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A Framework for the Buckling Optimization of

Variable Angle Tow Composite Plates

Zhangming Wu1, Gangadharan Raju2 and Paul M Weaver3

University of Bristol, Bristol, England BS8 1TR, United Kingdom

The variable angle tow (VAT) technique allows �bers to be steered curvilinearly.

In doing so, it o�ers substantially enlarged freedom for sti�ness tailoring of compos-

ite laminates. Prior work has shown that VAT composite structures can have im-

proved buckling and postbuckling load carrying capability when compared to straight

�ber composites. However, their structural analysis and optimal design is signi�cantly

more computationally expensive than conventional laminates due to the exponential

increase in number of variables associated with spatially varying planar �ber orien-

tations in addition to the usual stacking sequence considerations. In this work, an

e�cient two-level optimization framework using lamination parameters as design vari-

ables has been enhanced and generalised to the design of VAT plates. At the �rst level,

a computationally e�cient Rayleigh-Ritz model is adopted to compute the buckling

load of VAT plates and is used with a globally convergent gradient-based algorithm

(GCMMA) to determine the optimal distribution of lamination parameters. As a re-

sult of this analysis, new explicit sti�ness matrices are found in terms of component

material invariants and lamination parameters. The spatial variation of lamination

parameters over the planform of VAT plates is represented in the form of B-splines.

The convex hull property of B-splines ensures the point-wise feasibility of lamination

parameters, and notably, ensures feasibility between control points as well as at them.
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In addition, we derive a set of new explicit closed-form expressions to de�ne the fea-

sible region of two in-plane and two out-of-plane lamination parameters, which are

used for the design of orthotropic laminates. At the second level, VAT layups with

continuous planar �ber trajectories for multi-layered laminates can be recovered us-

ing conventional optimization methods; here, we use a commercially available genetic

algorithm. Finally, numerical examples are investigated on plates under compression

loading with di�erent boundary conditions and aspect ratios. Reliable optimal solu-

tions are obtained to demonstrate the robustness and computational e�ciency of the

proposed optimization methodology, in which considerably fewer design variables are

used than that of a �nite element based optimization method.
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Nomenclature

a, b, h = length, width and thickness of plate

f, g = trial functions for Schwarz inequality

e = a test variable in the trial function g

s, t = directional variables for a general parabola

z, z̄ = the direction along the thickness of a laminate

zx, zy = the distance of a ply to the midplane

u0, v0 = in-plane displacement at reference plane in x and y directions

w = out-of-plane de�ection

cj = undetermined weight for a component of in-plane force loading

ū, v̄ = B-spline parametric coordinates

f̄i = an objective function or a constraint function

wA
i , w

D
i = weighting functions

HL, HU = the lower and upper bound of each hyperplane constraint

R = plate aspect ratio (a/b)

U1, U2, U3, U4, U5 = material invariants

Xu(x), Y u(y) = shape functions for in-plane displacement u0

Xv(x), Y v(y) = shape functions for in-plane displacement v0

Xw(x), Y w(y) = shape functions for out-of-plane displacement w

Upq, Vpq,Wpq = undetermined coe�cients for displacement �elds

B
(x)
rs , B

(y)
rs = x and y coordinates of control points for a B-spline

N
(k)
s , N

(k)
s = B-spline basis functions

(N cr
x )iso = critical buckling load of quasi-isotropic laminate

(N cr
x )vat = critical buckling load of VAT laminate

K∗
cr = normalized buckling load of VAT plate

K∗
cr = normalized buckling load of VAT plate

Tmn = �ber angle of VAT plate at a control point (Pmn)

h = {h1, h2, h3, h4, h5} = the vector for a hyperplane along the boundary of the feasible regions

u0 = a prescribed in-plane displacement loading

N,M = in-plane stress and bending moment resultants

A = matrix of in-plane sti�ness (Aij)
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D = matrix of bending sti�ness (Dij)

U = vector of unknown coe�cients for in-plane displacements

F = vector of applied in-plane loading

Km = in-plane sti�ness matrix in prebuckling model

Kb,Ks = bending sti�ness matrix and stability matrix in buckling model

Kb
0 ,K

b
1 ,K

b
2 = separate parts of bending sti�ness matrix

Ks
10,K

s
11, · · · = separate parts of stability sti�ness matrix

ϵ0, κ = mid-plane strains and out-of-plane curvatures

ξA1 , ξ
A
2 = in-plane lamination parameters

ξD1 , ξD2 = out-of-plane lamination parameters

λ (λcr) = eigenvalue of buckling model

k,Ξ = order (degree) and knot vector of B-splines

τ = 1(ξA1 ), 2(ξ
A
2 ), 3(ξ

D
1 ), 4(ξD2 )

µ, ν = indices of the outer and inner iterations in a GCMMA routine

α(µ), β(µ) = upper and lower moving asymptotes

Eiso, νiso, Diso = equivalent Young's modulus, Poisson's ratio and

bending sti�ness of quasi-isotropic laminate

θ(x, y) = variation of �ber angle of a VAT layer

∆x = end-shortening displacement along x direction

Ψ(x,y) = a general shape function

Γ,Γ
(τ)
rs = lamination parameters at a control point (Prs)

I. Introduction

Advanced tow placement techniques allow the �ber (tow) to be placed curvilinearly within a

lamina and in doing so, enable the designer to take advantage of the directional properties of com-

posite laminates. The concept of tow steering can be applied to the design of lightweight structures

with potentially enhanced performance for aerospace applications [1�4]. In the preliminary design

of long and slender aerospace structures, buckling resistance is often considered as a primary design
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criterion. It has been reported previously that, the buckling load carrying capacity of VAT plates

can be substantially improved, when the in-plane prebuckling stresses that result from the variable

sti�ness are redistributed bene�cially [2, 3, 5]. In contrast to the bene�ts o�ered by VAT, the op-

timal design of VAT laminates is a di�cult task to undertake due to the increased design choice

available to the designer for point-wise sti�ness tailoring. The design of VAT laminates involves a

large number of variables as one has to determine the layup sequence at each point in the structure.

The aim of this work is to develop a rapid, yet e�cient, optimization framework to design VAT

composite plates for maximum buckling load.

Ghiasi et al. [6] presented a thorough review of di�erent optimization techniques for the design

of variable sti�ness composite plates, in which it is concluded that the multi-level optimization

method is recommended due to its highly computational e�ciency. Setoodeh et al. [7] used a

reciprocal approximation method to design VAT plates for maximum buckling load and used �nite

element nodal �ber angles as design variables. Wu et al. [3] proposed a general control-point

design scheme to describe a continuous variation of �ber angles, where the VAT con�guration is

optimized for maximum buckling load. However, the objective function in terms of �ber angle

or �ber trajectory is highly non-convex and the optimization process is likely to get trapped in

local optima. To overcome these problems, the approach of using lamination parameters as design

variables was shown to be an e�ective way to solve the optimization problem of variable sti�ness

laminates [5, 8]. Lamination parameters [9] are evaluated by integrating the trigonometric functions

of the ply orientation across the thickness of the plate. Usage of lamination parameters to represent

composite layups not only results in a reduction of design variables, but also o�ers possibly the

largest convex design space. In addition, an optimization process can focus on the design of sti�ness

properties irrespective of laminate con�guration (stacking sequence and �ber orientations). The

advantage of using lamination parameters over using ply angles as design variables to perform the

optimal design of constant-sti�ness composite laminates has been reported in previous works [10�

12]. The primary bene�t arises from representing laminate sti�ness as linear combinations of both

material invariants and lamination parameters which can lead to convex design spaces that enable

e�cient gradient based optimisers to �nd global optima. Lamination parameters have also been
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successfully applied to the design of variable sti�ness composite structures. Setoodeh et al. [13] and

Abdalla et al. [14] optimized the in-plane sti�ness and natural frequency of variable sti�ness plates

using lamination parameters, respectively. IJsselmuiden et al. [5, 15] presented a sophisticated

framework based on �nite element modeling and a successive approximation optimization technique

[16] to perform the design of variable sti�ness structures for maximum buckling load. All of these

works [5, 14, 17] rely on a �nite element design scheme, in which the local lamination parameters

(design variables) are piece wise-constant and associated with each element/node. However, the

element-based optimization method may su�er from the increasing number of design variables and

non-smooth distribution of the lamination parameters unless an additional smoothing constraint is

applied.

Furthermore, the values of 12 lamination parameters are not completely independent and are

linked by a particular layup. Constraints that de�ne the design space (feasible region) of lamination

parameters are needed for an optimization process. Currently, the closed-form expressions that can

exactly de�ne the complete feasible region of 12 lamination parameters remain unknown. Miki and

Sugiyama [10] �rst derived the parabolic relation of two in-plane or two out-of-plane lamination

parameters. Later, Fukunaga and Sekine [18] further obtained closed-form expressions that can

represent the feasible regions of the four in-plane and four out-of-plane lamination parameters. The

pioneering work of Grenestedt and Gudmundson [19] proved the convexity of the feasible region of

lamination parameters (also for the case of variable sti�ness) and proposed a variational approach

to evaluate the feasible region numerically. In the design of VAT laminates, the value of each

lamination parameter varies continuously across the planform and the corresponding feasibility

constraints should be satis�ed at every point. Hence, an accurate bound for the feasible region of

lamination parameters is necessary in the design of VAT laminates. Setoodeh et al. [20] proposed a

convex hull approach to numerically represent the feasible region in terms of a large number (37, 126)

of linear algebraic equations (hyperplanes). Based on Bloom�eld et al.'s work [21] we derive a small

number of new explicit nonlinear expressions that give a relatively accurate boundary for the feasible

region of these four lamination parameters, which is su�cient to de�ne orthotropic VAT laminates.

The main objective of this paper is to introduce an optimization framework that employs B-
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splines to de�ne the spatial variation of lamination parameters (variable sti�ness). B-spline or

NURBS (Non-uniform rational B-spline) techniques that have been widely used in CAD systems

[22] are able to represent complex geometries (variations) using relatively few design variables.

