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Abstract: Over the last decade, the development of machine-learning models has enabled the de-
sign of sophisticated regression models. For this reason, studies have been conducted to design
predictive models using machine learning in various industries. In particular, in terms of inventory
management, forecasting models predict historical market demand, predict future demand, and
enable systematic inventory management. However, in most small and medium enterprise (SMEs),
there is no systematic management of data, and because of the lack of data and the volatility of
random data, it is difficult for prediction models to work well. Since the predictive model is a core
function derived from the management of the enterprise’s inventory data, the poor performance of
the model causes the company’s inventory data-management system to be degraded. Companies that
have poor inventory data because of this vicious cycle will continue to have difficulty introducing
data-management systems. In this paper, we propose a framework that can reliably predict the
inventory data of a firm by modeling the volatility of a firm stochastically. The framework makes the
prediction using the point prediction model by means of LSTM(Long Short Term Memory), the 2D
kernel density function, and the prediction result reflecting inventory-management cost. Through
various experiments, the necessity of interval prediction in demand prediction and the validity of the
cost-effective prediction model through the readjustment function were shown.

Keywords: LSTM; 2D kernel density estimation; forecasting framework; smart manufacturing

1. Introduction

Since the global financial crisis, the global manufacturing industry has faced growth
limitations due to the long-term economic recession and rising labor and raw material
costs. In developed countries, the manufacturing labor population decreases due to falling
fertility rates and avoidance of manufacturing, and the industrial structure changes to a
service-oriented economic structure due to low-wage manufacturing avoidance and service
preference. In this situation, smart manufacturing technology is emerging as a new way to
overcome the growth limitations of the manufacturing industry and innovate. Recently,
as product functions, quality, performance, and environmental demands required by major
industries increase, the technical and economic burden for the production of competitive
products is increasing. In addition, manufacturing powerhouses are promoting manu-
facturing revival policies by establishing plans for the 4th Industrial Revolution through
the convergence of manufacturing ICT (Information and Communications Technology).
The production method is changing from partial automation to automatic production using
communication and simulation between machines, agile production, customized produc-
tion, and mass production of multiple varieties based on the Internet of Things, big data,
cloud computing, and robots. Not only is the process optimization achieved by connecting
the inside of the factory and the outside of the factory through a network, but it is also
promoting productivity improvement and cost reduction by connecting manufacturing
and real-time.
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Smart Manufacturing is a concept and technology for achieving enterprise-wide op-
timization by connecting both industrial devices and production processes to a network
through the convergence of ICT and manufacturing industries. This provides process opti-
mization, efficiency, and flexibility in production facilities for problems such as production,
process control and repair of existing factories, and workplace safety. With these advances
in technology, mass customization to satisfy the detailed requirements of various customers
basically requires on-demand factory technology. Mass customization refers to new pro-
duction and marketing methods that lower costs through mass production of customized
products and services, and requires multiple capabilities, but the most important factor is
managing product processes and supply chains to respond to changes in customer needs.

