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[1] The problems of identifying the most appropriate model structure for a given
problem and quantifying the uncertainty in model structure remain outstanding research
challenges for the discipline of hydrology. Progress on these problems requires
understanding of the nature of differences between models. This paper presents a
methodology to diagnose differences in hydrological model structures: the Framework
for Understanding Structural Errors (FUSE). FUSE was used to construct 79 unique
model structures by combining components of 4 existing hydrological models. These
new models were used to simulate streamflow in two of the basins used in the Model
Parameter Estimation Experiment (MOPEX): the Guadalupe River (Texas) and the
French Broad River (North Carolina). Results show that the new models produced
simulations of streamflow that were at least as good as the simulations produced by the
models that participated in the MOPEX experiment. Our initial application of the
FUSE method for the Guadalupe River exposed relationships between model structure
and model performance, suggesting that the choice of model structure is just as
important as the choice of model parameters. However, further work is needed to
evaluate model simulations using multiple criteria to diagnose the relative importance of
model structural differences in various climate regimes and to assess the amount of
independent information in each of the models. This work will be crucial to both
identifying the most appropriate model structure for a given problem and quantifying
the uncertainty in model structure. To facilitate research on these problems, the
FORTRAN-90 source code for FUSE is available upon request from the lead author.
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1. Introduction

[2] The accuracy of streamflow simulations in natural
catchments will always be limited by simplified model
representations of the real world as well as the availability
and quality of hydrologic measurements. This is true for all
models, regardless the amount of instrumentation within the
basin. The outstanding research challenges are to identify
the most appropriate model structure for a given problem
and to quantify the predictive uncertainty in hydrologic
model simulations.

[3] Progress on these problems requires understanding
the nature of differences between models. Specific questions
are as follows.
[4] 1. How do model structural differences influence

simulations of model states and fluxes?
[5] 2. Is there a significant relationship between differ-

ences in model structure and model performance? How does
this relationship vary regionally?
[6] 3. Why do some models perform better than others?

Under what circumstances do models perform poorly?
[7] To address these questions, this paper introduces a

computational framework to diagnose differences in
hydrological model structures: the Framework for Under-
standing Structural Errors (FUSE). FUSE was used to
construct 79 ‘‘new’’ hydrological models, each having a
different structure. These new models were used to sim-
ulate streamflow in two of the basins used in the second
and third workshops of the Model Parameter Estimation
Experiment (MOPEX): the Guadalupe River (Texas) and
the French Broad River (North Carolina). Model analyses
involve assessment of overall model performance and
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diagnosis of model output during time periods when large
model errors are observed.

2. The MOPEX Data Set

[8] The model simulations in this paper are produced
using the MOPEX data set described by Duan et al. [2006].
This data set includes hydrometeorological and land surface
characteristics data for twelve basins in the eastern United
States (Figure 1). All models that participated in MOPEX
were forced with daily estimates of basin-average precipi-
tation and potential evapotranspiration. However, in this
study the original MOPEX model forcings were replaced
with daily estimates of (rain plus snowmelt) produced from
simulations using the National Weather Service SNOW-17
model [Anderson, 1973] and daily estimates of adjusted
potential evapotranspiration produced using the Sacramento
model [Burnash et al., 1973]. All models were evaluated
using daily streamflow data obtained from the United States
Geological Survey. Use of the same time series of rain plus
melt and potential evapotranspiration as forcings for all
models helps us maintain a control on the differences
between models, thereby allowing us to concentrate on the
impacts of model structural differences in the subsurface.
[9] Multimodel simulations are performed for two con-

trasting MOPEX basins, the French Broad River in North
Carolina (the wettest of all twelve basins) and the
Guadalupe River in Texas (the driest of all twelve basins).
Figure 2 illustrates the varying controls of available energy
and available water on the partitioning of precipitation
between evaporation and runoff for each of the twelve
MOPEX basins. When the annual available energy,
expressed as potential evapotranspiration, is greater than
the annual precipitation, the annual evaporation is limited
by the annual supply of water. Conversely, when the
available energy is less than the available precipitation,
the annual evaporation is limited by the annual supply of
energy [Milly, 1994; Milly and Dunne, 2002]. Evaporation
in the French Broad River is constrained by the annual
supply of energy, but in the Guadalupe River the annual
supply of energy and water is approximately equal.

3. Modeling Philosophy

[10] A common device derstanding model structur-
al differences is to run mo tercomparison experiments.

Recent examples in hydrology include the Project for
Intercomparison of Land-surface Parameterization Schemes
(PILPS) [Henderson-Sellers et al., 1993], the Distributed
Model Intercomparison Project (DMIP) [Reed et al., 2004],
and the Model Parameter Estimation Experiment (MOPEX)
[Duan et al., 2006].
[11] These model intercomparison experiments have

helped illuminate the wide range in model simulations that
can arise when different models are forced with the same
input data. However, the intercomparison experiments have
been less successful in helping us understand the reasons for
the intermodel differences. This is not surprising. Each
individual model uses different parameterizations for differ-
ent processes (e.g., surface runoff, percolation, base flow),
and these different parameterizations interact in complex
ways. It is therefore extremely difficult to link intermodel
differences to the differences in specific process representa-
tions. Consequently, the understanding that is gained from
model intercomparison experiments is largely limited to
illuminating the different kinds of model behavior that can
result from major differences in model structure [Wetzel et
al., 1996; Koster and Milly, 1997; Slater et al., 2001].
[12] To improve our understanding of differences between

models, the models in this study have been constructed in
such a way that each model component can be evaluated in
isolation. This is done via the following three steps.
[13] 1. Prescribe the type of model. In this paper the type

of model is limited to lumped hydrological models run at a
daily time step. In each model the vertical dimension

Figure 1. Location of the 12 MOPEX basins in the eastern
United States. Basins marked B7 and B12 are the French
Broad and Guadalupe rivers, respectively. See Duan et al.
[2006] for more details.

