", The First International Semantic Web 
Conference (ISWC), Sardinia (Italy), June, 2002. 
 
[6] Sheth A. and Meersman R., Amicalola Final Report: SIGMOD Record Special Issue 
on Semantic Web, Database Management and Information Systems, December 2002 
 
[7] Handschuh S., Sollazzo T., Staab S., Frank M., and Stojanovic N., Semantic Web 
Service Architecture - Evolving Web Service Standards toward the Semantic Web. The 
15th International FLAIRS Conference, Special Track on Semantic Web, Florida, May 
14-16, 2002. 
 
[8] Fensel D. and Bussler C., The Web Service Modeling Framework WSMF, 
http://informatik.uibk.ac.at/users/c70385/wese/wsmf.paper.pdf 
 
[9] http://lsdis.cs.uga.edu/proj/meteor/SWP.htm, http://swp.semanticweb.org 
 
[10] W3C Semantic Web, http://www.w3.org/2001/sw/ 
 
[11] Semantic Web Enabled Web Services, http://swws.semanticweb.org 
 
[12] METEOR Project on Workflow and Semantic Web Process,  
http://lsdis.cs.uga.edu/Projects/METEOR-S/ 
 
[13] Sheth A., Kochut K., “Workflow Applications to Research Agenda: Scalable and 
Dynamic Work Coordination and Collaboration Systems, in Workflow Management and 
Interoperability, A. Dogac et al Eds., Springer Verlag, 1999, pp. 35-59. 
 
[14] Sivashanmugam, K., Verma, K., Sheth, A., Miller, J., Adding Semantics to Web 
Services Standards, Proceedings of the 1st International Conference on Web Services 
(ICWS'03), Las Vegas, Nevada (June 2003). 
 
[15] Kunal Verma, Kaarthik Sivashanmugam, Amit Sheth, Abhijit Patil, Swapna 
Oundhakar and John Miller, METEOR-S WSDI: A Scalable P2P Infrastructure of 
Registries for Semantic Publication and Discovery of Web Services, Journal of 
Information Technology and Management, Special Issue on Universal Global Integration, 
Vol. 6, No. 1 (2005) pp. 17-39. Kluwer Academic Publishers. 
 
[16] Business Process Execution Language for Web Services, Version 1.1 
ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf 
 
[17] Arkin A., Business Process Modeling Language, 
http://www.bpmi.org/specifications.esp 
 
[18] van der Aalst W.M.P., Dumas M., ter Hofstede A.H.M., and Wohed P. Pattern-
Based Analysis of BPML (and WSCI). QUT Technical report, FIT-TR-2002-05, 
Queensland University of Technology, Brisbane, 2002. 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 35 

 
[19] Peltz C., Web Service Orchestraction:a review of emerging technologies, tools and 
standards. Jan 2003. 
http://devresource.hp.com/drc/technical_white_papers/ WSOrch/WSOrchestration.pdf 
 
[20] Shapiro R., A Comparison of XPDL, BPML and BPEL4WS, Rough Draft, 2002 
http://xml.coverpages.org/Shapiro-XPDL.pdf 
 
[21] Comparison of DAML-S and BPEL4WS (initial draft), 2002 
http://www.ksl.stanford.edu/projects/DAML/Webservices/DAMLS-BPEL.html 
 
[22] Web Service Choreography Interface (WSCI) 1.0 Specification, FAQs. 
http://wwws.sun.com/software/xml/developers/wsci/faq.html 
 
[23] Tolksdorf R., A Dependency Markup Language for Web Services, Web, Web-
Services, and Database Systems, NODe 2002 Web and Database Systems 2002, Erfurt, 
Germany, October 7-10, 2002. 
 
[24] Haberl S., Business Process Description Languages 
http://www.cis.unisa.edu.au/~cissh/research/webflow/bpdl.html 
 
[25] Business Process Standards for Web Services. 
http://www.webservicesarchitect.com/content/articles/BPSFWSBDO.pdf 
 
[26] 'XLANG: Web Services for Business Process Design',  
http://www.gotdotnetcom/team/xml_wsspecs/xlang-c/default.htm. 
 
[27] 'Web service flow language (WSFL) 1.0',   
http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf. 
 