The development of machine learning has had a major effect across many industries.
Among them, Smart Manufacturing has an environment where various machine-learning
solutions such as a massive amount of data are gathered by means of various sensors and
investment is concentrated. In fact, various solutions have already been developed and
applied to energy efficiency [1–5], equipment-condition monitoring [6–11], and product-
defect detection [12–14] in Smart Manufacturing construction. In particular, the application
of machine-learning algorithms to inventory management can help to effectively reduce
costs for many companies. Until now, we have been predicting market demand based
on human intuition or on poorly performing data-prediction techniques. On the other
hand, by means of machine learning, it is possible to predict future outcomes effectively by
using accumulated data. In fact, research is currently under way to predict market demand.
In the area where data collection such as the electric-power market is organized, various
demand-forecasting systems based on machine learning have already been introduced to
the business solution system. For SMEs that small produce a large variety of products, a sys-
tematic inventory-management system is needed to minimize losses caused by inventories
and provide a smooth supply of products. However, most SMEs do not have systematic
inventory management, and many companies manage inventories based on handwritten
inventories created by judging orders for products by intuition. However, relying on
intuition is a big risk for the enterprise and can lead to huge inventory-management costs.
Machine-learning-based demand-forecasting models, which have already proven effective
in many cases, are expected to be introduced in SMEs to help reduce their risk significantly.
Several studies have already been done on the design of predictive models. However,
there are few studies that can be applied to actual SMEs. One of the most important points
in the design of the predictive model is that each company must have enough historical
data. However, in most SMEs, systematic data management is not under way, and the
needed data is either missing or has a large error in the recorded value. Poor data collected
without a systematic data-management system can adversely affect the performance of
the predictive model and render the predicted results meaningless. Therefore, a prediction
system that can indicate the reliability of the data together with the output of the predicted
results by means of machine learning is needed for the SMEs. In this paper, we first design a
demand-prediction model based on LSTM (Long-Short-Term Memory). Next, we quantify
the variability of the data as a function of the 2D kernel mill, and the error range is visual-
ized by calculating the maximum and minimum errors of the prediction result according to
the reliability. Finally, we propose a demand forecasting model that minimizes the cost by
adjusting the predicted amount to reflect the cost incurred if there is insufficient prediction
compared to the actual value and the excess cost. Briefly, we examine the usefulness of 2D
KDE-based interval prediction techniques with various advantages over cost-effective and
general point prediction-based demand forecasting using inventory data from volatile and
difficult to handle SMEs. The main contributions of our paper are as follows.

• Mix of point and interval presentations based on LSTM and 2D kernel density func-
tion’s algorithmic utility test and application through cost-effective functions;

• The composition of a demand forecasting framework and utility test that can cope
with various rapidly changing situations using actual SMEs in Korea, forwarding data
for five years.
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This paper is organized as follows. In Section 2, we introduce a previous study on
demand forecasting by means of machine learning. Then, we introduce the LSTM tech-
nique and the kernel-density estimation technique, which are mainly used in the proposed
algorithm. Section 3 presents the overall framework of the demand forecasting proposed
in this paper and the algorithm for each part. In Section 4, we examine the effect of the
proposed algorithm on randomly generated data and actual demand data of SMEs. Finally,
Section 5 summarizes the results of the study and concludes by introducing some future
research directions.

2. Related Work
2.1. Machine-Learning Based Demand Forecasting

As companies continue to develop, the level of demand for accuracy in predicting
product demand only increases. There are factors that further complicate the relationship
between them in an environment where the size of the company expands and consumer
demand changes due to changes in personal preferences. Therefore, we need to choose a
more suitable prediction methodology to solve these problems. The inventory demand
prediction problem is the time series prediction problem. Several attempts have been
made to predict market demand based on machine learning. In general, research on
market-demand forecasts is actively under way in the data-rich power market. Data-based
market-demand forecasting requires enormous amounts of data. The power market, which
automatically collects data based on sensors, can make various attempts for prediction.
In [15,16], the authors applied the deep-learning model to the prediction of the power
load and showed that it works quite well. J. Toubeau et al. [17] predicted multivariate
power-market scheduling based on deep running. Predictions of not only demand but
also solar-power generation were done in various studies, and it was possible to find
significant prediction results for complex natural phenomena [18–20]. There have been
many attempts to predict demand by means of machine learning for other items besides
the electric-power market. Ref. [21] proposed a technique for accurately predicting rice
demand using RNN and LSTM techniques. In addition, because big data is collected in
various areas, research on prediction models using machine-learning techniques is being
done for predicting demand for water resources in urban areas [22], electric-charge demand
for electric vehicles [23], and crude-oil demand [24]. In order to predict the demand of
fashion companies, the development of algorithms from a data-driven perspective was
studied by using machine learning techniques and identifying important predictors. Many
of these studies show that demand forecasting is very difficult.