Figure 2. Relative controls of available energy (potential
evapotranspiration (pet)) and available water (precipitation
(p)) on the ratio of evaporation (e/p) in each of the twelve
MOPEX basins. The two basins examined in this study, the
French Broad and Guadalupe rivers, are depicted with filled
circles. All basins have runoff ratios that are close to what is
predicted by the Turc-Pike relationship, given by Milly and

Dunne [2002] as
e

p
¼ 1þ

pet

p

� ��v� ��1=v

, where v = 2.
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discretized into two zones: the unsaturated zone (above the
water table) and the saturated zone (below the water table).
For a review of other types of hydrological models see
Singh and Woolhiser [2002] and Kampf and Burges [2007].
In this study we do not consider the models that use
multiple soil layers to solve Richards’ equation, as many
of these models have an incomplete representation of
interflow and base flow.
[14] 2. Define the major model-building decisions. These

decisions include the architecture of the upper and lower
soil layers, and the parameterizations for simulating evap-
oration, surface runoff, percolation of water between soil
layers, interflow, and base flow.
[15] 3. Provide multiple options for each model building

decision. Different modeling options were drawn from four
parent models (Figure 3): the U.S. Geological Survey’s
Precipitation-Runoff Modeling System (PRMS) [Leavesley
et al., 1983, 1996], the N acramento model [Burnash et
al., 1973; Burnash, 1995 n et al., 2004], TOPMODEL

[Beven and Kirkby, 1979; Ambroise et al., 1996; Beven,
1997; Duan and Miller, 1997; Iorgulescu and Musy, 1997];
and different versions of the Variable Infiltration Capacity
(ARNO/VIC) model [Zhao, 1977; 1984; Wood et al., 1992;
Liang et al., 1994] which borrows from the ARNO model
[Todini, 1996]. The parent models include many and varied
processes that interact with the subsurface (e.g., the vege-
tation submodels), but for this study we restrict attention to
the subsurface in order to make the analysis manageable.
[16] In contrast to other studies that assess model com-

plexity [e.g., Desborough, 1999; Atkinson et al., 2002], this
study diagnoses differences among model structures that are
deemed (without additional information) to be equally
plausible model structures, and we therefore have no a
priori expectations of which models will perform better
than others.
[17] The construction of models in this study is deliber-

ately limited in scope in order to make the analysis
manageable. We therefore consciously exclude performing

Figure 3. Simplified wiring diagrams for each of the four parent models (the state variables and fluxes
are defined in Tables 1 and 2, respectively). Here Zuz and Zlz denote the depth of the upper and lower soil
layers, and qwlt, qfld, and qsat denote the soil moisture at wilting point, field capacity, and saturation.
Saturation-excess runoff (qsx) is defined as the fraction of precipitation that falls on saturated areas of the
basin and does not infiltrate into the soil; qsx is shown as originating from the lower-zone storage in
TOPMODEL because lower-zone storage in TOPMODEL controls the saturated area.
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any surface energy balance calculations. We do not explic-
itly model interception and storage of water by the vegeta-
tion canopy or transpiration and evaporation of intercepted
water. We also do not explicitly simulate the accumulation
and ablation of the snowpack (models were forced with
daily estimates of rain plus snowmelt produced from sim-
ulations using the National Weather Service SNOW-17
model). All models are run as a lumped model at a daily
time step in which routing is calculated using a Gamma
distribution. As noted previously, the parent models include
many of the above processes.
[18] Despite these simplifications, the models are

designed to provide a relatively complete representation of
the major hydrologic fluxes in the subsurface. To illustrate
this point, consider models that are excluded from this
study. Many land surface models use multiple soil layers
to solve Richards’ equation (i.e., vertical water movement
[Boone and Wetzel, 1996]), but use a relatively simple
treatment of surface runoff and base flow. In many land
surface models water simply dribbles out the bottom of a
multilayer soil column [Wetzel et al., 1996; Boone and
Wetzel, 1996]. These models are well suited for their
intended purpose: modeling energy and mass exchanges
between the land and atmosphere, but are incomplete from a
hydrologic perspective, and are thus not assessed as part of
our study.
[19] Clearly, these design principles can be expected to

influence the results that follow. By ensuring that all models
represent the subsurface with a similar level of detail (or
simplicity), and by ignoring other process components such
as snow and vegetation, any intermodel differences are
avoided that may occur because some models include
specific processes and other models do not. For example,
as part of PILPS 2(d) Luo et al. [2003] demonstrated large
differences between models that do and do not include soil
freezing processes. Nevertheless, we believe that the art of
modeling is to ensure that all relevant hydrological processes
are included and that appropriate computational weight be
given to each process on the basis of its relative importance.
Hence, the emphasis in FUSE is not in the intermodel
differences that arise from ‘‘missing processes’’; rather, in
the intermodel differences that arise from different (but
equally complete) plausible representations of the real
world.

4. Model Formulation

[20] The major model building decisions are the archi-
tecture of the upper soil la er (the unsaturated zone), the
architecture of the lower s er (the saturated zone), and

the choice of parameterization for evaporation, vertical
percolation of water between the two soil layers, interflow,
base flow, and surface runoff. The following sections
describe the construction of the 79 models in terms of their
state equations and flux parameterizations. Tables 1 and 2
define model state variables and model fluxes, while Tables 3
and 4 define model parameters.