A given degree B-spline curve/surface is determined by a set of control points and a prescribed

knot vector. The control points are distributed over the plate domain and the design variables

(lamination parameters) are associated with each control point. The design �exibility is adjusted

by altering the number and position of control points, the degree and knot vector of spline functions.

This approach of de�ning the spatial variation of A,D sti�ness matrices using B-spline functions

is inspired by isogeometric analysis [23, 24]. However, we do not need the complexity of NURBS

functions and limit our choice to B-splines to represent lamination parameter variation because we

only exploit the smoothness and convex properties. Compared with the discretized �nite element

approach, using B-splines to represent the spatial variation of lamination parameters requires less

design variables and leads to a continuous and smooth distribution. In addition, the convex hull

property of B-splines enforces the spatially varying lamination parameter across the planform of

the plate to be fully constrained inside the feasible region, provided that the lamination parameters

at the control points satisfy all the nonlinear constraints. Using B-splines avoids the problem of

satisfying a large number of feasibility constraints at an in�nite number of points in the plate

that results in a cumbersome semi-in�nite programming problem. In recent work, isogeometric

techniques [25] have been applied to model and design VAT laminates with B-spline (or NURBS)

format sti�ness variation using �nite element analysis as the structural tool. Our approach uses a

more computationally e�cient structural model than shown in [3], but is not as versatile for complex

geometries. In addition, we decouple the discretization scheme for the design of VAT layers from the

structural modeling of VAT plates. However, the �nite element approach including the isogeometric

technique adopts the same discretization scheme for both the design and the structural model. Such

an approach is e�cient only where the optimal mesh size for structural analysis is the same as that

needed for design and optimisation. In our experience, we do not require as re�ned a mesh for

optimization as is needed for analysis allowing us to use control point variables used in optimization

to be more sparsely distributed than that in the structural mesh.
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For buckling or vibration optimization problems, the objective function expressed in terms of

lamination parameters is much less ill-conditioned (and can often be convex [19]) than using layer

angles as the design variables. The revised objective function together with the convex design space

reduces the complexity and computational time/e�orts, e�ectively. In this work, a gradient based

algorithm - GCMMA (Globally Convergent Method of Moving Asymptotes) [26] is adopted. The

GCMMA employs a successive convex approximation technique, in which the objective functions

and nonlinear constraints are replaced by a sequence of conservative convex separable approxima-

tions (subproblem) based on gradient information, and these subproblems are created and solved

iteratively until a desired convergence is achieved. The approximation concept, introduced by

Schmit et al. [27, 28], has been extensively studied [29] and is a well-established technique for

structural optimization. In previous works, the �rst order Taylor series expansion [30], a reciprocal

approximation [31] or a mixed variable linearisation were successively introduced to approximate

the nonlinear objective/constraint functions at a local design point. The mixed variable approach

is more conservative than the former two methods, and is also a convex problem that can be readily

solved by dual methods [32]. Later, Svanberg [33] developed a new method, named MMA (Method

of Moving Asymptotes), for the convex and conservative approximation that can stabilise the op-

timization process through using two arti�cial asymptotes. The MMA was further developed for

yielding a global convergent solution and is named GCMMA (Globally Convergent MMA). In a

GCMMA, additional damping factors are introduced to ensure a strict convexity of subproblems

and the conservativeness is further checked iteratively.

In the current work, the buckling optimization of VAT plates is carried out within an enhanced

two-level strategy, which advances the optimization framework �rst proposed by Yamazaki [34] and

further developed by Weaver and coworkers [35�37] for straight �ber composites. At the �rst step,

structural analysis is conducted using a Rayleigh-Ritz method in which novel explicit expressions

for plate-level sti�ness matrices are written in terms of component material invariants and lami-

nation parameters. The spatially varying laminate sti�ness, and therefore lamination parameter,

distribution of VAT plates is represented using B-splines. Subsequently, a gradient-based method

(GCMMA) is used to determine the optimal lamination parameters at each control point for maxi-
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mum buckling load. The convergence of the optimization process is studied by gradually increasing

the number of the control points. Note, that the convexity of B-splines between control points

guarantees feasibility of VAT layups if feasibility constraints on lamination parameters have been

satis�ed at the control points. It is for this reason we choose B-splines to represent lamination pa-

rameter variation across the domain. At the end of the �rst step, we recover a smooth, continuous

variation of lamination parameters that satisfy feasibility constraints on their values. At the second

step, smooth, spatially varying distributions of �ber orientation angles are retrieved from the target

lamination parameters using a genetic algorithm (GA) in a similar way to that done previously

[34, 35]. The two-level approach provides an e�cient way to solve the optimization problem, espe-

cially for VAT laminates. Furthermore, the lamination parameters guided design process allows the

best possible laminate con�guration to be determined, both theoretically (�rst-level) and that can

be realized (second-level). The proposed optimization framework for the design of VAT laminates

is used subsequently to determine the optimal �ber angle distribution for maximizing the buckling

performance under di�erent boundary conditions and loading cases.

II. Lamination Parameters

A. De�nition of Lamination Parameters

Considering classical lamination theory, the constitutive equation of a VAT plate is given by,









N

M









=









A(x,y) B(x,y)

BT(x,y) D(x,y)

















ϵ0

κ









(1)

The in-plane, coupling and bending sti�ness matrices are functions of x and y for VAT plates,

denoted by A(x,y),B(x,y) and D(x,y), respectively. The sti�ness matrices are expressed as a

linear combination of lamination parameters and material invariants. In the present study, only

specially orthotropic VAT laminates are considered. In other words, there is no in-plane and out-

of-plane coupling (B = 0), no extension-shear coupling (A16 = 0, A26 = 0) and no �exural-twisting

coupling (D16 = 0, D26 = 0). As a result, two in-plane and two out-of-plane lamination parameters

are su�cient to de�ne the sti�ness matrices as,
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(3)

where the four lamination parameters are de�ned by,

ξA1,2 =

∫ 1

−1

[cos(2θ(z̄)) cos(4θ(z̄))] dz̄

ξD1,2 =
3

2

∫ 1

−1

[cos(2θ(z̄)) cos(4θ(z̄))] dz̄

(4)

where θ(z̄) is the layup function in the thickness direction of the plate.

B. Feasible Region of Lamination Parameters

The entire distribution of spatial variable sti�ness of VAT laminates are not independent of each

other and their feasible region, in terms of lamination parameters, forms a convex space [19]. Their

values are required to be strictly constrained inside the feasible region to ensure a stable optimization

procedure for the design of VAT laminates. An accurate boundary of the feasible region of lamination

parameters is then important for the optimization of VAT laminates. Grenestedt [19] presented a

set of equations that give an outer boundary for the feasible region of lamination parameters. In

the current work, we derive a set of new explicit closed-form expressions that accurately de�nes

the interdependent feasible region of ξA1,2 and ξD1,2. The derivation of these equations is given in

Appendix A. The nonlinear constraints for these four coupled lamination parameters are given by,
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5(ξA1 − ξD1 )2 − 2(1 + ξA2 − 2(ξA1 )
2) ≤ 0 (5)

(ξA2 − 4tξA1 + 1 + 2t2)3 − 4(1 + 2|t|+ t2)2(ξD2 − 4tξD1 + 1 + 2t2) ≤ 0 (6)

(4tξA1 − ξA2 + 1 + 4|t|)3 − 4(1 + 2|t|+ t2)2(4tξD1 − ξD2 + 1 + 4|t|) ≤ 0 (7)

where t = [−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1](or, for better accuracy,

t = [−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1]). These 19 ∼ 23 equations in (5)-(7) are able

to accurately bound the feasible region of the four lamination parameters (ξA,D
1,2 ), as shown in Fig.

A1.

III. Buckling Analysis

Prior to buckling analysis, the non-uniform load redistribution of in-plane stress resultants of

VAT plates that arises in response to sti�ness variations is required [2, 38]. Here, both the prebuck-

ling and buckling problems are solved using a Rayleigh-Ritz procedure through the minimization of

potential energy (or complementary energy).

In order to take advantage of the linear relations, as shown in Eqs. (2-3), between the sti�ness

matrices (A,D) and the lamination parameters (ξA,D
1,2 ), the VAT plate is modeled in terms of

displacement �elds, each of which is expanded into an independent series,

u0(x, y) =

P1
∑

p

Q2
∑

q

UpqX
u
p (x)Y

u
q (y),

v0(x, y) =

P2
∑

p

Q2
∑

q

VpqX
v
p (x)Y

v
q (y),

w(x, y) =
M
∑

m

N
∑

n

WmnX
w
m(x)Y w

n (y)

(8)

where Upq, Vpq and Wmn are undetermined coe�cients for three displacement components u0(x, y),

v0(x, y) and w(x, y), respectively. The shape functions Xu
p (x), Y u

q (x),· · · , Y w
n (x) in the series

expansions must satisfy geometric boundary conditions on the edges.
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By substituting the series expansions of u0(x, y) and v0(x, y) in Eq. (8) into the potential

energy, the in-plane stretching problem of VAT plates under a prescribed force loading is solved and

given by [39, 40] as,

Πs =
1

2

∫ ∫

[

A11

(

∂u0

∂x

)2

+ 2A12

(

∂u0

∂x

∂v0

∂y

)

+A22

(

∂v0

∂x

)2

+

A66

(

∂u0

∂y
+

∂v0

∂x

)2
]

dxdy −

∫

C1

(

N̄xνu+ N̄yνv
)

ds

(9)

where N̄xν and N̄yν are in-plane boundary stress resultants. The prebuckling problem of a VAT

plate under prescribed loading is modeled as a linear algebraic problem, which is expressed in matrix

form as,

Km ·U = F (10)

where U is a vector of the undetermined coe�cients ([Upq Vpq]
T ) from the in-plane displacement

�elds u0(x, y) and v0(x, y). The vector F is associated with the prescribed in-plane loading. Note,

using Eq. (10) to directly model a VAT plate subjected to prescribed displacement boundary

conditions (u0), i.e. an end-shortening displacement compression, is generally di�cult to achieve

as the boundary forces are non-uniform and unknown [38]. As prebuckling is a linear elasticity

problem, the superposition principle is applied. As such, the prebuckling problem of a VAT plate

under a prescribed displacement loading u0 is modeled as a superposition of the VAT plates under

a series of given non-uniform boundary stress loading conditions. Eq. (10) is then rewritten as,

Km ·Uj = Fj (11)

where the vector Fj denotes applied boundary force, which is assumed to be constant, linear,

parabolic, cubic and higher order variations for j = 0, 1, 2, · · · . The prebuckling model of a VAT

plate under prescribed displacement loading is then expressed as a sum of a series of solution of Eq.

