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Abstract—This paper introduces an industrial cyber-physical
system (CPS) based on the Internet of Things (IoT) that is
designed to detect rare events based on machine learning. The
framework follows the following three generic steps: (1) Large
data acquisition / dissemination: A physical process is monitored
by sensors that pre-process the (assumed large) collected data
and send the processed information to an intelligent node (e.g.,
aggregator, central controller); (2) Big data fusion: The intelligent
node uses machine learning techniques (e.g., data clustering,
neural networks) to convert the received ("big") data to useful
information to guide short-term operational decisions related
to the physical process; (3) Big data analytics: The physical
process together with the acquisition and fusion steps can
be virtualized, building then a cyber-physical process, whose
dynamic performance can be analyzed and optimized through
visualization (if human intervention is available) or artificial
intelligence (if the decisions are automatic) or a combination
thereof. Our proposed general framework, which relies on an IoT
network, aims at an ultra-reliable detection/prevention of rare
events related to a pre-determined industrial physical process
(modelled by a particular signal). The framework will be process-
independent, however, our demonstrated solution will be designed
case-by-case. This paper is an introduction to the solution to be
developed by the FIREMAN consortium.

Index Terms—Industrial IoT, rare-event detection, predictive
maintenance, machine-learning.

I. INTRODUCTION

Predictive systems are usually designed to find recurrent

patterns while excluding outliers. This is also true when

analyzing methods of machine learning applied in industrial

settings or in Industrial Internet of Things (IIoT) more gen-

erally. This paper, which is based on the project FIREMAN1

funded by CHIST-ERA, focuses on this point by building an

IoT network in combination with specific machine learning

algorithms capable of detecting rare events in industrial setups

in an ultra-reliable way. This, however, is not a trivial task due

to the interdisciplinarity needed by the proposed solution. We

offer below the state-of-the-art in different topics that will be

covered by our solution.

1FIREMAN stands for Framework for the Identification of Rare Events via

MAchine learning and IoT Networks.

A. Literature review

Cyber-Physical Systems (CPS) and IIoT: In [1], the

authors provide many examples of CPS in industry discussing

the challenges involved and specifying the needs of different

industries. [2] provides a good review of high-level technical

challenges.

Modelling complex systems: Different approaches to

model 5G and IoT communication networks can be found in

[3]. In [4], the authors discuss different ways of modelling

modern power grids, including not only the physical system

but its relations with communication and decision-making

networks. In [5], the authors introduce an integrative, three-

layer, methodology.

Time-based vs. event-based data acquisition: Sensors

acquire raw data to monitor physical processes via periodic

sampling or via events. Depending on how the parameters

are set, traffic in the communication network is generated,

and each packet will contain information depending on the

sparsity of the signal. The sampling strategy and the reliability

of communication have been assessed in [6], while [7] dealt

with the impact of the combination of these sampling methods.

Machine-type communications and data aggregation:

The information exchange system is built upon ubiquitous

wireless connectivity of machine-type communications (MTC)

[8]. MTC may need to work in extreme cases: massive

MTC (mMTC) and ultra-reliable low-latency communica-

tions (URLLC). The concept of data aggregation [9]-[11]

is promising in this respect. Traffic from MTC devices is

first transmitted to a special node called data aggregator that

collects and processes the received data. Depending on the

application, the aggregator can relay the processed data to the

core network, use the data for a feedback control loop, or be

used to monitor some metric.

Big data mining for rare-event prediction and response:

Rare-event detection in time-series is a large field with many

approaches [12]. Local Outlying Factor [13] is based on

clustering multi-dimensional data points. Other techniques



borrow principles from speech processing [14]. Even more

potent are Quantitative Association Rules (QAR) with high

confidence & small support; recent results with a synthetic

dataset of multidimensional vectors, with components drawn

from Gaussian distributions have verified the effectiveness of

this approach [15]. QARMA (standing for "Quantitative Asso-

ciation Rule Mining Algorithm") outperforms all other well-

known machine learning methods in terms of both detection

rate and false alarm rate, as shown in Table I. Finally, the

detection of rare events can be also viewed as outlier detection

in the context of sparse modeling and optimization techniques

[16]. The GARD method in [17] and the KGARD in [18]

were proposed as offline tools for robust linear and nonlinear

estimation (supervised learning), respectively.