[28] Universal Description, Discovery and Integration of Web Services, 
http://www.uddi.org/ 
 
[29] UDDI Spec Technical Committee Specification, 2002. http://uddi.org/pubs/uddi-
v3.00-published-20020719.htm 
 
[30] Gong L., "JXTA: A Network Programming Environment", IEEE Internet 
Computing, (5)3:88--95, May/June 
 
[31] Apache Xindice, http://xml.apache.org/xindice/ 
 
[32] Java Web Services Developer Pack. 
http://java.sun.com/webservices/webservicespack.html 
 
[33] UDDI4J Overview, http://www-124.ibm.com/developerworks/oss/uddi4j/ 
 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 36 

[34] Web Services Description Language for Java Toolkit, http://www-
124.ibm.com/developerworks/projects/wsdl4j/ 
 
[35] Chandrasekaran S., Miller J. A., Silver G., Arpinar I. B. and Sheth A. P., 
"Performance Analysis and Simulation of Composite Web Services," Electronic Markets: 
The International Journal of Electronic Commerce and Business Media, Special Issue on 
Web Services, Ronald Klueber and Heiko Ludwig (Guest Editors) Vol. 13, No. 2 (Spring 
2003) pp. 18-30. Taylor and Francis Publishing. 
 
[36] Using WSDL in a UDDI Registry, Version 1.08, http://www.oasis-
open.org/committees/uddi-spec/doc/bp/uddi-spec-tc-bp-using-wsdl-v108-20021110.pdf 
 
[37] Cardoso, J., A. Sheth and J. Miller (2002). Workflow Quality of Service. 
International Conference on Enterprise Integration and Modeling Technology and 
International Enterprise Modeling Conference (ICEIMT/IEMC’02), Valencia, Spain, 
Kluwer Publishers. 
 
 
[38] Business Process Execution Language for Web Services JavaTM Run Time, 
https://www.alphaworks.ibm.com/tech/bpws4j 
 
[39] Business Process with BPEL4WS: Learning BPEL4WS, Part 3, Activities and the 
in-memory model, http://www-106.ibm.com/developerworks/webservices/library/ws-
bpelcol3.html 
 
[40] Sayal M., Casati F., Dayal U., Shan M-C., Integrating Workflow Management 
Systems with Business-to-Business Interaction Standards, 18th International Conference 
on Data Engineering (ICDE'02), p. 0287. 
 
[41] Casati F. and Shan M., Semantic Analysis of Business Process Executions, 
SpringerLink:Lecture Notes in Computer Science 2287, p. 287 
 
[42] Sheng Q. Z., Benatallah B., Dumas M., Mak E. O, SELF-SERV: A Platform for 
Rapid Composition of Web Services in a Peer-to-Peer Environment, Proceedings of 28th 
International Conference on Very Large Data Bases 2002, Eds. Philip A. Bernstein; 
Yannis E. Ioannidis; Raghu Ramakrishnan; Dimitris Papadias, Hong Kong China, 20-23 
Aug. 2002, Morgan Kaufmann Publishers, USA, pp1051-1054. 
 
[43] Limthanmaphon B. and Zhang Y., Web Service Composition with Case-Based 
Reasoning. In Proc. Fourteenth Australasian Database Conference (ADC2003), Adelaide, 
Australia. Conferences in Research and Practice in Information Technology, 17. Schewe, 
K.-D. and Zhou, X., Eds., ACS. 201-208. 
 
[44] Casati F., Ilnicki S., Jin L., Krishnamoorthy V., and Shan M.-C. eFlow: a platform 
for developing and managing composite e-services. Technical report, Hewlett Packard, 
2000. 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 37 

 
[45] Supercharging WSDL with RDF: Managing structured Web service metadata, 
http://www-106.ibm.com/developerworks/library/ws-rdf/?dwzone=ws 
 
[46] Dumas M., O'Sullivan J., Heravizadeh M., Edmond D. and ter Hofstede A.. Towards 
a semantic framework for service description In Proc. of the IFIP Conference on 
Database Semantics, Hong Kong, April 2001. Kluwer Academic Publishers.  
 
[47] Sirin E., Hendler J., Parsia B., "Semi-automatic Composition of Web Services using 
Semantic Descriptions." Accepted to "Web Services: Modeling, Architecture and 
Infrastructure" workshop in conjunction with ICEIS2003, 2002. 
 
[48] Cardoso J., Sheth A., Semantic e-Workflow Composition, Journal of Intelligent 
Information Systems (to appear), 2003. 
 
[49] Smith H., The Role of Ontological Engineering in B2B Net Markets, August 2000. 
http://www.ontology.org/main/papers/csc-ont-eng.html 
 
[50] Burdett D., Avoiding EDI's Mistakes With Web Services Semantic Interoperability, 
EAI Journal Volume 4, Number 12 (December 2002), pages 8-11. 
 