(11) with undetermined weights cj,

∑

j

cj (K
m ·Uj) =

∑

j

cjFj ⇒

Km ·
∑

j

cjUj =
∑

j

cjFj

(12)
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where the coe�cients cj are determined by satisfying the boundary conditions u0,




∑

j

cjUj



 ·Ψ(x)|x=xj
= u0 (13)

and Ψ(x) denotes a vector of in-plane shape functions [Xu
p (x)Y

u
q (y)]T (or [Xv

p (x)Y
v
q (y)]

T ) and

xj = (xj , yj) is a selected grid point along the boundary edges where the boundary conditions u0 is

applied. Subsequently, the non-uniform stress �elds are obtained from the constitutive equation as,

N = A · ϵ0 = A ·Du(x) = A · [DΨ(x)] ·
∑

j

cjUj (14)

By substituting the transverse de�ection w(x, y) into the potential energy for bending of VAT

plates [38], the buckling analysis is expressed as the following eigenvalue problem,

{

[Kb]− λ[Ks]
}

{w} = 0 (15)

Note, di�erent approaches (�nite element method, the �nite di�erence method and di�erential

quadrature method [41]) have been used to model the prebuckling and buckling behavior of VAT

plates resulting in the same matrix formulae as Eqs. (11) and (15). The optimization methodolo-

gies presented in subsequent sections are applicable to other modeling approaches. Of these, the

Rayleigh-Ritz (or Galerkin) method has the advantage that it requires relatively little computational

cost and allows sensitivities to be calculated analytically.

IV. Two-Level optimization Strategy

The buckling optimization procedure of VAT plates is split into two steps. At the �rst step,

a gradient-based mathematical programming technique is used to determine the optimum distribu-

tion/variation of lamination parameters which gives the maximum buckling load. At the second

step, a GA is employed as an optimizer to obtain the actual layups (stacking sequence and �ber

orientations) from the target value of lamination parameters.

A. First-Level optimization

1. B-Spline spatial variation of lamination parameters

The distribution of four lamination parameters (ξA,D
1,2 ) for establishing an orthotropic VAT

laminate con�guration is represented in terms of the B-Spline surface as,
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x(ū, v̄) =
∑

r

∑

s

B(x)
rs N (k)

r (ū)N (k)
s (v̄)

y(ū, v̄) =
∑

r

∑

s

B(y)
rs N (k)

r (ū)N (k)
s (v̄)

ξA,D
1,2 (ū, v̄) =

∑

r

∑

s

Γ(τ)
rs N (k)

r (ū)N (k)
s (v̄)

(16)

where the values of B
(x)
rs and B

(y)
rs represent the location of each pre-de�ned control point Prs

(as shown in Fig. 1) along x and y axes, respectively. The coe�cient Γ
(τ)
rs in Eq. (16) is the

assigned value of a particular lamination parameter at each pre-de�ned control point (Prs). The

term τ = 1, 2, 3, 4 denotes four di�erent lamination parameters ξA1 , ξ
A
2 , ξ

D
1 , ξD2 , respectively. The

B-spline basis function N
(k)
r (ū) (or N

(k)
s (v̄)) is a k-th order (k − 1 degree) piece-wise polynomial

which is determined by a de�ned knot vector (Ξ). When the lamination parameters (sti�ness) are

de�ned to vary along one principal direction, for example the y-axis, the variation is de�ned by the

B-spline curve,

y(v̄) =
∑

s

B(y)
s N (k)

s (v̄)

ξA,D
1,2 (v̄) =

∑

s

Γ(τ)
s N (k)

s (v̄)

(17)

Fig. A.1 demonstrates an example of using the B-spline surface with 5-by-5 (25) uniform-spaced

control points to construct the distribution of lamination parameters varying along both x and y

axes. The order and the knot vector for the B-splines in this example is chosen to be k = 3 and

Ξ = [0, 0, 0, 1/3, 2/3, 1, 1, 1] (uniform), respectively. Fig. 2 shows the open uniform B-spline basis

functions, which are piecewise quadratic polynomials. The optimal design is performed by adjusting

the values of the lamination parameters (ξA,D
1,2 ) at the 25 control points and this approximation does

not represent the complete design space. However, increasing the number of control points ensures

greater convergence of the complete design space.

B-splines possess several special features, which make them suitable for representing the spatial

variation of lamination parameters of VAT laminates. Using B-splines generally results in continu-

ous and smooth distributions with the degree of local variation speci�ed by k. The plate domain is

subdivided into a grid which consists of a series of patches and the B-splines are de�ned locally over
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each patch. The local support property of B-spline controls the variation within each patch, i.e.

adjusting the value of a control point only a�ects variation inside the local patch. This feature is

particularly useful for the concept of local sti�ness tailoring and o�ers the possibility of implement-

ing a tool for both modeling and optimization of blended VAT laminates. Another desirable feature

of B-splines is their strong convex hull property, which states that a B-spline surface is strictly

constrained in the convex hull formed by its control polygon. This convex hull property enables

the entire distribution of the lamination parameters to be constrained strictly inside the feasible

region by satisfying the nonlinear constraints de�ned in Eqs. (5)-(7) at the control points. Using

other algebraic polynomial functions (but without the convex hull property) leads to a semi-in�nite

programming problem in the optimization of VAT laminates. Solving a semi-in�nite programming

problem is highly computationally expensive and may cause the optimization procedure to be nu-

merically unstable.

Using higher degree B-spline basis functions, for instance the cubic variation (k = 4), o�ers

more local �exibility for the design of variable sti�ness. However, it also limits the usage of design

space compared to quadratic variation. Applying the non-uniform rational B-splines (NURBS)

to represent the variation of lamination parameters provides larger design space and more design

options (local re�nement) than using the B-splines, as NURBS introduces a weighting coe�cient (4-

dimensional space) to each control point. However, the NURBS-based approach may considerably

raise the di�culty of evaluating the sensitivities and the computational cost of optimization. As the

plane domain of a VAT plate is smoothly varying, it is appropriate to use uniform basis functions and

uniform-spaced control points to represent its sti�ness variation. We anticipate that non-uniform

basis functions and control points are better suited for the design of VAT laminates with cutouts

and discontinuities.

As the sti�ness variation (lamination parameters) of VAT plates is de�ned in a B-spline para-

metric space (ū, v̄) (Eq. (16)), all the integrations involved in the prebuckling and buckling models

(Eqs. (11)-(15)) de�ned over the plate domain (x, y) have to be transformed and evaluated in the

B-Spline parametric domain. For example,

∫

Ω

A11(x, y) ·Ψ(x, y)dxdy =

∫

Ω∗

A11(ū, v̄) ·Ψ(x(ū, v̄), y(ū, v̄))Jūv̄dūdv̄ (18)
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where Ψ(x, y) denotes a shape function that is employed in the model. The terms Ω and Ω∗ represent

the integral domain under (x, y) and (ū, v̄) coordinates, respectively and Jūv̄ is the Jacobian matrix

for the coordinates transformation. Eq. (18) is further expanded in terms of lamination parameters

as,

∫

Ω∗

A11(ū, v̄) · Ψ̃(ū, v̄)Jūv̄dūdv̄ = h

[

U0

∫

Ω∗

Ψ̃(ū, v̄)Jūv̄dūdv̄+

∑

rs

(U1Γ
(1)
rs + U2Γ

(2)
rs )

∫

Ω∗

N (k)
r (ū)N (k)

s (v̄)Ψ̃(ū, v̄)Jūv̄dūdv̄

] (19)

On the right-hand side of Eq. (19), the integrals are independent of material properties, plate

dimensions and the design variables (Γ
(1)
rs ,Γ

(2)
rs ). All of the other integrations in the prebuckling

and buckling models are also transformed and expanded in a similar way to Eqs. (18)-(19). The

numerical computation of these integrals, which is the most time-consuming of the proposed design

framework, but only needs to be performed once in the whole optimization process. Furthermore,

due to the local support property of B-spline basis function, N
(k)
r (ū) and N

(k)
s (v̄) are non-zero only

at a local region [tr, tr+k] ([ts, ts+k]). Each individual integration, for example,

∫

Ω∗

N (k)
r (ū)N (k)

s (v̄)Ψ̃(ū, v̄)Jūv̄dūdv̄ =

∫ tr+k

tr

∫ ts+k

ts

N (k)
r (ū)N (k)

s (v̄)Ψ̃(ū, v̄)Jūv̄dūdv̄

(20)

is evaluated over a local B-spline patch.