2.2. LSTM

In the last decade, because of the development of computing capabilities and the
increasing availability of analytical data, various data-analysis techniques have developed
rapidly. In particular, models that predict future outcomes based on historical data have
been studied and applied in various industries. Predictive models by means of neural
networks have shown excellent performance in predicting complex nonlinear time-series
data [25], especially when compared to sophisticated physical models [26]. The Recurrent
Neural Network (RNN) model has a recursive structure that can transfer the information
of the last state to the current state. It works well in time-series data analysis. As shown in
the Figure 1, the weights of each node are updated in the course of learning for the hidden
layer existing between the input layer and the output layer. The traditional RNN algorithm
is effective, but has some limitations. A typical problem is gradient loss, in which a part of
the information disappears in each feedback process [27]. As the distance between certain
information and the location of the information becomes longer, the gradient gradually
decreases in the back-propagation process, and thus the time dependence cannot be stably
captured when the model moves out of a certain step. In addition, it has the disadvantage of
analysis based on past data while disregarding information contained in a future situation.



Appl. Sci. 2022, 12, 2380 4 of 18

Figure 1. RNN unit.

In order to overcome the gradient loss problem of the RNN structure, the proposed
network structure is LSTM (Long-Short Term Memory). The LSTM adds a cell state to the
hidden layer of the RNN. The structure is shown in the Figure 2. The learning is performed
by discarding or updating a value according to the weight by means of the gates included
in the cell state. Each cell guarantees the reliability of information transmission and avoids
the problem of loss of gradient [28]. The formula of the LSTM structure is as follows.

ft = σ(Wx f xt + Wh f ht−1 + b f ) (1)

it = σ(Wxixt + Whiht−1 + bi) (2)

ot = σ(Wxoxt + Whoht−1 + bo) (3)

gt = tanh(Wxcxt + Whcht−1 + bc) (4)

cT = fT } ct + it } gt (5)

ht = ot } cttanh(ct) (6)

Figure 2. LSTM unit.

The most influential factors in predicting inventory demand are sudden changes
in situations and events that require real-time response. These factors can be said to have
nonlinear properties. Various data analysis techniques have been rapidly developed over the
past decade with the development of computing capabilities and the increase of analytical
data. In particular, the development of a prediction model that predicts future results
based on past data is being studied and applied in various industries. More and more
predictive models through neural networks have shown good performance in predicting
complex nonlinear time series data, and case studies using linear and nonlinear models
using ensemble techniques are also being actively used. Refs. [29,30] used LSTM to predict
the life of the mechanical device, and [31] used an LSTM model to predict power demand
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for a short time. Ref. [32] conducted a study on smart metering customers in general homes,
and deep-RNN surpassed ARIMA 19.5%, SVR 13.1%, and general RNN 6.5%, in terms of
RMSE, compared to the latest techniques of predicting loads in the home.

2.3. Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric technique for estimating the
statistical function of a random variable. The method for estimating the random variable
can be classified into parametric and nonparametric methods. The parametric density
estimation begins by mathematically modeling the Probability Density Function (PDF)
prior to the estimation. Typically, it is used to follow the modeling by means of the
normal distribution. Although this parametric estimation technique has the merit of
being simple, it is difficult to apply it in reality, because it must assume the distribution
of data in advance. The nonparametric parameter estimation technique estimates the
probability density function based on the collected data. For the observed random variable
x, the probability density function can be estimated as follows.

f (In) =
1

n · h
n

∑
t=1

K(
In − In(t)

h
) (7)

In order to estimate kernel density, it is important to decide which function is used as
a kernel function. In this paper, we use the most frequently used Gaussian kernel functions,
which we can be modeled as follows

K(
In − In(t)

h
) =

1√
2π

e−
1
2
(

In − In(t)
h

)
2

(8)

h = 1.06 · σn−
1
5 (9)

In this case, h is the bandwidth, and the optimal parameter values in [33] are given as
follows. In this paper, the reliability of the predicted data is expressed by measuring the
variability of the data and modeling the probability distribution of the variability by means
of the kernel-density estimation technique. So far, we have organized the composition and
utilization of the LSTM model and 2D KDE model, which were mainly used in this study,
as well as previous studies on demand forecasting using machine learning. In the next
section, we will examine the demand forecast framework configured using these models.