4.1. State Equations for the Upper Layer

[21] The water content of the upper soil layer (S1) can be
defined by a single state variable (TOPMODEL, ARNO/
VIC (equation (1a)), separate state variables for tension
storage (below field capacity) and free storage (above field
capacity) (Sacramento (equation (1b)), and further discreti-
zation of upper zone tension storage into two zones (PRMS
(equation (1c)). The state equations are

dS1

dt
¼ p� qsxð Þ � e1 � q12 � qif � qufof ð1aÞ

dST1
dt

¼ p� qsxð Þ � e1 � qutof

dSF1
dt

¼ qutof � q12 � qif � qufof

ð1bÞ

dSTA1
dt

¼ p� qsxð Þ � eA1 � qurof

dSTB1
dt

¼ qurof � eB1 � qutof

dSF1
dt

¼ qutof � q12 � qif � qufof

ð1cÞ

Table 1. State Variables

Variable Description Units

S1 Total water content in the upper soil layer mm
S1

T Tension water content in the upper soil layer mm
S1

TA Primary tension water content in the upper soil layer mm
S1

TB Secondary tension water content in the upper soil layer mm
S1

F Free water content in the upper soil layer mm
S2 Total water content in the lower soil layer mm
S2

T Tension water content in the lower soil layer mm
S2

FA Free water content in the primary base flow reservoir mm
S2

FB Free water content in the secondary base flow reservoir mm

Table 2. Model Fluxes

Variable Description Units

p Precipitation mm d�1

pet Potential evapotranspiration mm d�1

e1 Evaporation from the upper soil layer mm d�1

e2 Evaporation from the lower soil layer mm d�1

e1
A Evaporation from the primary tension store mm d�1

e1
B Evaporation from the secondary tension store mm d�1

qsx Surface runoff mm d�1

q12 Percolation of water from the upper to the
lower layer

mm d�1

qif Interflow mm d�1

qb Base flow mm d�1

qb
A Base flow from the primary reservoir mm d�1

qb
B Base flow from the secondary reservoir mm d�1

qurof Overflow of water from the primary tension
store in the upper soil layer

mm d�1

qutof Overflow of water from tension storage in the
upper soil layer

mm d�1

qufof Overflow of water from free storage in the
upper soil layer

mm d�1

qstof Overflow of water from tension storage in the
lower soil layer

mm d�1

qsfof Overflow of water from free storage in the
lower soil layer

mm d�1

qsfofa Overflow of water from primary base flow
storage in the lower soil layer

mm d�1

qsfofb Overflow of water from secondary base flow
storage in the lower soil layer

mm d�1
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where state variables and fluxes are defined in Tables 1 and 2,
respectively. In equations (1b) and (1c) precipitation is
added to free storage when the tension storage is at capacity
(as represented by qutof; see section 4.8). In the formulations
that follow, the variables S1

T, S1
F, and S1 are required. These

variables are not always tracked as model states, but can
be estimated from equation (1a) as S1

T = min(S1, S1,max
T ) and

S1
F = max(0, S1 � S1,max

T ); from equation (1b) as S1 = S1
T +

S1
F; and from equation (1c) as S1

T = S1
TA + S1

TB and S1 = S1
TA +

S1
TB + S1

F.

4.2. State Equations for the Lower Layer

[22] The lower soil layer can be defined by a single state
variable with no evaporation (TOPMODEL and PRMS
(equation (2a)), a single state variable with evaporation
(ARNO/VIC (equation (2b)), or a tension reservoir com-
bined with two parallel tanks (Sacramento (equation (2c)).
The state equations are

dS2

dt
¼ q12 � qb ð2aÞ

dS2

dt
¼ q12 � e2 � qb � qsfof ð2bÞ

dST2
dt

¼ kq12 � e2 � qstof

dSFA2
dt

¼
1� kð Þq12

2
þ
qstof

2
� qAb � qsfofa

dSFB2
dt

¼
1� kð Þq12

2
þ
qstof

2
� qBb � qsfofb

ð2cÞ

where again state variables and fluxes are defined in
Tables 1 and 2, respectively. Tension storage in equation (2b)
(used to compute evaporation) is S2

T = min(S2, S2,max
T ), and

total lower-zone storage ation (2c) is S2 = S2
T + S2

FA +
S2
FB.

4.3. Evaporation

[23] When evaporation is modeled in both soil layers,
evaporation parameterizations can be broadly classified into
‘‘sequential’’ and ‘‘root weighting’’ schemes. In the sequen-
tial method, the potential evaporative demand (pet) is first
satisfied by evaporation from the upper soil layer, and any
residual evaporative demand is satisfied by evaporation
from the lower soil layer:

e1 ¼ pet
min ST1 ; S

T
1;max

� �

ST1;max

ð3aÞ

e2 ¼ pet � e1ð Þ
min ST2 ; S

T
2;max

� �

ST2;max

ð3bÞ

[24] In the root-weighting method, evaporation is com-
puted on the basis of the relative root fractions in each of the
soil layers [e.g., Desborough, 1997]:

e1 ¼ pet r1

min ST1 ; S
T
1;max

� �

ST1;max

ð3cÞ

e2 ¼ pet r2

min ST2 ; S
T
2;max

� �

ST2;max

ð3dÞ

where r1 and r2 are the relative root fractions in the upper
and lower layer (r1 + r2 = 1). Note from equations (3a)–(3d)
that the root weighting method will produce higher
evaporation from the lower soil layer when the soil is at
field capacity (assuming r2 > 0).
[25] The peculiarities in model architecture require slightly

different applications of the evaporation parameterizations.