2. Sensitivity

The numerical accuracy of sensitivity information plays an important role in a gradient-based

optimization routine. The buckling analysis of VAT plates is a conventional eigenvalue problem

and the sensitivity of the critical buckling load with respect to each design variable (lamination

parameters at each control point) is evaluated as [42],

dλ

dΓ
(τ)
rs

=

[

wT

(

dKb

dΓ
(τ)
rs

− λ
dKs

dΓ
(τ)
rs

)

w

]

(21)

where the buckling mode shape is normalized, as wTKsw = 1. As illustrated by Eq. (19), the

matrices (Kb and Ks) are separable with respect to design variables (lamination parameters).
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Hence, the matrices Kb and Ks are further expanded and written in the following form,

Kb = Kb
0 +

∑

rs

Γ(3)
rs K

b
1 +

∑

rs

Γ(4)
rs K

b
2 (22)

Ks =
∑

pq

UpqK
s
10 +

∑

pq

∑

rs

UpqΓ
(1)
rs K

s
11 +

∑

pq

∑

rs

UpqΓ
(2)
rs K

s
12+

∑

pq

VpqK
s
20 +

∑

pq

∑

rs

VpqΓ
(2)
rs K

s
21 +

∑

pq

∑

rs

VpqΓ
(2)
rs K

s
22

(23)

where Kb
0 ,K

b
1 , · · · ,K

s
22 on the right hand-side of Eq. (23) are the separated parts of the sti�ness

and stability matrices, which are functions of material invariants and B-splines (at each control

point). In Eq. (22), the matrix Kb
0 is independent of design variables. The matrices Kb

1 and

Kb
2 are related to out-of-plane lamination parameters of ξD1 and ξD2 at each control point (Prs),

respectively.

The stability matrix (Ks) is related to both in-plane lamination parameters and in-plane dis-

placement �elds [Up, Vp]
T (prebuckling solution). For the matrices Ks

10, K
s
11, · · · , K

s
22 in Eq. (23),

the number in their subscripts (10, 11, · · · , 22) speci�es the relation of the corresponding matrix

to the design variables and in-plane displacement �elds. The �rst index in each subscript (1 or 2)

indicates that the matrix is associated with u0 or v0 displacement �elds. The second index (0, 1, 2)

in each subscript denotes the corresponding matrix is independent of design variables (=0), associ-

ated with ξA1 (=1) and ξA2 (=2), respectively. All of the explicit expressions of these matrices are

presented in the Appendix.

As aforementioned, in Eqs. (22-23), the integrals involved in Kb
0 ,K

b
1 , · · · ,K

s
22 are independent

of the design variables and are only evaluated once in an optimization process. The sensitivities in

Eq. (21) are computed analytically based on the value of these matrices and so improve the e�ciency

of the gradient-based optimization process. Due to the linear relationship between bending sti�ness

matrix and the out-of-plane lamination parameters, the derivative of Kb in Eq. (21) is evaluated

separablely as,

dKb

dΓ
(3)
rs

= Kb
1 ,

dKb

dΓ
(4)
rs

= Kb
2 (24)

On the other hand, a local change of in-plane sti�ness may a�ect the entire in-plane stress distri-

bution (prebuckling solution) [5]. The sensitivity evaluation of the stability matrix (Ks) is related
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(coupled) to each component (Up, Vp) of the series expansion of the in-plane displacement �eld as,

dKs

dΓ
(1)
rs

=
∑

pq

[

dUpq

dΓ
(1)
rs

Ks
10 +

dUpq

dΓ
(1)
rs

Γ(1)
rs K

s
11 + UpqK

s
11 +

dUpq

dΓ
(1)
rs

Γ(2)
rs K

s
12

]

+

∑

pq

[

dVpq

dΓ
(1)
rs

Ks
20 +

dVpq

dΓ
(1)
rs

Γ(1)
rs K

s
21 + VpqK

s
21 +

dVpq

dΓ
(1)
rs

Γ(2)
rs K

s
22

]

(25)

dKs

dΓ
(2)
rs

=
∑

pq

[

dUpq

dΓ
(2)
rs

Ks
10 +

dUpq

dΓ
(2)
rs

Γ(1)
rs K

s
11 + UpqK

s
12 +

dUpq

dΓ
(2)
rs

Γ(2)
rs K

s
12

]

+

∑

pq

[

dVpq

dΓ
(2)
rs

Ks
20 +

dVpq

dΓ
(2)
rs

Γ(1)
rs K

s
21 + VpqK

s
22 +

dVpq

dΓ
(2)
rs

Γ(2)
rs K

s
22

]

(26)

The derivatives of the in-plane displacement �elds U ([Up Vp]
T ) are determined from the pre-

buckling model as,

dU

dΓ
(τ)
rs

=
∑

j

[

dcj

dΓ
(τ)
rs

Uj + cj
dUj

dΓ
(τ)
rs

]

(τ = 1, 2) (27)

dcj

dΓ
(τ)
rs

= −(U0)
−1 dU0

dΓ
(τ)
rs

[cj] (τ = 1, 2) (28)

dUj

dΓ
(τ)
rs

= −(Km)−1 dK
m

dΓ
(τ)
rs

Uj (τ = 1, 2) (29)

where U0 denotes the expression for Ψ(x)U(k)|x=x0
.

Besides the sensitivities of buckling load, it is also necessary to obtain the gradient information

of the nonlinear constraint functions (feasible region of lamination parameters) which is done readily

from the expressions given in Eqs. (5-7).

3. Gradient-based optimization

The buckling load of a VAT plate is a function of both in-plane sti�ness and bending sti�ness

λcr = λ(A,D) [2, 3], due to the non-uniform in-plane stress �elds. It was observed that the buckling

load is a linear homogeneous function with respect to the bending sti�ness. The in-plane stresses are

linear functions of the reciprocal of the in-plane compliance (A−1) and proportional to the external

applied boundary force (displacement) [3]. Also, varying the amplitude of in-plane stresses does not
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e�ect the buckling eigenvalue (zero order homogeneous property [5]) and only the stress distribution

a�ects the buckling load. Therefore, the in-plane sti�ness of VAT laminates has to be optimized to

achieve a benign stress distribution that improves their buckling performance [2, 3, 5].

The sensitivity analysis (Eqs. (22)-(28)) shows that the buckling load is nonlinear with

respect to each component of in-plane sti�ness matrix (Aij). The distributions of in-plane sti�ness

and the bending sti�ness cannot vary independently and are linked by the values of material

invariants and lamination parameters in a convex feasible space. Hence, the buckling design of

VAT plates is a coupled nonlinear optimization problem in terms of sti�ness matrices expressed

using lamination parameters and requires nonlinear constraints to de�ne the feasible region of

lamination parameters. The �rst-level optimization of VAT plates for the maximum buckling load

using lamination parameters is formulated as,

min − λcr(Γ
(τ)
rs )

s.t.: − 1 6 Γ(τ)
rs 6 1

gi(Γ
(τ)
rs ) 6 0

(30)

The nonlinear constraint functions gi(Γ
(τ)
rs ) de�ne the relations between the four di�erent lam-

ination parameters, given by Eqs. (5)-(7). The satisfaction of the nonlinear constraints (feasible

region) in gi(Γ
(τ)
rs ) for the lamination parameters is crucial in the optimization process. The failure

to satisfy the feasibility constraints by the lamination parameter distributions may either lead to

an unstable optimization process or an infeasible solution.

In a GCMMA approach, approximation of the objective function and nonlinear constraints

in a local region is shown to be convex separable and conservative with respect to each design

variable (lamination parameters). The approximation function is constructed based on the gradient

information computed from the buckling model (Eq. (15)) and sensitivity analysis (Eqs. (22)-

(28)). In a GCMMA scheme, the buckling load factor and the nonlinear constraints in (30) are

approximated in convex separable forms as [26],

f̄
(µ,ν)
i (Γ) =

n
∑

j=1

(

p
(µ,ν)
ij

α
(µ)
j − Γj

+
q
(µ,ν)
ij

Γj − β
(µ)
j

)

+ r
(µ,ν)
i (31)
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where µ and ν denote the indices of the �outer� and �inner� iterations, respectively. For the detailed

expression of each variable in Eq. (31) refer to [26]. The terms α
(µ)
j and β

(µ)
j are the upper and lower

moving asymptotes, respectively. For each design variable, the values of p
(µ,ν)
ij , q

(µ,ν)
ij are associated

with the positive and negative sensitivity, as well as the upper and lower moving asymptotes,

respectively. The di�erence between the objective function and the approximation formula for the

original design when each outer iteration begins is denoted by r
(µ,ν)
i . Additional damping factors

are introduced in the expressions of p
(µ,ν)
ij , q

(µ,ν)
ij and r

(µ,ν)
i for strictly ensuring the convexity and

conservativeness of the approximating formula. As such, at a local design region, the objective

function in (30) is replaced by Eq. (31), which can be solved through a dual method [26, 32].

IJsselmuiden et al. [5] used a simpli�ed expression in terms of in-plane sti�ness and the inverse

bending sti�ness matrices (mixed variable approach) is proposed for the buckling optimization, in

which the advantage of homogeneous properties of the buckling model of variable sti�ness laminate

is taken. Eq. (31) is a general approximating scheme that constructs convex sub problems based

on gradient information and the corresponding curvatures (asymptotes) and damping factors. This

approach is general and also suitable for other optimization problems (e.g. postbuckling).

In a GCMMA routine, at each outer iteration, the buckling load and sensitivities are computed

and a sub-optimization problem is generated based on Eq. (30). Sub-optimization problems are

then solved iteratively by updating the damping factors until a complete conservativeness is achieved

(inner iteration). The conservativeness check ensures the lamination parameter distributions are

strictly constrained inside the feasible region, which leads to a stable and fast convergent optimiza-

tion procedure. As the objective function in terms of lamination parameters is well-conditioned and

Eq. (31) is a convex approximation, it typically requires only a few iterations to solve a sub problem.

Therefore, the entire process of the �rst-level buckling optimization of VAT plates is performed with

appropriate accuracy and e�ciency.

B. Second-Level optimization

The objective of the second level optimization process is to retrieve a realistic VAT layup

that can approximately give the same lamination parameters distribution as the optimal results.
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For a VAT layup, the stacking arrangement and spatial variation of �ber angles for each layer is

required. The relationship between lamination parameters and stacking sequence is not unique and

is complicated [8], partially due to the non-bijective relationship and also due to conversion from a

continuous to a discrete problem. Hence, it is not always possible to directly convert the optimal

lamination parameters into realistic layups using explicit formulae. To accomplish this task, a VAT

lamination con�guration that can closely match the target lamination parameters is sought using a

genetic algorithm.