3. 2D KDE and LSTM-Based Forecasting Framework for Cost-Effective
Inventory Forecasting
3.1. 2D KDE and LSTM-Based Prediction Algorithms for Inventory Forecasting

In this paper, we design a forecasting model that predicts future results based on past
data for demand data of a one-dimensional time-series type. The prediction model is largely
composed of the following three steps. (1) Point-prediction through LSTM; (2) Interval
prediction through 2D kernel density estimation; (3) Perform cost-effective rebalancing of
forecast results through interval prediction. In the first step, point prediction is performed
by means of LSTM. Point prediction refers to a prediction technique that outputs the result
of a prediction as a single value. One performs point prediction based on past data and
derives the result as a single predicted value. Second, interval prediction is done by means
of a 2D kernel-density estimation. In interval prediction, unlike the point prediction, a range
in which a predicted value exists is derived as a section. Finally, in the third step, we use
the result of the two-step interval prediction to readjust the point estimate of the first step.
At this time, the cost function of the inventory management is reflected in the rebalancing
process, so that the cost can be minimized. The overall structure of the framework is shown
in Figure 3. In the case of the data used here, since it is SME’s forwarding data for five
years and it is a SME, there is a large change in demand, and there are many outliers too.
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Figure 3. Overall architecture of the framework.

3.2. Interval Prediction by Means of 2D Kernel Density Estimation

The prediction model based on the LSTM described above is a point prediction method
that outputs one value about what the future value will be based on the learned data. How-
ever, it is very difficult to find a specific pattern for randomly fluctuating data and to predict
future outcomes. No matter how sophisticated the prediction model is, the predictive per-
formance of such data drops. Therefore, the point prediction method has a disadvantage in
that it is difficult to trust the predicted result according to the state of the data. In order
to overcome these limitations, we generally use the interval prediction method. Interval
prediction is a prediction method that outputs a section including a prediction result, rather
than deriving a prediction result as a single value. It has a different range depending on
the reliability: the higher the reliability, the larger the range, and the smaller the range,
the more reliable the output. Generally, in the regression model, the prediction interval is
calculated based on the actual value and the error between the models. This method is
based not on the variability of the data but on how well the model is tailored to the learning
data. However, for the learning model designed by means of LSTM, the training data is
learned at a very sophisticated level and good predictions are the result. Therefore, since
the error between the learning section and the model is very small, it is difficult to expect
a great effect of the interval prediction based on the error. Therefore, in order to predict
the interval of the LSTM model, the interval prediction method based on the variability
of the data should be introduced rather than the learning rate of the model. In this paper,
we propose a new interval-estimation method suitable for the LSTM model. The proposed
interval-estimation method is based on the modeled probability distribution based on the
variability of the data. In order to predict the interval, we first design a 2D KDE map
based on past data. The 2D KDE map aims to model the probability distribution based on
variability. Therefore, we derive the volatility by differentiating the original data. On the
other hand, the differential results of the data are correlated with the original values. In the
section where the value of the original data is large, the value is likely to drop, whereas in
the section where the value of the original data is small, the value is likely to rise. In other
words, since the probability-density function indicating the variability depends on the origi-
nal data value, the original data is divided into several sections, and the probability-density
function is modeled by differentiating the original data for each section. The algorithm is
as follows (Algorithm 1) and the results are derived as shown in Figure 4.
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Algorithm 1 Creating 2D KDE map
Input: rawData, smoothing rate, quanti
Output: KDEmap, rawScale, diffScale

1: procedure
2: Creating 2D KDE map(trainTimeSeries, trainLabel, testTimeseries, n,l)
3: di f f Data < −calcDi f f erentiation(Dataset)
4: di f f Data, di f f Scale < −Quantilization(di f f Data)
5: di f f Data, rawScale < −Quantilization(rawData)
6: for I < −len(di f f Data)
7: GroupByLocation[rawData[i]].append(di f f Data[i])
8: X = np.arrange(0, QD, 1/smoothingrate)
9: for I < −len(QR)

10: estimator = GaussianKDE(GroupByLocation[i])
11: KDEmap[:, i] = estimator.evaluate(X)
12: return KDEmap, rawScale, di f f Scale
13: end procedure

Figure 4. 2D KDEmap example. (Left) KDEmap represented by three consecutive probability density
function. (Right) KDEmap where three discrete function are represented by a heatmap.