[51] Obrst L., Park J., Yim P., Semantics, Ontologies & UBL, 
http://ubl.cim3.org/~lcsc/tempMeetingResources/for_2002-04-
02_a/Semantics_Ontologies_n_UBL_outline_1a.ppt 
 
[52] Bussler, C.: B2B Protocol Standards and their Role in Semantic B2B Integration 
Engines. In: Bulletin of the Technical Committee on Data Engineering. March 2001,Vol. 
24, No.1. IEEE Computer Society 
 
[53] Sahai A., and Machiraju V., Enabling a Ubiquitous e-Service Vision on the Internet, 
e-Services Journal, 1(1), 2002  
 
[54] Trastour D., Bartolini C., Preist C., Semantic web support for the business-to-
business E-Commerce Lifestyle, Autonomous Agents and Multi-Agent 
Systems.AAMAS'02. 
 
[55] Hofreiter B., Huemer C. and Winiwarter W., Towards Syntax-Independent B2B, 
ERCIM News No. 51, Special Theme: Semantic Web, October 2002.  
 
[56] Leymann F., Roller D., and Schmidt M.-T., Web services and business process 
management, IBM Systems Journal, New Developments in Web Services and E-
commerce, Volume 41, Number 2, 2002. 
 
[57] RosettaNet Home, 
http://www.rosettanet.org/RosettaNet/Rooms/DisplayPages/LayoutInitial 
 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 38 

[58] ebXML Business Process Specification Schema, Version 1.01, 
http://www.ebxml.org/specs/ebBPSS.pdf 
 
[59] Web Service Choreography Interface 1.0 , 
http://wwws.sun.com/software/xml/developers/wsci/wsci-spec-10.pdf 
 
[60] Conversation Support for Web Services, http://www.alphaworks.ibm.com/tech/cs-
ws 
 
[61] Bussler C.: The Role of B2B Protocols in Inter-enterprise Process Execution. In 
Proceedings of Workshop on Technologies for E-Services (TES 2001) (in cooperation 
with VLDB2001). Rome, Italy, September 2001. 
 
[62] Wombacher A. and Mahleko B., Finding Trading Partners to Establish Ad-Hoc 
Business Processes, Proceedings of the Tenth International Conference on Cooperative 
Information Systems 2002 (CoopIS '02), 2002 
 
[63] Hull R.,  Benedikt M.,  Christophides V.,  Su J., E-Services: A Look Behind and 
Curtain, in Proc. of ACM SIGMOD/PODS 2003. 
 
[64] Bosilj V., Stemberger M. and Jaklic J.,  "Simulation Modelling Toward E-Business 
Models Development", International Journal of Simulation Systems, Science & 
Technology, Special Issue on: Business Process Modelling, Vol. 2, No. 2, 16-29. (2001). 
 
[65] Silver G., Maduko A., Jafri R, Miller J. A. and Sheth A. P., "Modeling and 
Simulation of Quality of Service for Composite Web Services," Proceedings of the 7th 
World Multiconference on Systemics, Cybernetics and Informatics (SCI'03), Orlando, 
Florida (July 2003) pp. -. (to appear) 
 
[66] Edmond D. and ter Hofstede A.H.M.. Service composition for electronic commerce. 
In Proceedings of PACIS-2000 (Pacific Asia Conference on Information Systems), Hong 
Kong, June 2000. 
 
[67] Benyoucef M. and Keller R. K., An Evaluation of Formalisms for Negotiations in E-
Commerce, In Proceedings of the Workshop on Distributed Communities on the Web, 
pages 45-54, Quebec City, QC, Canada, June 2000. Springer. LNCS 1830.   
 
[68] Sahai A, Durante A, Machiraju V. Towards Automated SLA Management for Web 
Services. HPL-2001-310. http://www.hpl.hp.com/techreports/2001/HPL-2001-310R1.pdf 
 
[69] Angelov S., Grefen P, An Approach to the Construction of Flexible B2B E-
Contracting Processes; CTIT Technical Report 02-40; University of Twente, 2002. 
 
Appendix A:Generated Process follows  
 The following listing shows an executable process generated from the template 
shown in figures 5 and 6. During process generation 2 files are created. The first file has 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 39 

the executable BPEL process and the second file is a WSDL file (sample-utils.wsdl in 
this example) that has definition for all the service link types that are given in partner 
elements. 
 