TABLE I
COMPARISON OF QARMA WITH STATE-OF-THE-ART CLASSIFIERS FOR

RARE-EVENT DETECTION ON THE TEST PART OF A SYNTHETIC DATASET

(70,200 POINTS, 200 RARE EVENTS, 50% TRAINING, 50% TESTING).
ADAPTED FROM [15].

Method True Detection in % False Alarm in %

QARMA 100 0.002

JRip (Ripper) 97 0.06

MultiLayerPerceptron 98 0.017

AdaBoost.M1 91 0

Bagging 51 0

J48 (Decision Tree), 0 0

SMO (SVM) 0 0

Stacking 0 0

BayesNet 0 0

LogitBoost 0 0

Predictive maintenance and rare events: In classical

periodic maintenance, parts may be replaced too soon, and

supply chains may be disrupted, causing extra variability in the

supply chain unnecessarily. [19] constitutes a review consider-

ing condition-based maintenance (CBM) as a decision-making

strategy based on the detection of rare events. Yam et al. in

[20] describe an integrated Decision Support System (DSS).

In [21], the authors provide different performance trade-offs

between frequency of unexpected breaks and unexploited

lifetime.

B. Structure of the paper

This paper will present an innovative framework to be

proposed by FIREMAN by moving beyond the state-of-the-

art in the above-mentioned fields in order to build an effective

solution for rare event detection in industrial environments.

The rest of this paper is organized as follows: Section II de-

scribes the general approach to be used by FIREMAN. Section

III focuses on the method to solve specific problems and the

progress beyond existing solutions. Section IV introduces the

expected results to be delivered by FIREMAN and Section

V provides the main impact insights of the project. Finally,

Section VI concludes this paper.

II. FIREMAN APPROACH

Our solution aims at providing a big-data-based optimized

framework to predict and detect rare events in industrial

Fig. 1. The FIREMAN approach and concept illustration.

processes (mainly in maintenance), also including possible

interventions. Figure 1 illustrates the general FIREMAN con-

cept, built to answer the following scientific questions:

(1) Many industrial processes are physical and can be vir-

tualized following three generic, autonomous but interrelated,

steps: (i) acquisition of raw data and its pre-processing related

to the sensor network deployment, (ii) fusion to aggregate and

represent the raw data and (iii) analytics to build an intelligent

prediction/detection of rare events. Research question: What

is the optimal system architecture (i.e., design of each one

of the three above steps and their integrated deployment)

for detecting/predicting rare events for an industrial process

with its own characteristics? FIREMAN will answer this by

providing a framework based on CPS to guide the opti-

mal system architecture design that is process-independent.

However, for demonstration purposes the system design will

be determined case-by-case. Our proposal will be tested for

predictive maintenance in various environments: an automotive

industrial plant, a base-station factory and a wind turbine. Both

simulations and tests in real environment will be employed.

(2) In the acquisition step, there are many ways to obtain

raw data: single vs. many sensors, periodic vs. event-driven

sampling, random vs. planned deployments, single- vs. multi-

hop transmissions, etc. Each industrial process can be evalu-

ated by one or a set of relevant signals that shall be monitored.

Research question: For a given industrial process, what are

the main signal characteristics (e.g., periodic or sparse), what

are the most suitable ways to collect, store and distribute the

raw and pre-processed data within such sensor/IoT network?

How can the communication (sensor) network be dimensioned

and configured to attain the required performance metrics (e.g.,

reliability and low-latency) for the detection of rare events?

FIREMAN will answer this by proposing a framework to

model the industrial physical processes to assess and classify

the signal characteristics. For the different classes of signal,

different sets of collection-storage-dissemination deployments

shall be analysed. A network architecture that is tuned to



rare events will be proposed and the corresponding network

protocols (e.g., from 5G-PPP2) will be accordingly configured.