Here, an anti-symmetrical stacking sequence with specially orthotropic properties ([B] = 0 ,

A16, A26 = 0, D16, D26 = 0) is extensively used as a test laminate. For example, the stacking

sequence of a 16-layer laminate is [±θ1/∓ θ1/± θ2/∓ θ2]AS , which possesses two VAT design layers,

θ1(x, y), θ2(x, y) captures specially orthotropic properties. The design �exibility for the through-the-

thickness stacking rearrangement can be extended by increasing the number of design layers. For

each VAT layer, the spatially varying �ber orientation angles are described by a general de�nition

for the nonlinear continuous variation of �ber orientation angles. The nonlinear variation (NLV)

of �ber orientations is de�ned based on a set of M1 × N1 pre-selected control points in the plate

domain, as illustrated in Fig. 3. Lagrangian polynomials are used to interpolate the prescribed

�ber angles at the control points and construct a nonlinear distribution of �ber angles, given by the

following series form [3],

θ(x, y) =

M1−1
∑

m=0

N1−1
∑

n=0

Tmn ·
∏

m ̸=i

(

x− xi

xm − xi

)

·
∏

n ̸=j

(

y − yj
yn − yj

)

(32)

where the advantage of this formulation is that the coe�cient of each term (Tmn) in Eq. (32) directly

equals the value of �ber angle at a speci�c control point (xm, yn). This formulation parameterises

each VAT layer in terms of a small number of �ber orientation angles at the pre-selected control

points. We observed that, for a �at VAT plate, 3-5 grid points along each direction are usually

su�cient to obtain converged �ber angle distribution results. In addition, this formulation gives

a continuous, smooth distribution for the �ber orientations, which are suitable for conversion into

practical tow trajectories when the manufacturing constraints are considered. Fig. 3 demonstrates

two VAT con�gurations using three uniformly spaced control points along each direction.
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In the second level optimization process, a VAT laminate with prede�ned number of layers and

control points is �rst chosen, which represent the stacking sequence (number of design layers) and

the control points (number and positions) for de�ning the nonlinear variation of �ber orientation

angles, respectively. Subsequently, a GA is used to determine the �ber orientation angles at all of

the control points within each design layer which leads to the distribution of lamination parameters

matching the desired continuous lamination parameter results as closely as possible.

For VAT plates, the �tness function is expressed as a mean value of the least square distance

between the obtained lamination parameters and the target lamination parameters evaluated at a

large number of points in the plate[35]. The optimization problem is formulated as,

min ∆ξ =
1

Np

∑

j

∆ξj

∆ξj =

[

2
∑

i

wA
i

(

ξAi − ξ̃Ai

)2

+
2
∑

i

wD
i

(

ξDi − ξ̃Di

)2
]

(j)

ξA,D
1,2 ←

[

T k
1 , · · · , T

k
n , · · · , T

k
N

]

s.t.: − π/2 6 T k
n 6 π/2

(33)

where T k
n is the �ber angle at the control point for the k-th ply and wA

i and wD
i are the weights

to distinguish the relative importance between ξA1,2 and ξD1,2. The total number of grid points (Np)

is chosen to be 1000 ∼ 2000 in total for a two dimensional variation. Based on our trial-and-error

experiences, the population size was set to be at least 20 ∼ 30 times the number of design variables,

while the number of generations is usually set to 50 ∼ 100 depending on the population size. The

crossover and mutation probabilities were chosen to be 0.7 and 0.04.

As the objective function in Eq. (33) is not buckling load oriented (least square distance based),

the optimization process may result in a local optimum with respect to the buckling load. The

buckling load of the optimized VAT �ber angles from Eq. (33) is slightly lower (around 10 ∼ 15%)

than the target result given by the optimal lamination parameters. The �ber angles at the control

points can be further optimized by adding the buckling load as a sensitivity-based constraint [43, 44].

A small number of iterations (less than 10) are able to yield a good VAT design which matches

well with the global optimal solution from the �rst-level optimization process. Once a smooth

distribution of nonlinear �ber orientation angles is determined, it is straightforward to construct the
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manufacturable �ber (tow) trajectories. In future work, manufacturing and other design constraints

will be considered in the second-level optimization process to generate manufacturable �ber courses.

V. Results and Discussion

This section presents the numerical results of the proposed two-level optimization strategy to

design VAT plates for maximum buckling load. For a clear comparison, the material properties and

the geometry of VAT plates in the present study are the same as previous works [1, 2, 5]. The lamina

properties for the T300/5208 graphite-epoxy composite are E11 = 181GPa, E22 = 10.273GPa,

G12 = 7.1705 GPa, ν12 = 0.28 [2]. The tow thickness is 0.127 mm. The thickness variation of

a VAT plate due to the manufacture process is not considered in the present study and the ply-

thickness is assumed to be constant. Two di�erent in-plane boundary conditions for VAT plates

under uniaxial displacement compression are studied, as illustrated in Fig. 4. The plate is subjected

to uniform displacement compression (x = ±a
2 :u = ∓∆x

2 ), and in case A, the transverse edges are

free to move (stress-free, Ny0 = 0); and in case B, the transverse edges are constrained (v = 0).

To give a direct layup comparison, the buckling load of a VAT plate is normalized with respect

to that of a homogeneous quasi-isotropic laminate [3],

K∗
x =

(N̂ cr
x )vat

(N cr
x )iso

(34)

where (N̂ cr
x )vat is the average compressive load,

(N̂ cr
x )vat =

1

b

∫ b

2

− b

2

Nx(y)dy (35)

and (N cr
x )iso is the critical buckling load of the quasi-isotropic laminate. The equivalent Young's

modulus Eiso, Poisson's ratio νiso and bending sti�ness Diso of the quasi-isotropic laminate are

given by [35, 45],

Diso =
Eisoh

3

12(1− ν2iso)
, νiso =

U4

U1
, Eiso = U1(1− ν2iso) (36)

A. Optimal Lamination Parameters (1st Level)

1. Square VAT Plates

The two-level buckling optimization strategy presented is �rst applied to determine the optimal

design for maximizing buckling performance of square VAT plates with all edges simply supported.
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The length and width of plate are a = 0.254m, b = 0.254m, respectively. This problem was

also studied by IJsselmuiden et al. [5] using a �nite element-based design scheme. This section

demonstrates the advantage of using B-splines to represent the variation of lamination parameters.

To examine the rate of convergence, the number of control points (as illustrated in Fig. 3) is

gradually increased from 5 to 11 along each direction. In each optimization run, all the control

points are uniformly distributed across the plate domain and uniform quadratic B-spline basis

functions are used for constructing the variation of lamination parameters. Due to the symmetry

of the buckling problem in terms of boundary conditions, geometry and loadings, the lamination

parameter distribution is designed to be doubly symmetric, that is ξA,D
1,2 (x, y) = ξA,D

1,2 (|x|, |y|). The

control points for the B-splines that are used to de�ne the lamination parameters distribution are

shown in Fig. 1. The corresponding knot vectors are also chosen to be uniform as,

Ξ5 = [0, 0, 0, 1/3, 2/3, 1, 1, 1],

Ξ7 = [0, 0, 0, 1/5, 2/5, 3/5, 4/5, 1, 1, 1],

Ξ9 = [0, 0, 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1, 1, 1],

Ξ11 = [0, 0, 0, 1/9, 2/9, 3/9, 4/9, 5/9, 6/9, 7/9, 8/91, 1, 1].

(37)

Table 1 lists the obtained maximum normalized buckling load (K∗
cr) using di�erent numbers of

control points, for both case A and case B. Besides the quasi-isotropic laminate, two layups ±45 and

[±36/∓ 36/± 24/∓ 24/04]AS with maximum buckling load among the constant sti�ness laminates

(for each case) are also presented for comparison. The optimal normalized buckling loads of VAT

plates are 2.9 and 2.0, for case A and case B, respectively, which indicates more than a 125% and

60% improvement of buckling resistance over the best layup of constant sti�ness laminates. It was

observed that, for both cases, 7× 7 control points for the B-splines to de�ne the sti�ness variation,

is su�cient to yield converged buckling optimization results. Fig. 5 shows the convergence trends

of the �rst-level optimization process, for the boundary conditions of case A, using di�erent number

(5×5, 7×7, 9×9 and 11×11) of control points to construct the lamination parameter distributions.

Correspondingly, the total number of design variables are 100, 196, 324 and 484. All the control

point distributions exhibit rapid convergence within a few iterations (around 10). It is observed that,
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with an increase of the number of control points, a higher optimal buckling load is obtained. The

curves for the 7 × 7, 9 × 9 and 11 × 11 control points are nearly coincident when the optimization

process converges. This also shows that the full design space can be achieved approximately by

increasing the number of control points. The optimal variations (7 × 7 control points) of the four

lamination parameters are plotted in Fig. 6, for both cases. The contour plots of the lamination

parameters in Fig. 6 exhibit smoothness without notable discontinuity and match well with the

results obtained by IJsselmuiden et al. [5]. However, in the present approach, the number of design

variables (196) for achieving convergent optimal results is much less than that (1764) of the �nite

element approach [5].

Fig. 7 illustrates the in-plane stress distributions (Nx, Ny, Nxy) of the VAT plate with optimal

lamination parameter distribution for the maximum buckling load (both case A and case B). It

demonstrates that the load redistribution (towards the supported edges) induced by variable sti�ness

is the main contributing factor to improve the buckling resistance of VAT laminates. It is also

interesting to note that a VAT plate subjected to uniaxial compression gives rise to a small amount

of internal shear stresses (Nxy) due to the variable sti�ness.