A sample executable process that is generated is as follows: 
 
<process name = "sample"  

        xmlns:NS1 = "http://lsdis.cs.uga.edu" 

         xmlns:tns-utils = "http://lsdis.cs.uga.edu//sample-utils.wsdl" 

xmlns:NS2="http://lsdis.cs.uga.edu:7001/axis/services/sample/axis/services/sample" 

xmlns:NS3="http://decatur.cs.uga.edu:8080/axis/services/sampleSupplierService7

/axis/services/ sampleSupplierService7"   

xmlns:NS4="http://decatur.cs.uga.edu:8080/axis/services/sampleDelvieryService

23/axis/services/sampleDelvieryService23"    

       xmlns = "http://schemas.xmlsoap.org/ws/2002/07/business-process/"> 

   <partners> 

    <partner name = "caller" serviceLinkType = "NS1:sampleProcessSLT"/> 

    <partner name = "service-provider-1" serviceLinkType = "tns-utils:provider-1-SLT"/> 

    <partner name = "service-provider-2" serviceLinkType = "tns-utils:provider-2-SLT"/> 

    <partner name = "service-provider-3" serviceLinkType = "tns-utils:provider-3-SLT"/> 

    </partners> 

  <containers> 

      <container name = "request" messageType = "NS1:getDetailsRequest"/> 

      <container name = "response" messageType = "NS1:getDetailsResponse"/>   

      <container name = " InventoryCheckActivity -request"  

messageType = "NS2:checkInventoryRequest"/>        

      <container name = " InventoryCheckActivity -response"  

messageType = " NS2:checkInventoryResponse"/>      

      <container name = "DeliveringToysToDistributor-request"  

messageType = " NS2:arrangeDeliveryRequest"/>        

      <container name = "DeliveringToysToDistributor -response"  

messageType = " NS2:arrangeDeliveryResponse"/>   

      <container name = "FixProce-request" messageType = " NS2:fixPriceRequest"/>        

      <container name = "FixPrice-response" messageType = " NS2:fixPriceResponse"/>   



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 40 

      <container name = "FinalizePrice-request" messageType = " NS2:finalizePriceRequest"/>        

      <container name = "FinalizePrice-response" messageType = " NS2:finalizePriceResponse"/>   

      <container name = "QuerySupplierPartner-request"  

messageType = " NS3:orderToyPartsRequest"/>        

      <container name = "QuerySupplierPartner-response"  

messageType = " NS3:orderToyPartsResponse"/> 

      <container name = "DeliveryPartnerService-request"  

messageType = " NS4:arrangeDeliveryRequest"/>        

      <container name = "DeliveryPartnerService-response"  

messageType = " NS4:arrangeDeliveryResponse"/>   

      <container name = "AskAssemblyLine -request"  

messageType = " NS2:assemblyServiceRequest"/>        

      <container name = "AskAssemblyLine -response"  

messageType = " NS2:assemblyServiceResponse"/>          

  </containers> 

  <sequence name = "sequence-1"> 

    <receive name = "receive" partner = "caller" portType = "NS1:samplePortType"  

             operation = "getDetails" container = "request" 

             createInstance = "yes"/> 

    <assign> 

      <copy> 

          <from container = "request" part = "ToyId"/> 

          <to container = "InventoryCheckActivity -request" part = "ToyIdentifier"/> 

      </copy> 

      <copy> 

          <from container = "request" part = "ToyCount"/> 

          <to container = “InventoryCheckActivity -request" part = "NoOfToys"/> 

      </copy>       

    </assign>   

    <invoke name = "InventoryCheckActivity" partner = "service-provider-1"  

portType = "NS2:IntraOrgServicesPortType" 

            operation = "checkInventory" inputContainer = " InventoryCheckActivity -request" 

            outputContainer = "InventoryCheckActivity -response">   



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 41 

             

    <assign> 

      <copy> 

          <from container = " InventoryCheckActivity -response" part = "ToysCountToOrder"/> 

          <to container = "QuerySupplierPartner-request" part = "OrderCount"/> 

      </copy> 

      <copy> 

          <from container = "request" part = "ToyId"/> 

          <to container = "QuerySupplierPartner -request" part = "IdentifierForToy"/> 

      </copy>       

    </assign>               

    <switch name  =  "switch-1"> 

       <case condition = "bpws:getContainerData('InventoryCheckActivity-response', 'return') = 

'no'"> 

          <sequence name  =  "sequence-3"> 

<invoke name = "QuerySupplierPartner" partner = "service-provider-2"  

    portType = "NS3:SupplierPartnerPT" 

      operation = "orderToyParts"  

    inputContainer = "QuerySupplierPartner -request" 

      outputContainer = "QuerySupplierPartner -response">     

       