Table 3. Adjustable Model Parameters

Parameter Description Units Lower Limit Upper Limit

S1,max Maximum storage in the upper layer mm 50.000 5000.000
S2,max Maximum storage in the lower layer mm 100.000 10000.000
ftens Fraction total storage as tension storage - 0.050 0.950
frchr Fraction of tension storage in primary zone (upper layer) - 0.050 0.950
fbase Fraction of free storage in primary reservoir (lower layer) - 0.050 0.950
r1 Fraction of roots in the upper layer - 0.050 0.950
ku Percolation rate mm day�1 0.010 1000.000
c Percolation exponent - 1.000 20.000
a Percolation multiplier for the lower layer - 1.000 250.000
y Percolation exponent for the lower layer - 1.000 5.000
k Fraction of percolation to tension storage in the lower layer - 0.050 0.950
ki Interflow rate mm day�1 0.010 1000.000
ks Base flow rate mm day�1 0.001 10000.000
n Base flow exponent - 1.000 10.000
v Base flow depletion rate for single reservoir d�1 0.001 0.250
vA Base flow depletion rate for primary reservoir d�1 0.001 0.250
vB Base flow depletion rate for secondary reservoir d�1 0.001 0.250
Ac,max Maximum saturated area (fraction) - 0.050 0.950
b ARNO/VIC ‘‘b’’ exponent - 0.001 3.000
l Mean of the log-transformed topographic index distribution m 5.000 10.000
c Shape parameter defining the topographic index distribution - 2.000 5.000
mt Time delay in runoff days 0.010 5.000
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In the PRMS architecture where there are two tension
reservoirs in the upper layer (refer to the state equation (1c)),
the fluxes e1

A and e1
B are computed using either (3a) and (3b)

or (3c) and (3d), with corresponding substitutions of the
state variables for each of the tension stores (in this case
evaporation is not computed from the lower soil layer).
Moreover, (3a) is used in the TOPMODEL architecture
where evaporation is only computed from the upper soil
layer (refer to state equation (2a)).

4.4. Percolation

[26] Richards’ equation is commonly viewed as the
physically correct method to model vertical water move-
ment [e.g., Boone and Wetzel, 1996]. However, large-scale
application of Richards’ equation is based on the assump-
tions that the soil is spatially homogeneous and that func-
tional relations can be specified that relate moisture content,
capillary potential, and hydraulic conductivity of the soil
[Henderson-Sellers et al., 1993; Beven, 2002]. In this study
three conceptual models are used to parameterize percola-
tion of water from the upper to lower soil layer:
[27] Percolation is parameterized as

q12 ¼ ku
S1

S1;max

� �c

ð4aÞ

q12 ¼ ku
SF1

SF1;max

 !c

ð4bÞ

q12 ¼ q0dlz
SF1

SF1;max

 !

ð4cÞ

where in equation (4c) q0 is the base flow at saturation
(computed using equation (6), described below), and dlz is
the lower-zone percolation demand

dlz ¼ 1þ a
S2

S2;max

� �

y

ð4dÞ

[28] Note that each parameterization has two parameters.
Equation (4a) (used in VIC) is equivalent to the gravity
drainage term in Richards’ equation, and often has a large
exponent c to limit drainage below field capacity. In
contrast, equation (4b) ( n PRMS) does not allow
drainage below field cap and the exponent is often

close to unity. Nonlinearities in percolation in the Sacra-
mento parameterization in equation (4c) [Burnash et al.,
1973] are controlled by lower-zone storage; percolation will
be fastest when the lower zone is dry.

4.5. Interflow

[29] In this study we use a simple parameterization of
interflow

qif ¼ 0 ð5aÞ

qif ¼ ki
SF1

SF1;max

 !

ð5bÞ

where the option of zero interflow is allowed because
interflow is not parameterized explicitly in TOPMODEL
and ARNO/VIC.

4.6. Base Flow

[30] The parameterizations for base flow in this study are

qb ¼ vS2 ð6aÞ

qb ¼ vAS
FA
2 þ vBS

FB
2 ð6bÞ

qb ¼ ks
S2

S2;max

� �n

ð6cÞ

qb ¼
ksm

ln
n

S2

mn

� �n

ð6dÞ

which define a single linear reservoir (PRMS, equation (6a)),
two parallel linear reservoirs (Sacramento, equation (6b)), a
nonlinear storage function used tomimic the parameterization
in ARNO/VIC (equation (6c)), and the TOPMODEL power
law parameterization (equation (6d)). In the TOPMODEL
case, the storage capacity of the lower zone ismn = S2,max, and
therefore the subsurface depth scaling parameterm = S2,max/n.
In equation (6d) the parameter ln is the mean of the power-
transformed topographic index (defined in equation (8) below).
[31] Implementing the TOPMODEL parameterization

requires a distribution of topographic index values for each
river basin [Beven and Kirkby, 1979]. While it is possible to
derive such distributions from digital terrain data, in this

Table 4. Derived Model Parameters

Parameter Description Units Equation

S1,max
T Maximum tension storage in the upper layer mm S1,max

T = ftensS1,max

S2,max
T Maximum tension storage in the lower layer mm S2,max

T = ftensS2,max

S1,max
F Maximum free storage in the upper layer mm S1,max

F = (1 � ftens)S1,max

S2,max
F Maximum free storage in the lower layer mm S2,max

F = (1 � ftens)S2,max

S1,max
TA Maximum storage in the primary tension reservoir mm S1,max

TA = frchrS1,max
T

S1,max
TB Maximum storage in the secondary tension reservoir mm S1,max

TB = (1 � frchr)S1,max
T

S2,max
FA Maximum storage in the primary base flow reservoir mm S2,max

FA = fbaseS2,max
F

S2,max
FB Maximum storage in the secondary base flow reservoir mm S2,max

FB = (1 � fbase)S2,max
F

r2 Root fraction in the lower soil layer - r2 = 1 � r1

ln Mean of the power-transformed topographic index m equation (8)
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study the topographic index distribution was defined using a
three-parameter Gamma distribution. Following Sivapalan
et al. [1987],

f zð Þ ¼
1

cG fð Þ

z � m

c

� �f�1

exp �
z � m

c

� �

ð7Þ

[32] The variable z = ln(a/tan b) has mean l = cf + m
and variance c2f, where f = (l � m)/c. The mean (l) and
shape parameters (c) are kept as adjustable parameters, but
the offset is set to m = 3. The offset m = 3 is consistent with
published probability distributions of the log-transformed
topographic index (as shown by Beven [1997]).
[33] Equation (7) defines the topographic index in log