(3) Depending on the acquisition, the aggregation and repre-

sentation of raw/pre-processed data require different treatment

(e.g., periodic samples require different treatment from event-

based ones). Research question: What are the most suitable

data fusion options to aggregate/represent the heterogeneous

big data sets generated by a specific acquisition deployment?

FIREMAN will answer this question by studying different

(heterogeneous big) data aggregation methods and assess

the performance of different machine-learning algorithms to

compress and represent the raw/pre-processed data after the

acquisition step.

(4) The already fused data still need to be processed

through analytics so rare events can be predicted/detected, and

possible reactions proposed. Research question: What is the

most efficient algorithm to deal with rare events in industrial

processes, particularly for predictive maintenance? FIREMAN

will answer this question by proposing new big data algorithms

to deal with rare events, and developing visualization tools to

help their identification and provide possible actuator reactions

to cope with them. As mentioned, our framework shall be

general, but the actual implementation is carried out according

to the specific process being considered.

III. FIREMAN METHODOLOGY

FIREMAN will employ the following methodology: (1)

Definition of the system specifications and requirements, based

on the needs and key performance indicators (KPIs) related to

the detection of rare events, as provided by the industry itself.

For this, we will rely on the consortium’s industrial partner,

SEAT, as well as on inputs provided by other collaborating

industrial players from various vertical fields (e.g., telecoms,

energy, etc.). (2) Research work to achieve the project’s tech-

nical goals in its three key areas: large-scale data acquisition,

big data fusion and big data analytics. The emphasis will be

both on the development of novel techniques in each of these

constituent areas, as well as on their optimal inter-working;

the latter is an important novelty of the proposed work com-

pared to the state-of-the-art. (3) Development and conducting

of proof-of-concept trials and pilots that will showcase the

validity and value of the proposed approach. The emphasis

here will be both on the usefulness of the overall approach, and

on its validation over different industry sectors. The scientific

results and experimental trials will be disseminated in the

scientific and industrial communities.

FIREMAN will seek radical new approaches to rare-event

detection for predictive maintenance and other types of ac-

tuation. To reach this goal, the steps of acquisition, fusion

and analytics are understood as constituent parts of an in-

dustrial CPS, modelled following the three-layer approach

proposed in [5]. For the first step, we will focus on the

characterization of the physical process data by employing

traffic modeling techniques that account for event-based traffic

2https://5g-ppp.eu/

activation patterns [6, 22]. Furthermore, we will develop

methods for data pre-processing, classification and storage that

will enhance the process of rare-event detection. Finally, the

process is enriched by the investigation of data transmission

techniques that achieve scalable (mMTC), ultra-reliable low-

latency (URLLC) and energy-efficient transmission, taking

into account existing and ongoing work towards 5G standards

[23, 24]. In the fusion step, we will investigate intra-cluster

discovery algorithms, cluster-head selection policies, no-SQL

databases and indexing from time-series databases, as well

as dimensionality reduction techniques for big data, such as

neural network-based approaches [25] and compressed sensing

techniques [26, 27].

The big data analytics, in turn, will use the pre-processed big

data from the previous step and will constitute the final stage

for detecting/predicting/preventing rare events. The proposed

solution will be based on new results from Quantitative

Association Rule Mining (QARM) applied to very big datasets

comprising multi-dimensional time-series (preliminary results

illustrated in Table I). Using recent results in QARM (see

[15]), as well as using results from the seemingly unrelated

area of application of FOREX market direction prediction (see

[14]) for detecting useful (even if rare) patterns of time-series

move directions, as well as from robust regression, we shall

build an ensemble of rare-event detectors that will be capable

of detecting conditions that signal the need for maintenance

operations even when the frequency of these signals does not

exceed say, one occurrence per millions of sensor readings.