Algorithm 1 is used to derive a 2D KDE map modeled by the interval probability-
density function. Next, we derive the interval prediction result according to the reliability by
means of the derived 2D KDE map. For the interval prediction results, the point prediction
results are first derived, and the result is combined with the 2D KDE map to derive the
maximum and minimum values. One converts the point prediction result according to the
scaling value derived from Algorithm 1 and selects a suitable probability-density function
from among the various probability-density functions. Then, a suitable maximum value
and minimum value are derived according to the input reliability. The algorithm is as
follows (Algorithm 2).

In this way, the result of the interval prediction according to the variability of the data
is derived. The result can represent reliable predictions to the user along with the point
prediction result. In addition, the prediction result can be readjusted by combining the
result of the interval prediction and the result of the point prediction. Such a readjusted
prediction result can be more reliable than the previous point prediction result. The results
of the interval prediction are expressed as follows.

Pmax = P + KDE+(σ) (10)

Pmin = P + KDE−(σ) (11)
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In this case, P represents the predicted value by means of the LSTM model, and KDE+

and KDE− denote the maximum and minimum values of the prediction interval derived
from the 2D kernel density function, respectively.

Algorithm 2 CalcConfidenceInterval.
Input : Predicted, KDEmap, confidencial rate, rawScale
Output : Distance data, trainDistance, testDistance

1: procedure
2: calcConfidenceInterval(Predicted, KDEmap, con f idencialrate, rawScale)
3: Rate < −(1− con f identialrate)
4: Scaled < −rawScale.trans f orm(Predicted)
5: for I < −len(Predicted)
6: for j < −KDEmap.shape[0]
7: Intervalmin +−KDEmap[j, Scaled[i][0]
8: if(Intervalmin >= Rate) :
9: con f idenceInterval[0] = j

10: break
11: for j < −KDEmap.shape[0]
12: Intervalmax +−KDEmap[KDEmap.shape[0]− j− 1, Scaled[i][0]
13: if Intervalmax >= Rate :
14: con f idenceInterval[1]− KDEmap.shape[0]− j− 1
15: break
16: return con f idenceInterval
17: end procedure

3.3. Calculation of Adjusted Estimates Reflecting the Cost of Prediction Error

In general, if the forecast for a demand for a product is wrong, costs will be incurred.
To reduce these costs, the forecasting model must derive accurate predictions. At this time,
the costs that result from the errors are not the same as when the demand is overestimated
or insufficiently predicted. Excessive demand forecasts lead to inventory and storage costs.
On the other hand, if the demand is insufficient, costs will also be incurred. In general,
in terms of enterprise inventory management, it is advantageous to order large quantities
of products, so that a higher discount rate can be applied to reduce the ordering cost per
unit. If the demand is insufficiently predicted, the cost will be incurred by applying this
discount rate relatively less. In this way, the costs incurred in each case when the demand is
overestimated or underestimated are not the same. In this paper, we propose a prediction
interval based on the proposed 2D kernel density estimation and propose a cost-saving
prediction model derived from it. The model is constructed as follows. First, the per-unit
transient prediction cost and the per-unit underprediction cost are mathematically modeled.
In general, storage costs per unit in inventory management take a linearly increasing model
of the number of items that must be kept. On the other hand, for order cost per unit, we
adopt a model that exponentially decreases as the number of items is increased by applying
the discount rate. Then, the cost is applied to the point prediction result and the interval
prediction result by means of the previously designed prediction model. Excessive forecasts
lead to increased storage costs, and poor forecasts lead to higher order costs. The revised
forecasts focused on cost savings can be expressed by the following formula.