     <assign> 

       <copy> 

    <from container = "QuerySupplierPartner-response" part = "PickUpDate"/> 

    <to container = "DeliveryPartnerService-request" part = "CollectDate"/> 

       </copy> 

       <copy> 

    <from container = "QuerySupplierPartner-response"  

part = "PickUpLocationIdentifier"/> 

    <to container = "DeliveryPartnerService-request" part = "CollectLocationId"/> 

       </copy>        

       <copy> 

    <from expression = "'AA-465'"/> 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 42 

    <to container = "DeliveryPartnerService-request" part = 

"DeliveryLocationId"/> 

       </copy>  

       <copy> 

    <from expression = "'AIR-CARGO'"/> 

    <to container = "DeliveryPartnerService -request" part = "DeliveryMeans"/> 

       </copy>        

     </assign> 

             <invoke name = "DeliveryPartnerService" partner = "service-provider-3"  

    portType = "NS4:DeliveryPartnerPortType" 

      operation = "arrangeDelivery"  

    inputContainer = "DeliveryPartnerService-request" 

      outputContainer = "DeliveryPartnerService-response">     

     <assign> 

       <copy> 

    <from container = "DeliveryPartnerService -response" part = "DeliveryDate"/> 

    <to container = "AskAssemblyLine -request" part = "InDate"/> 

       </copy>        

     </assign> 

             <invoke name = "AskAssemblyLine" partner = "service-provider-1"  

   portType = "NS2: IntraOrgServicesPortType" 

      operation = "assemblyService"  

    inputContainer = "AskAssemblyLine-request" 

      outputContainer = "AskAssemblyLine-response">          

          </sequence> 

       </case> 

    </switch> 

    <assign> 

      <copy> 

   <from container = "request" part = "DeliveryLocation"/> 

   <to container = "DeliveringToysToDistributor -request" part = "DeliveryLocationId"/> 

      </copy> 

      <copy> 



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 43 

   <from container = "request" part = "DeliveryMeans"/> 

   <to container = "DeliveringToysToDistributor -request" part = "DeliveryMeans"/> 

      </copy>  

      <copy> 

   <from expression = "'AL-465'"/> 

   <to container = "DeliveringToysToDistributor -request" part = "PickUpLocationId"/> 

      </copy>  

      <copy> 

   <from container = "AskAssemblyLine-response" part = "OutDate"/> 

   <to container = "DeliveringToysToDistributor -request" part = "CollectDate"/> 

      </copy>       

      <copy> 

   <from container = "request" part = "ToyCount"/> 

   <to container = "FixPrice-request" part = "ToyCount"/> 

      </copy>        

    </assign>     

  <sequence name = "sequence-2">     

     <flow name = "flow-1"> 

        <invoke name = "DeliveringToysToDistributor" partner = "service-provider-1"  

    portType = "NS2:IntraOrgServicesPortType " 

     operation = "deliveryService"  

    inputContainer = "DeliveringToysToDistributor -request" 

         outputContainer = "DeliveringToysToDistributor-response">  

        <invoke name = "FixPrice" partner = "service-provider-1"  

    portType = "NS2: IntraOrgServicesPortType" 

     operation = "fixPrice" inputContainer = "FixPrice-request" 

         outputContainer = "FixPrice-response">          

     </flow>   

    <assign>       

      <copy> 

   <from container = "FixPrice-response" part = "Price"/> 

   <to container = "FinalizePrice-request" part = "DeliveryCost"/> 

      </copy>  



 K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma, Framework for Semantic Web Process 
Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol. 9(2) pp. 71-106 (pre-
publication version) 
 

 44 

      <copy> 

   <from container = "DeliveringToysToDistributor-response" part = "Cost"/> 

   <to container = "FinalizePrice-request" part = "ToysCost"/> 

      </copy>        

    </assign>   

    <invoke name = "FinalizePrice" partner = "service-provider-1"  

portType = "NS2:IntraOrgServicesPortType " 

 operation = "finalizePrice" inputContainer = "FinalizePrice-request" 

 outputContainer = "FinalizePrice-response">              

  </sequence>  

    <assign>    

      <copy> 

   <from container = "DeliveringToysToDistributor-response" part = "DeliveryDate"/> 

   <to container = "response" part = "PossibleOrderDeliveryDate"/> 

      </copy>           

      <copy> 

   <from container = "FinalizePrice-response" part = "FinalCost"/> 

   <to container = "response" part = "FinalCost"/> 

      </copy>        

    </assign>    

  <reply name = "reply-1" partner = "caller" portType = "NS1:samplePortType"  

           operation = "getDetails" container = "response"/> 

  </sequence> 

</process> 

 
 
 


	Framework for Semantic Web Process Composition
	Repository Citation

	tmp.1411064753.pdf.bjjx0