Representing the lamination parameters distribution in the form of B-splines (or NURBS) ex-

hibits many advantages for the optimal design of VAT laminates. Usage of the B-splines allows

the discretisation scheme for the sti�ness variation to be control points-based and independent of

the modeling approach. In a �nite element-based design approach [5], the design variables (lami-

nation parameters) are associated with all elements (or nodes), therefore, the design �exibility is

�xed to be the same as the degree of freedom of the �nite element model. Secondly, the number

of design variables in a B-spline approach is much less than the �nite element method. A smaller

number of design variables not only simpli�es the design process but also signi�cantly reduces the

computational cost for the sensitivities, which is the most time-consuming part in a gradient-based

optimization process. Lastly, the �nite element method requires additional constraints [5, 14] for

constructing a smooth lamination parameter variation, however, B-splines satisfy this requirement

inherently.
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2. Long VAT Plates

In this section, the design of in�nitely long VAT plates for maximizing buckling performance is

presented. The length of a VAT plate was selected to be 20 times its width (a=5.08m, b=0.254m) to

adequately capture the (in�nitely) long plate e�ect. Two di�erent out-of-plane boundary conditions

are studied: (b) four edges are all simply supported; (b) one free edge and the rest are simply

supported. As the majority of applied compressive load is redistributed towards the supported edges,

the case of transversely varying lamination parameters is initially considered in the optimization.

Thus, the four lamination parameters are varied along the y direction ξA,D
1,2 (y). For the simply

supported boundary conditions, the sti�ness variation is de�ned symmetrically with respect to the

x axis, as ξA,D
1,2 (y) = ξA,D

1,2 (|y|). However, this symmetric condition is not valid in the design of the

free edge problem. For prismatic sti�ness variation, closed-form solutions are available for computing

the non-uniform in-plane stress[2, 46],

Nx =

[

A11(y)−
A2

12(y)

A22(y)

]

∆x

a
(38)

Using Eq. (38) to model the prebuckling behavior of VAT plates can signi�cantly reduce the

computational cost of the buckling analysis and sensitivity evaluation. Figs. 8 and 9 show the

optimal variations of the four lamination parameters for the long VAT plates under both boundary

conditions, in which 7 (symmetry) and 9 (unsymmetry) control points are used for achieving con-

vergent results, respectively. For the case of simply supported boundary conditions, the maximum

buckling coe�cient is 2.61. For the free edge problem, the maximum buckling coe�cient is 4.12.

Both of the results are slightly larger than the results obtained from a direct search using the ge-

netic algorithm [3]. Nevertheless, no further improvement of buckling load was observed when the

lamination parameters (sti�ness) are allowed to vary along both axes for the long VAT plate.

B. Optimal VAT Layups (2nd Level)

Realistic variation of �ber orientation angles (or the tow trajectories) for the VAT lamination

layups are now retrieved from the optimal lamination parameters obtained in the previous section.

As aforementioned, the stacking sequence is �xed to be a 16-layer unsymmetric specially orthotropic
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laminate with two VAT design layers. In the optimization process, in each VAT design layer, the

number of control points for de�ning the NLV of �ber orientation angles (Eq. (32)) is gradually

increased to obtain convergent results. In this section, the second-level optimization is carried out

on the square plate (under case A) and the long VAT plate with one free edge.

Tables 2 and 3, respectively, present (for each problem) the optimal layups and the corresponding

improvement of buckling load, which are obtained using two di�erent optimization approaches.

One is a direct GA search approach based on the de�nition of NLV of �ber orientation angles to

parameterise the VAT layups [3] and the other is the two-level optimization strategy presented

herein. For a clear comparison, the number of control points along each direction that are used

to de�ne the NLV of �ber angles of VAT layups was selected to be the same for both methods.

A 3 × 3 control points grid is used in each VAT design layer for the square plate and 5 control

points along the y axis are used for the long plate with a free edge. The results presented in Tables

2 and 3 show that the determined optimal variation of �ber angles using these two methods are

slightly di�erent (in terms of the distribution), but give nearly identical normalized buckling loads.

This indicates that many optimal VAT layup con�gurations exist, which give similar buckling loads.

This characteristic could bene�t the design of VAT laminates when more (practical) constraints are

introduced in the optimization process.

A direct GA search approach requires many (population size × the number of generations) buck-

ling evaluation runs for the design of VAT plates. The computational e�ort increases considerably

when many layers and control points are used. Nevertheless, this issue is avoided in the two-level

optimization strategy. For these two problems, less than 10 iterations are required to achieve the op-

timal lamination parameter distribution for the theoretically possible maximum buckling load. The

subsequent process of retrieving realistic layups from the resultant lamination parameters requires

little computational e�ort even when the design �exibility is extended.

Figs. 10 and 11 show the spatially nonlinear varying �ber angle distributions of the optimal VAT

layers for the maximum buckling load of the square VAT plate (case A) and the long VAT plate with

a free edge, respectively. For the square plate, as shown in Fig. 10, most �ber angles in the domain

are close to 45(-45) degrees and the center region is �lled with the 70 ∼ 90-degree �ber angles. The
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±45-degree plies are e�ective at suppressing buckling for the compressive-loaded square plate, while

the overall variation of �ber angles in Fig. 10 contributes to the stress re-distribution. In Fig. 11, for

the design of a VAT plate with a free edge, the value of �ber angles of both layers are monotonically

increasing from the bottom simply-supported edge to the free edge. This variation of �ber angle

gives rise to redistribution of the compression load towards the bottom (simply-supported) edge.

It is interesting to note that, Figs. 10 and 11, show the �ber orientations are all approximately 0

degree near the supported transverse edges for the inner layers. The 0 degree �ber angles are useful

for strengthening the plate, as the majority of compressive load is redistributed to this region.

VI. Conclusion

A rapid design framework has been developed that combines e�cient structural analysis (order

of magnitude less design variables than FE) with a computationally e�cient two-level optimization

strategy to perform the design of variable angle tow composite plates for maximum buckling load.

The structural analysis de�nes new expressions for structural sti�ness making for e�cient and rapid

analysis. Moreover, the newly derived 23 explicit nonlinear expressions for the four lamination

parameters, that represents orthotropic laminates, also enables a more rapid optimization process

for VAT laminates than previous works that use tens of thousands of linear constraints. The

optimization strategy advances current methods for constant �ber orientation laminates to allow

the use of spatially varying lamination parameters to capture pointwise sti�ness variation that are

also guaranteed to be feasible pointwise although only evaluated at a small number of discrete control

points. This feature allows us to reduce the number of control points from one that is open-ended

to a small number, typically less than 10 along one direction.

Whilst �nite element techniques either ignore spurious local stresses arising from the assumption

of piecewise constant sti�ness properties or utilise additional smoothing steps, our analysis inherently

allows smooth distributions of both sti�ness variation and �bre angles. The distribution of spatially

varying lamination parameters and �ber angles are both characterised by di�erent sets of pre-de�ned

control points over the plate domain. The B-Spline basis functions and Lagrangian polynomials are

used to mathematically de�ne the variations of lamination parameters and �ber angles, respectively.
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This control points based scheme is shown to require less design variables than a �nite element

approach and inherently results in smooth, continuous distributions. Furthermore, by using less

grid points for the design of VAT plies from that used for the structural model leads to faster

convergence in optimization studies than state-of-the-art methods that use the same �nite element

discretization schemes for both design and analysis.

Numerical examples on both square and long VAT plates under di�erent boundary conditions

and loading cases were conducted to show the computational e�ciency and robustness of our ap-

proach. The optimal distributions of lamination parameters and the corresponding VAT laminate

layups for the maximum buckling load match well with previous published results given by a direct

GA search approach, but with few control points and therefore enhanced computational e�ciency.

In future work, this two-level design approach will be applied to optimise the postbuckling perfor-

mance of VAT plates considering damage tolerance requirements.
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Appendix A

A. Outer Boundary

The separate feasible region of in-plane or out-of-plane lamination parameters has been derived

by Fukunaga and Sekine [18], and expressed in the following form,

2(1 + ξj2)(ξ
j
3)

2 − 4ξj1ξ
j
3ξ

j
4 + (ξj4)

2 − (ξj2 − 2(ξj4)
2 + 1)(1− ξj2) ≤ 0 (39)

(ξj1)
2 + (ξj3)

2 ≤ 0 (40)

where j = A,D. For the design problems that only involve pure in-plane or bending analysis, for

example the buckling of constant-sti�ness symmetric laminates, the feasible region given by Eqs.
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(39) and (40) is su�cient to de�ne the nonlinear constraints for lamination parameters. However, in

cases that require a group of coupled lamination parameters, explicit expressions that can bound the

feasible region accurately of lamination parameters are not available. Grenestedt and Gudmundson

[19] provide a series of nonlinear inequalities, by which an outer boundary of the feasible region

can be obtained. The outer boundary may be su�ciently accurate and robust in some optimization

problems for constant-sti�ness composite laminates [35]. In the optimization of variable sti�ness

laminates, they do not provide su�cient constraints, due to the continuous variation of the values

of design variables. Therefore, Setoodeh et al. [20] and IJsselmuiden et al. [5] used an approximate

feasible region that was generated from a numerical approach using the method of convex hulls. The

convex hull approach often results in a large number of linear inequalities to de�ne an approximate

bound for the feasible region, which may make subsequent optimization studies relatively unwieldy

and ine�cient.

In this section, the feasible region of two in-plane and two out-of-plane lamination parameters

(ξA1 , ξ
A
2 , ξ

D
1 , ξD2 ) for the design of orthotropic laminates is studied. The expressions for the in-plane

and out-of-plane lamination parameters given by Eq. (39) reduce to,

2(ξA1 )
2 − 1 ≤ ξA2 ≤ 1 (41)

2(ξD1 )2 − 1 ≤ ξD2 ≤ 1 (42)

Both of Eqs. (41) and (42) form the parabolic relation for each set of lamination parameters.