Pre = P− (P× overweight) + (P× underweight)→ overweight > underweight (12)

Pre = P + (P× overweight)− (P× underweight)→ overweight < underweight (13)

overweight =
Cover

Cover + Cunder
(14)

overweight =
Cunder

Cover + Cunder
(15)
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4. Performance Analysis
4.1. Experiment Design

We first designed a demand-prediction model based on LSTM. Second, we quantify the
variability of the data as a function of the 2D kernel mill, and the error range is visualized
by calculating the maximum and minimum errors of the prediction result according to
the reliability. Last, we propose a demand forecasting model that minimizes the cost by
adjusting the predicted amount to reflect the cost incurred if there is insufficient prediction
compared to the actual value and the excess cost. We designed an experiment to evaluate
the performance of the proposed algorithm. First, the prediction performance of the
LSTM is evaluated with respect to the randomly generated periodic-function data. Second,
the performance is verified by doing predictions based on actual inventory data. Then,
the confidence interval of the prediction result is set up by means of the 2D kernel density-
estimation technique proposed in this paper, and the effect is confirmed. Finally, we
confirm whether the revised forecast is effective in terms of cost reduction, reflecting the
cost of forecast error. The data used in the experiments is divided into randomly generated
periodic-function data (Sine Data) and actual enterprise inventory data. First, randomly
generated data has 50 values per year, and it is generated as a total of 250 datasets for
5 years. The period of the sine function shape is circular, and the deviation and size increase
linearly with the year. The random noise is added to complete the dataset. Four years’
worth of data, 80% of all data, are used as learning data, and the remaining 20% of one-year
data is used as test data. The data on the demand data are data on one item among the
various products of the S company, which is an SME company(plastic injection molding)
of the Republic of Korea. The volume of shipments (demand) is organized by week and
consists of data from 2016 to September 2019 (3Q). Of the total data, data from 2016 to 2019
(about 83%) will be used for training, and data for the remaining 2020 (until September)
will be used for the test. Each experiment is designed to test the validity of the model.
For Sine data, 50 test sets are divided into 5 sets of 10 tests to obtain the predicted values
for each set, and the error rate is calculated. On the other hand, the warehousing out data
is divided into 4 sets of 10 pieces, which are the predicted values for each set, because data
for 2020 to be used as a test are not available after September. By means of this validation,
the reliability of the experimental results is secured.

The PC used in the experiment is equipped with Intel R CoreTM i7-8700K CPU @
3.70 GHz, two-core four-logic processor, and supports 32 GB RAM. Table 1 shows the
parameter settings for the LSTM model configuration, and for optimal configuration, loss
function evaluated using rmsse and map. The optimizer optimized the model using the
adam function, which is commonly used in time series data, and set epoch 1000 times, batch
size 4 and verbose 2 to fit the model. Figure 5 shows the Year-wise Box plot and Month-wise
Box plot, respectively, to identify the characteristics of the data before time series analysis.
In general, trends are identified through the annual Box plot, and Seasonality is identified
through the monthly Box plot. In addition, in the case of circularity generally viewed,
it reflects repeated but non-periodic fluctuations and usually requires a two-year period,
but in this case, it meets the conditions because it is five-year data. When the properties
of the data were identified using the Augmented Deckey Fuller Test (ADF Test) for the
normality test, 0.23 was derived for the p-value value, which was larger than 0.05, so the
normality test was completed. This experiment, which applies various time series analysis
models using inventory data, aims to determine whether the desired level of predictive
performance can be recorded when learning is performed on actual data.
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Figure 5. Box plot and seasonality of the real inventory data.

Table 1. LSTM model parameter.

LSTM
units 100

return_sequence True

compile loss function
root_mean_squared_error

Mean_absolute _percentage _error

optimizer adam

fit

nb_epoch 1000

batch_size 4

verbose 2

4.2. Performance Accuracy Analysis

Prior to confirming the effectiveness of the algorithm by means of actual inventory
data, we verify the performance of the LSTM algorithm by means of our own test data.
The accuracy of the prediction model according to the noise level of the test data is confirmed.