space (mean value = l), so it is necessary to transform the
topographic index to be consistent with the power law
transmissivity profile used in equation (6d). The mean of
the power-transformed topographic index is

ln ¼

Z

1

0

exp zð Þ½ �
1=n f zð Þdz ð8Þ

where ln can be computed as a preprocessing step. Note
that the quantity (ksm)/ln

n in equation (6d) is temporally
constant, so equation (6d) is functionally very similar to
equation (6c).
[34] The base flow parameterizations are intimately tied

to the lower-zone architecture. The correspondence is as
follows: The single linear reservoir (equation (6a)) is used in
conjunction with a single reservoir of infinite size (state
equation (2a)), two parallel reservoirs (equation (6b)) are
used in conjunction with the two parallel reservoirs de-
scribed by state equation (2c), the nonlinear storage function
(equation (6c)) is used in conjunction with a single reservoir
of fixed size (state equation (2b)), and the TOPMODEL
power law parameterization (equation (6d)) is used in
conjunction with a single reservoir of infinite size (state
equation (2a)). Other combinations of base flow parameter-
izations and lower-layer architecture are technically possi-
ble, but do not add any additional information. For example,
using (6c) in conjunction with (2a) is equivalent to using
(6d) with (2a); it is possible to modify the parameters in (6a)
to account for fixed storage, but this modification changes
the form of the base flow parameterization and is really just
a special case of equation (6c) where the exponent is one.
For these reasons the selection of base flow parameter-
izations and lower-zone architecture is a single modeling
decision (see section 5).

4.7. Surface Runoff

[35] In this study surface runoff is only generated using
the saturation-excess mechanism, where rain falls on satu-
rated areas of the basin. Saturated area, Ac, is computed as

Ac ¼
ST1

ST1;max

Ac;max ð9aÞ

Ac ¼ 1 �
S1

S1;max

�b

ð9bÞ

Ac ¼

Z

1

zcrit

f zð Þdz ð9cÞ

where the parameterizations in equations (9a)–(9c) are
based loosely on the methods used in PRMS, ARNO/VIC,
and TOPMODEL, respectively, and zcrit is defined below.
[36] The topographic index distribution is defined using

the Gamma distribution in equation (7). The critical (power
transformed) topographic index value for saturation is
[Rupp and Woods, 2008]

zcritn ¼ ln

S2

S2;max

� ��1

ð10aÞ

which is transformed to log space by

zcrit ¼ ln zcritn


 �n� 


ð10bÞ

so the integral in equation (9c) can be solved efficiently
using the incomplete Gamma function.
[37] The modeled saturation-excess runoff is then simply

qsx ¼ Acp ð11Þ

4.8. Bucket Overflow

[38] Additional fluxes of water occur when one of the
storages reach capacity (Table 1). In the upper soil layer, the
bucket overflow from the primary tension store (qurof)
represents precipitation into the second tension store
(equation (1c)); the bucket overflows from tension storage
(qutof) represent precipitation into free storage (equations (1b)
and (1c)); and the bucket overflow from free storage (qufof)
represents additional surface runoff (equations (1a)–(1c)). In
the lower soil layer, the bucket overflow from tension storage
(qstof) represents additional vertical drainage (q12) into
free storage (equation (2c)), and the bucket overflow from
free storage represents additional base flow (equations (2b)
and (2c)).
[39] Following Kavetski and Kuczera [2007], logistic

functions are used to smooth the thresholds associated with
the fixed capacity of model storages:

qurof ¼ p� qsxð ÞF STA1 ; STA1;max;w
� �

ð12aÞ

qutof ¼
p� qsxð Þ F ST1 ; S

T
1;max;w

� �

; equation 1bð Þð Þ

qurof F STB1 ; STB1;max;w
� �

; equation 1cð Þð Þ:

8

<

:

ð12bÞ

qufof ¼
p� qsxð Þ F S1; S1;max;w


 �

; equation 1að Þð Þ

qutof F SF1 ; S
F
1;max;w

� �

; equations 1bð Þ and 1cð Þð Þ

(

ð12cÞ

qstof ¼ k q12 F ST2 ; S
T
2;max;w

� �

ð12dÞ
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qsfof ¼ q12 F S2; S2;max;w

 �

ð12eÞ

qsfofa ¼
1� kð Þq12

2
þ
qstof

2

� �

F SFA2 ; SFA2;max;w
� �

ð12f Þ

qsfofb ¼
1� kð Þq12

2
þ
qstof

2

� �

F SFB2 ; SFB2;max;w
� �

ð12gÞ

In equations (12a)–(12g) F(S, Smax, w) is the logistic
function, and is computed as

F S; Smax;wð Þ ¼
1

1þ exp
S � Smax � we

w

� � ð12hÞ

where w is the degree of smoothing (w = rSmax) and e = 5 is
a multiplier that ensures storage is always less than capacity.
The r parameter is used to specify the degree of smoothing
as a fraction of total storage in each state variable. In this
study we use r = 0.01 for all model state variables.

4.9. Routing

[40] The time delay in runoff is modeled using a two-
parameter Gamma distribution [Press et al., 1992]

P a; xð Þ ¼
g a; xð Þ

G að Þ
ð13aÞ

Here g(.) is the incomplete Gamma function, a is the shape
of the Gamma distribution, and

x ¼ t
a

mt

ð13bÞ

where t is the time delay (in days), and mt is the mean of
the Gamma distribution (also in days). While the mean of
the time delay histogram, mt, is held as an adjustable
parameter, the shape of the time delay histogram is fixed
(a = 3). Equation (13a) is used to compute the fraction of
runoff in the current time step which is discharged in each
future time step.