This capability is due to the ability of QARM to mine

association rules with any required support the user defines

that simultaneously maintain sufficient confidence, lift and

any other combination of interestingness measures for the

derived rules, and to the algorithm’s completely scalable

(parallelizable in shared/distributed memory clusters/clouds)

nature. As shown in [15], it is possible to mine all rules of the

form: i1rvai1,1 P ri1,1s ^ ...inrvain,m inrin,ms ùñ
s,c

jrp ě ljs,

where the notation irv P rs denotes the “restriction” of item

i’s v attribute value to the range r. The rule is interpreted

as follows: “whenever in a “user history” the item i1 appears

with value for the attribute ai1,1 within the range ri1,1, and the

item in also appears with value for its attribute vain,m falling

within the range rin,m, then, with support at least equal to

s and “interestingness metrics” at least equal to c, the item

j also appears in the same user’s history with a value for p

being greater than (or, if specified, with value exactly equal

to) lj .

When detecting rare events in a manufacturing plant’s

operations, a “user history” may simply correspond to a set of

simultaneous sensor readings (each sensor reading correspond-

ing to an “item” with a single quantitative attribute, its value)

or any other derived feature from these readings (e.g., the

immediately previously read sensor value). The consequence

that is sought for may simply be the maximum reading of a

particular sensor in the next 10 sampling periods or any other

desired quantity such that, when its value exceeds a threshold



this indicates the need to take some specific action e.g. halting

operation and performing predictive maintenance.

The QARM framework is therefore theoretically very well

suited for predictive maintenance based on rare event detec-

tion, because it can automatically discover all non-dominated

rules that indicate that a set of (rarely occurring) pre-conditions

triggers a maintenance need; we have also provided initial

experimental evidence supporting the theoretical intuition as

well: the preliminary results in Table I show that QARMA

is indeed superior to all current competitors. By specifying

sufficiently low support levels to capture the rarity of the

events’ occurring frequency, and at the same time specifying

sufficiently high required confidence and lift or conviction

values for the derived rules, the algorithm can produce a

(possibly large) set of rules that trigger rarely, but when

they do, they indicate with high likelihood the need for

maintenance. Once produced, such rules are continually and

automatically tested to see if they fire as new observations

arrive. When they fire, they signal an alert for a maintenance

need. In FIREMAN, we will further innovate by turning the

QARMA algorithm into an online algorithm that continuously

learns to adapt its rules as new evidence becomes available

(tackling Big Data). Furthermore, we will investigate how to

choose in a near-optimal manner what values to consider for

each attribute when their domains become prohibitively large,

without serious sacrifices in the quality of the results.

Similarly, the pattern mining system described in detail in

[14] is based on a highly parallel algorithm that allows the

prediction of the movement of any component of a multi-

dimensional time-series above or below a certain threshold

within an upcoming time interval, and again, the support levels

for the patterns can be arbitrarily small, defined by the user.

The idea is to “fit” a wave-form of a time-series in a so-

called template-grid, and derive a similarity value between the

current time-series fragment, and a “prototype” template-grid

pattern that has the property that with significant support and

confidence, to indicate that the time-series will exceed or fall

below a certain percentage of its current value within a defined

number of sampling periods in the near future, which should

be an alert for maintenance.

A third approach for the online (real-time) detection of rare-

events is to use machine learning techniques based on sparse

representations. In FIREMAN, we intend to develop novel

online algorithms for outlier detection, based on the state-of-

the-art methods [17, 18, 28], which have been used as offline

(batch) detection tools for robust regression over relatively

small data sets (supervised-learning). The novelty of our

learning approach is summarized as follows: a) develop online

methods based on the aforementioned sparse optimization

directions, b) investigate the best possible sampling techniques

(stochastic versus mini-batch) and c) extend the regression

tasks to their classification counterparts (which can be also

viewed as regression with integer output variables, e.g., for

the binary case +1,-1 - outlier versus no-outlier). As already

mentioned, in FIREMAN, we shall build a pool of rare-event

detection tools, consisting of robust regression/classification,

QARM, and FOREX market prediction techniques. The goal

is to use these methods collaboratively, considering parallel

or sequential use over different layers for the identification

and prediction tasks. This approaches will be demonstrated in

three sites: SEAT car manufacture, University of Oulu together

with Nokia base-station manufacture, and LUT automation

laboratories. Experiments with well-defined blocks will be

considered to guarantee reproducibility. The setup will consist

of at least one controlled machine with sensors, a communi-

cation network, and a workstation including data acquisition,

management, analytics blocks, as well as a visualization block

(refer to Figure 1) for at least one industrial process. Real

users will be considered to define the performance metrics as

reliability, low latency and usability with well-defined criteria,

and to validate the proposed approach. From their feedback,

it will be refined until users’ validation.