Table 2 shows the prediction performance of the LSTM prediction model for the ran-
dom period signal. An experiment was conducted based on random signal data five times,
and each RMSE and MAPE value was derived. A total of five experimental averages were
obtained so that the more severe the noise, the more significant the difference was. As can
be seen from the experiment, the greater the random variation because of the increase in
noise, the less accurate the prediction. That is, the variability of the data greatly affects
the performance of the prediction algorithm. For SMEs, inventory data is difficult to be
regularized because of the nature of the enterprise; the system of inventory management is
inadequate, and there are many factors that greatly affect the performance of the company.
Therefore, inventory data of SMEs has a large random variation. This leads to a decline in
performance in predicting inventory data by means of predictive models. The following is
the result of forecasting performance from the D company’s warehouse data. As explained
in Experimental design, a total of four LSTM models were tested from 2016 to 2019 Septem-
ber data as training sets and from the remaining 2020 September data as test datasets.
The purpose of this experiment is to find out how volatile the warehousing data of SMEs
is and to find out the similarity with random signal data. Table 3 shows the predictive
performance of the LSTM model for warehousing out data. The prediction error is higher
than that for random data of the same condition. This implies that the warehousing out
data is very fluctuative. The data used in the experiments are data from actual SMEs, which
showed much more growth in 2019 than in the previous year. This irregularity lowers the
reliability of the results of the prediction model and makes it difficult to apply it to the field.
Therefore, for the inventory-forecasting system for SMEs, it is necessary to design an appro-
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priate forecasting model that takes into consideration the cost of inventory management,
while expressing the reliability of the forecasting results in view of such volatility.

Table 2. Performance of LSTM prediction for random signal.

Noise 0.5

#1 #2 #3 #4 #5 Average

RMSE 81.26246 117.6317 51.70315 82.43249 88.79546 84.36505

MAPE 3.498915 4.735661 2.440641 5.03232 5.401816 4.22187

Noise 1.0

#1 #2 #3 #4 #5 Average

RMSE 139.8895 199.44 231.1574 173.0788 173.7208 183.4573

MAPE 5.077092 7.807049 11.14622 9.198444 8.848312 8.415424

Noise 1.5

#1 #2 #3 #4 #5 Average

RMSE 320.0853 269.0784 262.721 269.6649 193.4566 263.0013

MAPE 11.6281 9.711254 11.57804 12.08087 10.46633 11.09292

Noise 2.0

#1 #2 #3 #4 #5 Average

RMSE 317.9036 300.7283 335.1237 272.3147 228.4517 290.9044

MAPE 12.67522 10.22078 13.586 14.58546 10.63073 12.33964

Table 3. Performance of LSTM prediction for warehousing out data.

Warehousing Out

#1 #2 #3 #4 Average

RMSE 653.9884 727.7047 1051.383 1094.891 881.992

MAPE 90.57324 32.43212 37.1611 37.0847 49.285

4.3. The Effect of Interval Prediction by 2D Kernel Density Estimation

The 2D kernel density estimation proposed in this paper can be used to predict the
location of the predicted results according to the confidence level. Interval prediction
measures the variability of the accumulated data and models the probability distribution to
see how much difference there can be from the predicted results. The following experiment
confirms the effect of the interval prediction by estimating the 2D kernel density based
on the variability. First, we check the estimated quantity of demand and the quantity of
demand for randomly generated data.

The increase in noise means that the volatility increases accordingly. As can be seen in
Figure 6, as the noise increases, the prediction interval becomes wider. That is, the increase
in the variability because of noise adversely affects the prediction result by means of the
LSTM, which makes it difficult to obtain accurate predicted values. Since the interval
prediction has an advantage, in that it can secure the reliability of the prediction result, it
can be suitably used to obtain the prediction result by means of the data of the SMEs with
high volatility.