5. Multimodel Configuration

[41] Models in FUSE are constructed by combining many
of the different architecture and flux parameterizations
given in section 4. The scope for producing a comprehen-
sive multimodel set is limited by the ability of different
components to work together in a seamless fashion as well
as managing the vast computing power required as the
dimension of the problem increases. To make this a feasible
task several key decisions were made that reduced the
complexity of the problem. These are given below.
[42] 1. Choose between three possible upper layer archi-

tectures (equations (1a)–(1c)).
[43] 2. Choose between three possible lower-layer archi-

tectures (equations (2a)–(2c)) and their associated base flow
parameterizations (equations (6a)–(6d)).

[44] 3. Choose between three possible percolation param-
eterizations (equations (4a)–(4c)).
[45] 4. Choose between three possible parameteriza-

tions to compute saturated areas and surface runoff
(equations (9a)–(9c)).
[46] 5. Only the sequential method for evaporation was

applied (equations (3a)–(3b)).
[47] 6. Interflow was not computed in any of the models.
[48] 7. Models were run using a daily time step, and

hence infiltration-excess runoff was not computed by any of
the models.
[49] 8. A gamma distribution was used to route runoff to

the basin outlet in all cases (equation (13a)).
[50] This resulted in 108 possible models (3 * 4 * 3 * 3)

– recall that the base flow parameterizations (equations
(6a)–(6d)) are tied to the choice of lower-zone architecture
(equations (2a)–(2c)), and together provide 4 modeling
options (not 4 * 3). Some model combinations were deemed
unsuitable (for example, equation (4a) computes percolation
of water between the two soil layers on the basis of total
water storage in the upper soil layer, but this parameteriza-
tion is only really appropriate when the upper soil layer is
defined by a single state variable (equation (1a)). All cases
where model components were incompatible were removed,
resulting in 79 models for the subsequent analyses.
[51] To simplify programming, the multiple modeling

options were configured using a modular structure. Each
flux equation (i.e., evaporation, percolation, interflow, base
flow, and surface runoff) was formulated as a function of the
model state. A separate subroutine was used for each flux
parameterization, and FORTRAN-90 ‘‘case’’ statements
were used to distinguish between the different modeling
options. The modeled fluxes were then used in model state
equations to compute the time derivative of model states,
where again FORTRAN-90 case statements were used to
distinguish between the different model architectures.
FUSE differs from other modular hydrological models
[e.g., Leavesley et al., 1996; 2002] because it modularizes
individual flux equations, rather than linking existing sub-
models. Imposing a modular structure at the level of
individual flux equations greatly simplifies adding new
modeling options; the only real constraint is the computing
resources required to run the large number (>1000) of
possible model structures.
[52] The computational scheme for FUSE is detailed in

Appendix A. Briefly, model equations are solved using an
implicit scheme with adaptive substeps. As pointed out by
Kavetski et al. [2003], controlled numerical solutions such
as the implicit scheme used in FUSE are much more
accurate than the fixed-step ‘‘operator-splitting’’ explicit
Euler method that is commonly used in hydrological mod-
els. Moreover, it is straightforward to use the implicit
scheme to solve equations from multiple model combina-
tions (for example, there is no need to define the order of
flux calculations as in the operator-splitting approach).

6. Results

6.1. Model Performance

[53] The 79 models assessed in this study are all equally
plausible model structures, and given that there is no further
information on their performance, we assume that all
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models perform equally well when provided with an opti-
mal parameter set. To test this assumption each model was
calibrated separately over the period 1980–1990 using the
Duan et al. [1992] shuffled complex evolution (SCE)
method (data from 1979 was used for model spin-up).
Specifically, SCE was used to identify the parameter set
in each individual model with the lowest root mean squared
error (RMSE) as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

qsimi � qobsi


 �2

s

ð14Þ

where qi
sim and qi

obs are the simulated and observed
streamflow for the ith day in the calibration period, and n is
the number of days in the calibration period (n = 4018 days).
SCE calibration runs were limited to a maximum of 10,000
function evaluations.
[54] To enable comparisons with published MOPEX

results [Duan et al., 2006], model performance is assessed
using the Nash-Sutcliffe score,

NS ¼ 1�

X

n

i¼1

qsimi � qobsi


 �2

X

n

i¼1

qobsi � qobs
� �2

ð15Þ

which is simply the ratio of the sum of squared errors to the
variance in observed streamflow. The only difference
between the Nash-Sutcliffe score and the RMSE is that
the Nash-Sutcliffe score is scaled by the variance in
observed streamflow (the denominator in equation (15)).
Use of the RMSE and Nash-Sutcliffe scores emphasizes
errors in high flow.
[55] Figure 4 compares the performance of the 79 models

developed with FUSE against the performance of the eight
models that participated in the MOPEX experiment. Results
show that the new models perform just as well as the
models that participated in MOPEX. The slightly ‘‘better’’
performance in Figure 4 most likely occurs because our
calibration strategy (minimizing RMSE) mimics the
MOPEX assessment of model performance (Nash-Sut-
cliffe); no attempt was to ensure that the optimal

parameter sets in each model minimizes other objective
functions related to low flow and runoff ratios. The various
groups that participated in MOPEX all used different
calibration strategies, some groups relied on a priori model
parameters and other groups examined multiple objective
functions [Duan et al., 2006].
[56] The most salient feature of Figure 4 is that model

performance is generally worse in the Guadalupe than in the
French Broad. There can be many reasons for poor model
performance in the Guadalupe, such as missing processes
(no mechanism for infiltration-excess runoff, no vegetation
submodel), bad input data, or simply that runoff in the
Guadalupe is sensitive to the spatial patterns of precipitation
that are not resolved by lumped models. FUSE can easily be
extended to include additional processes, additional spatial
detail, and the additional temporal resolution required to
resolve the infiltration-excess runoff mechanism.
[57] An interesting result from Figure 4 is that the differ-