Grenestedt and and Gudmundson [19] derived the following explicit expressions that can link these

lamination parameters,

1

4

(

ξA1 + 1
)3
− 1 ≤ ξD1 ≤

1

4

(

ξA1 − 1
)3

+ 1 (43)

1

4

(

ξA2 + 1
)3
− 1 ≤ ξD2 ≤

1

4

(

ξA2 − 1
)3

+ 1 (44)

Eqs. (43) and (44) are necessary conditions derived from a variational method, but, are far from

the su�cient conditions which de�ne the boundary of the feasible region accurately. The Schwarz
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inequality was applied to derive further connections for the coupled lamination parameters [19],

∫

f2dz̄

∫

g2dz̄ −

(∫

fgdz̄

)2

≥ 0 (45)

In Eq. (45), f = z̄2 + e and g = cos(2θ) are chosen to derive the relations for the lamination

parameters ξA1,2, ξ
D
2 . The following inequality is obtained when the left side of Eq. (45) is minimized

with respect to the variable e,

5(ξA1 − ξD1 )2 − 2(1 + ξA2 − 2(ξA1 )
2) ≤ 0 (46)

Applying di�erent expressions of f and g to Eq. (45) can achieve more constraints, which can

build up the connections between the lamination parameters of ξAi , ξ
B
i , ξDi (see Appendix A.2 of

reference [19]). We examined these derived constraints for the four lamination parameters ξA,D
1,2

(others are zero), noting that only the conditions given by Eqs. (41-44 and 46) were found to be

active.

Finally, Eqs. (41)-(44) and (5) give an outer boundary of the feasible region, which is appropriate

for the optimization of the constant sti�ness laminates [35, 36]. Nevertheless, for the optimization

problem of VAT composite laminates, such an outer boundary was found in this work not to be

su�ciently accurate and needs further re�nement.

B. New constraints

A more accurate boundary for the feasible region can be derived based on Bloom�eld et al.'s

work [21], in which stronger links between the lamination parameters from each design subspace are

obtained by using the following algebraic identity [12],

4(zx − zy)(z
3
x − z3y) = (zx − zy)

4 + 3(z2x − z2y)
2 (47)

where zx or zy indicate the distance of a ply to the midplane. On the boundary of the feasible

region, it was proved that,






























zx − zy = 1
k

(

h1ξ
A
1 + h2ξ

A
2 + h3ξ

A
3 + h4ξ

A
4 + h5

)

z2x − z2y = 1
k

(

h1ξ
B
1 + h2ξ

B
2 + h3ξ

B
3 + h4ξ

B
4 + h5

)

z3x − z3y = 1
k

(

h1ξ
D
1 + h2ξ

D
2 + h3ξ

D
3 + h4ξ

D
4 + h5

)

(48)
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where each vector h = {h1, h2, h3, h4, h5}
T denotes a hyperplane constraint along the boundary of

the feasible regions for the in-plane, coupling and out-of-plane lamination parameters. Here, the k

is a scaling factor given by [21],

k = max

(

1

2

5
∑

i

hiξ
A
i

)

; (ξA5 = 1) (49)

The following two expressions that connect the in-plane, coupling and out-of-plane hyperplane

constraints were obtained by Bloom�eld et al [21],

4k2

(

4
∑

i=1

hiξ
A
i −HL

)(

4
∑

i=1

hiξ
D
i −HL

)

≥

(

4
∑

i=1

hiξ
A
i −HL

)4

+ 3k2(
4
∑

i=1

hiξ
B
i )2 (50)

4k2

(

4
∑

i=1

hiξ
A
i −HU

)(

4
∑

i=1

hiξ
D
i −HU

)

≥

(

4
∑

i=1

hiξ
A
i −HU

)4

+ 3k2(
4
∑

i=1

hiξ
B
i )2 (51)

where HL and HU are the lower and upper bound of each hyperplane constraint, respectively. It

was proved that Eqs. (50) and (51) establish strong links between the the in-plane, coupling and

out-of-plane lamination parameters for any prede�ned �nite set of �ber orientation. For example,

Bloom�eld et al [21] presents explicit expressions for the boundary of the feasible region of the 12

lamination parameters, which are for ply angles �xed in the �nite set of 0, 90,±30,±45,±60.

In order to derive explicit formulae for the general feasible region of lamination parameters, the

set of �ber orientations is assumed to enclose an in�nite number of discretized ply angles (−90 ≤

θi ≤ 90, i = 1, 2, · · · ,∞). Eqs. (50) and (51) remain to be validated with the given hyperplanes, but

represent an in�nite number of expressions. In this case, each hyperplane h = {h1, h2, h3, h4, h5}
T

in Eqs. (50) and (51) is, or is parallel to, a particular tangent plane to the boundary surface of the

feasible region at the point of (ξA,B,D
i ).

As only four lamination parameters ξA1 , ξ
A
2 , ξ

D
1 , ξD2 are required (for orthotropic laminates), the

Eqs. (50) and (51) reduce to,

(h1ξ
A
1 + h2ξ

A
2 −HL)4 − 4k2(h1ξ

A
1 + h2ξ

A
2 −HL)(h1ξ

D
1 + h2ξ

D
2 −HL) ≤ 0 (52)

(h1ξ
A
1 + h2ξ

A
2 −HU )4 − 4k2(h1ξ

A
1 + h2ξ

A
2 −HU )(h1ξ

A
1 + h2ξ

A
2 −HU ) ≤ 0 (53)
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Both the feasible regions of (ξA1 , ξ
A
2 ) and (ξD1 , ξD2 ) form parabolas. Therefore, the direction of each

hyperplane in Eqs. (52) and (53) corresponds to a tangent line of the parabola de�ned in Eq. (41)

or (42). The parabola is written in general form as s = 2t2−1 (t ∈ [−1, 1]) and the vector {h1, h2}
T

for the hyperplane has the following closed-form expression in terms of t,

h1 =
4t

1 + 2t2
, h2 = −

1

1 + 2t2
(54)

Subsequently, HL, HU can be determined in closed-form by obtaining the minimum and maximum

values of the following function,

f(ξA,D
1 , ξA,D

2 ) = h1ξ
A,D
1 + h2ξ

A,D
2 ⇒

f(ξA,D
1 ) =

4t

1 + 2t2
ξA,D
1 −

1

1 + 2t2
(2(ξA,D

1 )2 − 1)⇒

HU = 1, HL = −
4|t|+ 1

1 + 2t2

(55)

Fig. A.1 illustrates the geometric relations between the parabolic feasible region and the deduced

hyperplanes, as well as the upper and lower limits (HU , HL). It can be observed that this parabolic

feasible region is discretized into in�nite sets of hyperplanes, and fortunately these hyperplanes

can be de�ned generally by closed-form expressions (Eqs. 54-55). Substituting the expressions of

h1, h2, H
L, HU into Eq. (49), the scaling factor k is determined as,

k2 =

(

−|h1|+ h2 − 1

2

)2

=

(

1 + 2|t|+ t2

1 + 2t2

)2

(56)

Substituting Eqs. (54)-(56) into Eqs. (52) and (53), explicit expressions are obtained and

written as,

(4tξA1 − ξA2 − 1− 2t2)4 − 4(1 + 2|t|+ t2)2(4tξA1 − ξA2 − 1− 2t2)(4tξD1 − ξD2 − 1− 2t2) ≤ 0 (57)

(4tξA1 − ξA2 + 1 + 4|t|)4 − 4(1 + 2|t|+ t2)2(4tξA1 − ξA2 + 1 + 4|t|)(4tξD1 − ξD2 + 1 + 4|t|) ≤ 0 (58)

Due to parabolic constraints the in Eqs. (41) and (42), the following relations are derived,

ξA2 − 4tξA1 + 1 + 2t2 ≥ 2(ξA)2 − 4tξA1 + 2t2 = 2(ξA1 − t)2 ≥ 0

4tξA1 − ξA2 + 1 + 4|t| = 4|t|(1± ξA1 ) + (1− ξA2 ) ≥ 0

(59)
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Eqs. (57) and (58) are further simpli�ed to,

(ξA2 − 4tξA1 + 1 + 2t2)3 − 4(1 + 2|t|+ t2)2(ξD2 − 4tξD1 + 1 + 2t2) ≤ 0 (60)

(4tξA1 − ξA2 + 1 + 4|t|)3 − 4(1 + 2|t|+ t2)2(4tξD1 − ξD2 + 1 + 4|t|) ≤ 0 (61)

In principle, the lamination parameters ξA1 , ξ
A
2 , ξ

D
1 , ξD2 have to satisfy the constraints given by

Eqs. (60) and (61) for all t ∈ [−1, 1], or, alternatively, t is determined analytically in closed-

form by maximizing the left sides of Eqs. (60) and (61). Nevertheless, it was found that a set

of nonlinear inequalities generated from Eqs. (60) and (61) with only a few discretized points

of t are also capable of representing the boundary of the feasible region of the four lamination

parameters (ξA1 , ξ
A
2 , ξ

D
1 , ξD2 ) with good accuracy. It was found by trial-and-error that a value of

t between [−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1] was found to be su�ciently accurate or, for

better accuracy, t = [−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1]. It was found that the set of

equations in (46)-(61) are able to bound the entire feasible region of the four lamination parameters

(ξA,D
1,2 ) with su�ciently good accuracy. Now, all the constraints that were obtained for de�ning the

feasible region of these four lamination parameters ξA1 , ξ
A
2 , ξ

D
1 , ξD2 are Eqs. (41)-(44), (46), (60) and

(61). In fact, Eqs. (46), (60) and (61) provide strong constraints for these lamination parameters,

and implicitly contain the relations de�ned by the Eqs. (41)-(44). For example, from Eq. (46) it

can be deduced that,

5(ξA1 − ξD1 )2 − 2(1 + ξA2 − 2(ξA1 )
2) ≤ 0⇒

2(1 + ξA2 − 2(ξA1 )
2) ≥ 5(ξA1 − ξD1 )2 ≥ 0⇒

2(ξA1 )
2 − 1 ≤ ξA2 (Eq. (39))

(62)

Eqs. (60) and (61) also reduce to Eq. (44) when t is equal to 0. Finally, it was shown that Eqs. (46),

(60) and (61) are su�cient to generate a relatively accurate boundary for the feasible region of ξA,D
1,2 ,

in which only 19 ∼ 23 nonlinear inequalities are required. Hence, this approach requires much less

computational e�ort in an optimization process than the convex hull approach [17], which employs

37,126 linear equations to approximately bound the feasible region and which was implemented in
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the optimization framework developed recently developed by IJsselmuiden et al. [5] and Nagy et al.