IV. EXPECTED RESULTS

The overall objective of FIREMAN is to design, develop

and showcase a novel big-data-based framework that en-

compasses all steps from sensing and data acquisition to

statistical analysis and operational decisions, to accurately

identify, detect, forecast and prevent rare events in a pre-

determined industrial physical process. FIREMAN aims to

build an architecture with a strong interplay among several

research areas towards a highly-integrated CPS design at

all data-processing levels. In this context, FIREMAN will

provide breakthroughs in all three key pillars, i.e., large-

scale data acquisition, big data fusion and big data analytics,

considering the developments of relevant ongoing projects, but

it will contribute far beyond state-of-the-art by pursuing the

following objectives:

‚ Model the industrial physical process to retrieve the signal

characteristics, e.g., time- vs. event-triggered sampling,

from the physical data captured/recorded using sensors.

‚ Design a flexible network topology for the scalable de-

ployment of many sensors to securely collect data at a

low cost with a proper utilization of the scarce shared

resources.

‚ Optimize the communication protocols to efficiently han-

dle mission-critical transmission with stringent QoS re-

quirements (ultra-high reliability, very low-latency) in

industrial setups.

‚ Perform preliminary data analysis and processing to

transform multi-stream raw data generated by various

sources (heterogeneous, high-dimensional) into usable

formats.

‚ Extract useful information from the monitoring of data

and guide short-term operational decisions related to the

physical process monitored by the sensors.

‚ Achieve proactive (predictive) maintenance via data-

driven learning and mining techniques that identify and

unlock the potential value of data.

‚ Offer system situational awareness on the occurrence of

rare events for timely detection, effective decision-making

and possible issuing of actuator commands.



‚ Develop experimental test-beds to enable the validation

and evaluation of the proposed solutions and verification

of the overall system performance.

V. IMPACT

The results from FIREMAN will clearly have a strong

impact on the field of predictive maintenance for IIoT sys-

tems; on the other hand, the specific challenges posed to the

new generation of wireless networks will lead to important

advances for reliable and massive-scale connectivity. From

social perspective, FIREMAN will lead to a more connected

society and to the implementation of radically new services

based on a sustainable industrial value creation. Specifically,

FIREMAN will achieve the following impacts:

1) Poor maintenance in production lines can reduce their

productivity by 5 to 20% and unplanned downtime is

estimated to cost 50 billion dollars each year [29].

The proposed predictive maintenance approach may

eliminate such productivity losses, reducing the time

required to plan maintenance by 20 to 50%, increasing

equipment availability by 10 to 20%, and reducing

overall maintenance costs by an estimate of 5 to 10%.

2) Rare events related to industrial plants result in serious

risks to the working force and poor maintenance may

cause accidents and permanent damage. FIREMAN’s

approach to identify and predict rare events will help

to diminish such issues, improving the working safety

in industrial plants.

3) More efficient communication and information process-

ing in industrial plants may increase the efficiency of

the plant in general, following the concept of Industry

4.0. The integrative proposed approach based on IIoT

and CPS may create 10 million new qualified jobs in

Western Europe and may provide useful benchmarks for

European industry.

VI. CONCLUSIONS

This paper provides an overview of an IoT-based framework

to design an ultra-reliable rare-event detector using machine-

learning, mainly focused on industrial settings. The proposed

approach is holistic, from the physical process modeling

to the end-user data visualization. Differently from existing

solutions, FIREMAN will design general guidelines of how

to jointly sample, communicate, fuse and perform analytics

so that the desired rare events are reliably detected.
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