ences in the performance of 79 models developed for this
study are much smaller in the French Broad basin (the
wetter basin) than in the Guadalupe (the drier basin). In the
French Broad the majority of models have a Nash-Sutcliffe
score close to 0.8, whereas Nash-Sutcliffe scores in the
Guadalupe range from 	0.4 to 	0.65. The miniscule differ-
ences in model performance in the French Broad imply
there is enough flexibility in the different model structures
to enable a good fit to measured streamflow, whereas the
large differences in model performance in the Guadalupe
imply that some model structures may be better suited to
that basin than others. Put differently, the choice of model
structure in the Guadalupe is just as important as the choice
of model parameters. Section 6.2 seeks to identify reasons
for the large differences in model performance in the
Guadalupe.
[58] Note that in contrast to the results from the 79 models,

there are large differences in performance of the MOPEX
models in the French Broad (Figure 4). The differences
between the performance of the MOPEX models can be
attributed to both differences in the calibration strategy as
well as differences in model structure. In this study an
identical calibration strategy was used for each of the 79
models, so, unlike the MOPEX experiment, differences in
model performance in this study can be attributed solely to
differences in model structure.

Figure 4. Cumulative probability distribution of Nash-Sutcliffe scores in the two study basins. Models
participating in MOPEX [Duan et al., 2006] are shown with symbols and the bold line shows results from
the 79 models constructed for this study.
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6.2. Relationship Between Model Performance and
Model Structure

[59] In this section we seek to identify reasons for the
differences in model performance in the Guadalupe River
basin. Attention is focused solely on the Guadalupe because
significant differences in model performance are not dis-
cernable in the French Broad. The reasons for differences in
model performance will undoubtedly depend on the dom-
inant runoff generation mechanisms in the basin where the
model is applied, which depends on both the climate regime
and basin characteristics. Results for the Guadalupe are
presented as an example of how the choice of model
structure can impact model performance.
[60] A first step for diagnosing differences between

models is to examine periods where models perform poorly.
The squared errors on each day have a discrete contribution
to the root mean squared error (equation (14)). The fraction
of total error attributable to a specific number of days in the
time series can then be identified simply by ranking the time
series of squared errors in each model from highest to lowest.
These results are shown for the Guadalupe River basin in
Figure 5, and show that approximately 70% of the total error
is caused by errors on only 10 days in the calibration period.
Close inspection of these periods may help understand
reasons for the difference in model performance.
[61] Figure 6 illustrates time series of precipitation and

runoff for theGuadalupe River basin, alongwith color coding
that identifies time periods when each of the 79 models have
absolute errors larger than 1 mm d�1. As expected, errors
are largest during large precipitation events, periods gener-
ally less than 1–2 days in duration when the models either
overestimate or underestimate the observed streamflow
response to precipitation. Differences in model performance
could therefore potentially be explained by differences in
surface runoff generation nisms.

[62] Figure 7 illustrates the mean and standard deviation
of the time series of saturated area, as computed by each of
the 79 models. The models with the highest skill (purple-
blue colors) are those with a relatively low mean and high
standard deviation in saturated areas. In these models
saturated area is controlled by lower-zone storage
(equation (9c), the squares in Figure 7). Inspection of the
time series of saturated area from each of the models shows
that the models that use equation (9c) have low-frequency
variability in saturated areas (not shown). Figure 7 thus
demonstrates there is some relationship between model
performance and model structure; however, there are no
data to test if the saturated area dynamics predicted by
equation (9c) are realistic for the Guadalupe River basin (as
was done by Guntner et al. [1999]).

7. Summary and Discussion

[63] This paper introduces a computational framework to
diagnose differences in hydrological model structures: the
Framework for Understanding Structural Errors (FUSE).
FUSE was used to construct 79 ‘‘new’’ hydrological mod-
els, each having a different structure. These new models
were used to simulate streamflow in two of the basins used
in the second and third workshops of the Model Parameter
Estimation Experiment (MOPEX): the Guadalupe River
(Texas) and the French Broad River (North Carolina).
Model analyses involve assessment of model performance
and diagnosis of model output during time periods with
large errors.
[64] Results show that the performance of the 79 models,

as evaluated using the Nash-Sutcliffe score, is as least as
good as the performance of the eight models that partici-
pated in the MOPEX experiment. However, the Nash-
Sutcliffe score emphasizes errors in high flow, and by itself
is a weak metric for model evaluation [Schaefli and Gupta,
2007]. Further work is needed to evaluate model perfor-
mance with respect to multiple criteria, including assess-
ment of model performance during low-flow periods [Boyle
et al., 2000], assessment of model performance in the
frequency domain [Parada et al., 2003], and assessment
of model performance with respect to ‘‘diagnostic signa-
tures’’ that are extracted from the data to explain different
hydrological processes in the basin [Gupta et al., 2008;
Yilmaz et al., 2008]. This research will help identify
extensions to the model framework that are necessary to
simulate dominant hydrological processes in basins where
the model is applied.
[65] Differences in model performance are much smaller

in the French Broad River basin (the wetter basin) than in
the Guadalupe River basin (the drier basin). The nondis-
cernable differences in model performance in the French
Broad imply there is enough flexibility in the different
model structures to enable a good fit to measured stream-
flow; that is, model parameters can compensate for model
structural differences. In contrast to the French Broad, the
large differences in model performance in the Guadalupe
imply that some model structures may be better suited to
that basin than others. However, it is unlikely that a single
model structure provides the best streamflow simulation for
multiple basins in different climate regimes [e.g., van
Werkhoven et al., 2008], so future work is necessary to