[25].

Fig. A.2 demonstrates the intersections of the feasible region with di�erent planes, in which the

black lines represent the feasible region de�ned by the explicit formulae, whereas the red dashed

lines indicate the approximate feasible region generated using a numerical procedure [12]. Good

agreement of the intersections between the results given by the explicit formulae and the numerical

solution is shown in Fig. A.2. The outer boundary of the feasible region given by Grenestedt and

Gudmundson [19] is also shown in Fig A.2 as the blue dash-dotted lines, which clearly demonstrates

the contribution of the newly derived constraints (Eqs. (60) and (61)) to the boundary of feasible

region.

Appendix B

The explicit forms for the sti�ness tensors in the buckling model (Eq. (22)) and (23)) are

expressed below. The aspect ratio of VAT plates (a/b) is denoted by R. Each element in the

matrices Kb
0 , K

b
1 and Kb

2 are given by,

Kb
0(mnm̄n̄) =

h3

12

∫ 1

−1

∫ 1

−1

[U1X
w
m,ξξY

w
n Xw

m̄,ξξY
w
n̄ +R2U4(X

w
mY w

n,ηηX
w
m̄,ξξY

w
n̄ +Xw

m,ξξY
w
n Xw

m̄Y w
n̄,ηη)+

R4U1X
w
mY w

n,ηηX
w
m̄Y w

n̄,ηη + 4R2U5X
w
m,ξY

w
n,ηX

w
m̄,ξY

w
n̄,η]dξdη

(63)

Kb
1(mnm̄n̄) =

h3

12
U2

∫ tr+k

tr

∫ ts+k

ts

[N (k)
r N (k)

s X̃w
m,ξξỸ

w
n X̃w

m̄,ξξỸ
w
n̄ −R4N (k)

r N (k)
s X̃w

mỸ w
n,ηηX̃

w
m̄Ỹ w

n̄,ηη]dūdv̄

(64)

Kb
2(mnm̄n̄) =

h3

12
U3

∫ tr+k

tr

∫ ts+k

ts

[N (k)
r N (k)

s X̃w
m,ξξỸ

w
n X̃w

m̄,ξξỸ
w
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mỸ w
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(65)
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The expression for each element in the matrices of Ks
10,K

s
11, · · · ,K

s
22 are,

Ks
10(mnm̄n̄) =h

∫ 1

−1

∫ 1

−1

[U1X
u
p,ξY

u
q Xw

m,ξY
w
n Xw

m̄,ξY
w
n̄ +R2U4X

u
p,ξY

u
q Xw

mY w
n,ηX

w
m̄Y w

n̄,η+

R2U5(X
u
p Y

u
q,ηX

w
m,ξY

w
n Xw

m̄Y w
n̄,η +Xu

p Y
u
q,ηX

w
mY w

n,ηX
w
m̄,ξY

w
n̄ )]dξdη

(66)

Ks
11(mnm̄n̄) = hU2

∫ tr+k

tr

∫ ts+k

ts

N (k)
r N (k)
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u
q X̃w
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12(mnm̄n̄) = hU3
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tr
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(68)
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20(mnm̄n̄) =h
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(69)

Ks
21(mnm̄n̄) = hR3U2

∫ tr+k

tr
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ts
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v
q,ηX̃
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Ks
22(mnm̄n̄) = hRU3
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mỸ w

n,ηX̃
w
m̄Ỹ w
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w
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(71)

where m, m̄ = 1, 2, · · · ,M and n, n̄ = 1, 2, · · · , N .

The in-plane sti�ness matrixKm in the prebuckling model (Eq. 10) consists of four sub-matrices

that are,

Km =









Ku Kuv

(Kuv)T Kv









(72)
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Each matrix in Eq. (72) is also expanded in terms of lamination parameters and re-written in the

following form,

Kχ = K
χ
0 +

∑

rs

Γ(1)
rs K

χ
1 +

∑

rs

Γ(2)
rs K

χ
2 (73)

where χ = u,uv,v indicates di�erent sub-matrices of Eq. (72). The explicit expressions of these

matrices for the prebuckling model are,

Ku
0(pqp̄q̄) = h
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∫ 1

−1

[U1X
u
p,ξY

u
q Xu
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p Y
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q,ηX

u
p̄ Y
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Ku
1(pqp̄q̄) = hU2
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(76)

Kuv
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Kuv
1(pqp̄q̄) = 0 (78)

Kuv
2(pqp̄q̄) =− hR
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(79)

Kv
0(pqp̄q̄) = h
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v
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v
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v
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v
q̄,η + U5X

v
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v
q X

u
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v
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Kv
1(pqp̄q̄) = −hU3
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N (k)
r Nr,sX̃

v
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v
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v
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v
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Kv
2(pqp̄q̄) =h

∫ tr+k

tr

∫ ts+k

ts

[R2U3N
(k)
r Nr,sX̃

v
p Ỹ

v
q,ηX̃

v
p̄ Ỹ

v
q̄,η−

U5N
(k)
r Nr,sX̃

v
p,ξỸ

v
q X̃

v
p̄,ξỸ

v
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(82)

where p, p̄ = 1, 2, · · · , P1(P2) and q, q̄ = 1, 2, · · · , Q1(Q2).
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Table 1 First-level optimization results for the maximum buckling load (Kcr
x ) of square VAT

plates using di�erent number of control points to construct the lamination parameter distri-

bution. (QI: quasi-isotropic laminate, CS: constant sti�ness laminates)

Lay-ups
case A case B

K∗

cr Increase (%) K∗

cr Increase (%)

QI 1 - 1 -

CS: ±45 (ξD1,2 = [0,−1]) 1.29 - 0.93 -

CS: [±36/∓ 36/± 24/∓ 24/04]AS

- - 1.27 -
(ξA,D

1,2 = [0.64, 0, 0.4,−0.6])

VAT: 5× 5 2.66 106.2 1.88 48.0

VAT: 7× 7 2.89 124.0 1.96 54.3

VAT: 9× 9 2.92 126.4 2.02 59.0

VAT: 11× 11 2.92 126.4 2.04 60.6

Table 2 Optimal layups for the maximum buckling load of a square 16-layer specially or-

thotropic laminates (for case A).

Methods Layups K∗

cr Increase (%)

- Quasi-Iso 1 -

- [±45/∓ 45]AS 1.29 -

Direct GA















71 49.5 71.5

67 50 51

17 12 45















θ1 













−72.5 −59 −59.5

−65 −54 −50.5

14 11.5 6















θ2

2.71 110

Two-level −















71.6 52.2 75.4

75 45.6 54.1

14.2 17.9 46.3















θ1 













74 61.2 60.9

74.1 49.5 55.1

−17.7 −10.8 −7.0















θ2

2.73 112
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Fig. 1 An illustration of B-Spline Surface constructing by 5-by-5 uniformly spaced control

points
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Fig. 2 Uniform B-Spline basis functions for N = 5, k = 3 and Ξ = [0, 0, 0, 1/3, 2/3, 1, 1, 1]
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Table 3 Optimal layups for the maximum buckling load of a long SSSF 16-layer specially

orthotropic laminates.

Methods Layups K∗

cr Increase (%)

- Quasi-Iso 1 -

- [±45/∓ 45]AS 1.70 -

Direct GA
θ1 : T0..4 = [−11.5, 41.5, 56, 58, 65.5]

3.94 131.7
θ2 : T0..4 = [4,−20,−58,−67,−70]

Two-level
θ1 : T0..4 = [17.5, 36.5, 52.5, 56, 64]

3.95 132.3
θ2 : T0..4 = [−5,−11,−51,−65,−68]
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Fig. 3 Two illustrations for the nonlinear variation (NLV) of �ber orientation angles over the

VAT plate domain. Left: the �ber angles are parabolically varying along x direction (3 control

points); Right: the �ber angles are parabolically varying with both axes directions (3-by-3

control points).
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Fig. 5 Convergence trends of the �rst level optimization process using di�erent number of

control points for constructing the B-Spline form variation of lamination parameters along

y-axis
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Fig. 6 Optimal lamination parameter distribution for a square VAT plate under two di�erent

in-plane boundary conditions (case A and case B), 7× 7 control points
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Fig. 7 In-plane stress distribution of VAT square plates with optimal lamination parameters

(case A and case B)
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Fig. 8 Optimal variations of the four lamination parameters (ξA,D
1,2 ) for the maximum buckling

load of a VAT long plate (case A).
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Fig. 9 Optimal variations of the four lamination parameters (ξA,D
1,2 ) for the maximum buckling

load of VAT plates with one free edge and others are simply supported.
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Fig. 10 The optimum nonlinear variation (3×3 control points for each layer) of �ber-orientation

angles for maximum buckling load of the square simply supported VAT plate design for case

A.
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Fig. 11 A segment of the optimal NLV of �ber orientation angles for the long VAT plate with

a free edge: top θ1(y) and bottom θ2(y)
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Fig. A.1 The geometric illustration of the hyperplanes along the boundary of a parabolic

feasible region
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Fig. A.2 Feasible regions of lamination parameters (ξA1 , ξA2 , ξD1 , ξD2 ). Red dashed lines: the true

boundary of the feasible regions generated from a numerical procedure [12]; Black solid lines:

the boundary de�ned by the explicit formulas (present work); Blue dash-dotted lines: outer

boundary derived by Grenestedt and Gudmundson [19].
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