Figure 5. The fraction of total error that is attributable to a
specific number of days in the time series in the Guadalupe
River basin (see text for computational details). The box-
and-whisker icon shows the distribution of fractional error
from all 79 models (minimum, lower quartile, median, upper
quartile, and maximum).
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Figure 6. Time series of observed precipitation and observed runoff for every second year in the 11-year
calibration period (1980–1990) for the Guadalupe River basin. The colored bar charts above each plot
denote the number of models (out of 79) with large errors in each time step: red bars denote models that
underestimate runoff (residual < �1 mm d�1), and blue bars denote models that overestimate runoff
(residual > 1 m ).
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diagnose relations between model performance and struc-
ture across a diverse range of river basins.
[66] The differences in model performance in the Guada-

lupe River basin (for high-flow events) are related at least in
part to the choice of parameterization for saturated areas.
The models that have the highest Nash-Sutcliffe score use
surface runoff parameterizations in which saturated areas
are controlled by water storage in the lower soil layer.
Variability in saturated areas in these parameterizations is
much more damped than in other parameterizations. How-
ever, there are no data to test if the modeled saturated area
dynamics are realistic for the Guadalupe River basin. In this
context it is worth noting that no models have mechanisms
for generating infiltration-excess runoff, and the saturated-
area parameterizations may compensate for this model
weakness. Future work in well-instrumented basins is also
necessary to evaluate the capabilities of different models to
simulate hydrological states and fluxes at internal points in
the river basin (i.e., are we getting the right answers for the
right reasons?).
[67] Diagnosis of model errors in the Guadalupe River

basin shows that the multimodel response to large precip-
itation events is quite consistent in that most models either
overestimate or underestimate measured streamflow. At first
glance this suggests there is actually limited potential to use
outputs from our multimodel configuration as an estimate of
model uncertainty. Ideally, simulations of streamflow from
different model structures will bracket the observed stream-
flow [e.g., Butts et al., 2004; Georgakakos et al., 2004;
Vrugt and Robinson, 2007]; when this does not occur (as in
this study) it can be viewe eing indicative of a lack of

independent information in different models. However, the
consistency in model errors may also arise because errors in
model inputs affect different models in similar ways.
Moreover, the ensemble may not bracket the measurements
because all models have similar weaknesses (e.g., no
mechanisms for generating infiltration-excess runoff, no
vegetation submodel, no representation of the spatial vari-
ability in precipitation). Future work is also necessary to
both separate errors in model inputs from errors in model
structure [e.g., Clark and Slater, 2006; Kavetski et al.,
2006a, 2006b; J. A. Vrugt et al., Treatment of input
uncertainty in hydrologic modeling: Doing hydrology back-
ward with Markov Chain Monte Carlo simulation, submit-
ted to Water Resources Research, 2007], and rigorously
quantify the independence between different models [e.g.,
Abramowitz and Gupta, 2008].
[68] The problems of identifying the most appropriate

model structure for a given problem and quantifying the
uncertainty in model structure remain outstanding research
challenges for the discipline of hydrology. We did not seek
to fully resolve these problems in this paper. We have
presented the differences between models using consistent
notation, and introduced FUSE so as to evaluate model
differences in a controlled way. Our initial application of
FUSE exposed a relationship between model performance
and model structure for the drier of the two basins exam-
ined, suggesting that the choice of model structure is just as
important as the choice of model parameters. New under-
standing of model structural differences can be obtained by
addressing the following questions.
[69] 1. What are the differences between model structures

when they are evaluated using multiple criteria? Do some
model structures reproduce different parts of the hydrograph
(or different internal states) better than others? Is the trade-
off between objective functions different in different model
structures?
[70] 2. Are relations between model performance and

structure consistent between different river basins? Is it
possible to identify model structures that are best suited to
different climate regimes?
[71] 3.Domodel simulations fromdifferentmodel structures

mimic reality (are we getting the right answers for the right
reasons)? To what extent can data from well-instrumented
basinsbeused to identifymodel structures thatproducecredible
simulations of hydrological states and fluxes?
[72] 4. How much independent information is in different

model structures? Can model structures be designed to
maximize the information content in (and value of) the
multimodel ensemble?
[73] These questions pose staunch challenges to the

hydrologic modeling community, but progress on these
matters will surely aid our predictive abilities. To facilitate
research on these problems, the FORTRAN-90 source code
for FUSE is available upon request from the lead author.

Appendix A: Computational Scheme

[74] Model equations are solved using an implicit scheme
with adaptive substeps. The implicit scheme

Snþ1 ¼ Sn þ
dS0nþ1

dt
Dt ðA1Þ

Figure 7. Mean and standard deviation of the saturated
area time series for the Guadalupe River basin, as simulated
by each of the 79 models. The color coding defines model
skill, and the symbols identify the parameterization that was
used to simulate saturated areas: UZ LINEAR refers to
equation (9a) (PRMS); UZ PARETO refers to equation (9b)
(ARNO-VIC); and LZ GAMMA refers to equation (9c)
(TOPMODEL). The labels PARETO and GAMMA refer to
the parametric distributions used in equations (9b) and (9c),
respectively.
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requires iteratively computing model fluxes for the vector of
states S0n+1 until Sn+1 = S

0
n+1 (within some error tolerance).

Equation (A1) is solved using the Newton-Raphson method
combined with line searches, as detailed by Press et al.
[1992]. New state vectors in the Newton-Raphson method
are based on the Jacobian matrix defining partial derivatives
of the function F = jSn+1 � S

0
n+1j with respect to model

states S

Jij ¼
@Fi

@Sj
ðA2Þ

where all derivatives in J are computed numerically. Step
size is controlled by comparing the implicit solution using
two time steps with the implicit solution in a single time
step. A new step size is introduced according to

Dt0 ¼ sDt

ffiffiffiffiffiffiffiffiffiffi

ecrit

Dmax

r

ðA3Þ

where s is a safety factor (s = 0.9), ecrit is the critical
threshold for reducing/increasing the step size (ecrit =
0.001), and Dmax is the maximum absolute difference in
fractional model states between the one-step and two-step
solutions. The use of the implicit solution requires many
function evaluations to compute the Jacobian matrix,
especially in models with many state variables, but it is
straightforward to use this method to solve equations from
multiple model combinations.
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