In Figure 7, it can be seen whether the actual value of is included in a prediction
interval. Generally, the higher the reliability, the wider the range, and the lower the
reliability, the narrower the range. Therefore, the fact that the actual value is located in the
lower reliability means that the prediction result is similar to the actual value. By means of
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this experiment, we confirmed that only two values out of the 200 actual values (Dataset: 4;
length of sequence: 10; number of sequence: 5) were out of the range.

Figure 6. The result of interval prediction for random period data.

Figure 7. Random value: What prediction range the actual value belongs to.
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As can be seen from the previous prediction performance experiments, the warehous-
ing out data is more variable than the randomly generated periodic signals. Accordingly,
the prediction interval by means of the interval prediction also has a very wide range.
The experimental results show that all of the 40 real values exist in the predictor, the rest,
except for 2, are located in the 80% confidence interval, and the result is very stable. As a
result, the prediction model by means of the LSTM for the data of SMES with a large volatil-
ity is much less accurate, but the interval prediction by means of the 2D kernel density
estimation technique helps to secure the reliability of the prediction result by modeling
such variability (Figures 8 and 9).

Figure 8. The result of interval prediction for warehousing out data.

Figure 9. Warehousing out: What prediction range the actual value belongs to.

4.4. Calculation of Cost Savings by Incorporating Forecasting Error Cost

Finally, in this paper, we derive the adjusted prediction results, which are calculated by
recalculating the optimal prediction results reflecting the cost of the prediction error, based
on the results of the previously derived point prediction and the interval prediction. First,
regression modeling is performed on the transient prediction cost and the underestimation
cost. A regression model can be constructed from data from a small company, D, that
provided the data used in the study. First, the cost of transient forecasting is directly related
to the cost of storage per unit, since unnecessary inventories must be kept. For D firms,
the storage cost per unit is fixed at KRW 687, which is linearly increased as the prediction
error increases.

On the other hand, tribal forecasting costs are the opportunity costs that result from
insufficient demand forecasts and high discount rates. Figure 10 illustrates how to derive
the underestimation cost. The forecasting cost can be expressed by the following formula.

Price(V) = (−1331.6296)× log(V + 13175.8341) + 37166.7634 (16)
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Figure 10. Calculating the underestimation cost.

In this case, V is the order quantity reflecting the prediction result, and Price is the
product price per unit. In order to derive the underestimation cost, we first calculate the
commodity price per unit according to the order quantity. The price per unit is not fixed,
and the larger the order, the more the discount rate is applied. Therefore, the price per unit
is regression modeled by means of curve fitting. The types of kernel functions to be used in
the experiments are selected by using three types of functions: linear, log, and inverse. We
used the data for 64 orders from D company and the order cost per unit. The experimental
results are as follows.

The experimental results on Table 4 show that the logarithmic function model is
suitable for modeling the order cost per unit. Using this, the price per unit can be modeled
as follows.

Table 4. Comparison of the linear function model, log function model, and inverse function model.

RMSE MAPE

Linear 1257.48 7.53
Log 1091.34 6.73

Inverse 1139.46 7.08

It is possible to calculate the forecasting error cost per unit, depending on the price
of the product per calculated unit. We adjust the predicted value over the overestimation
cost and underestimation cost per unit according to Equation (16). By means of the above
equation, the prediction result is readjusted to reduce the cost according to the weight of
each cost. Next, we test the effect of the cost reduction by comparing the prediction result
with the existing point prediction and the re-adjusted prediction result according to the
above formula. Based on the data for the years 2016–2019, we will output the forecast
results for 10 weeks in 2020. As in the above experiments, four validations are done. We
compare the predicted results by means of the general LSTM with the predicted results that
are readjusted by the interval prediction.(99%, 95%, 90%, 80%, each confidence interval).
At this time, the predicted result is not directly related to the order quantity. In order to
derive the order quantity, it is necessary to comprehensively consider the quantity of stock
currently possessed and the stock quantity to be secured for safety. Therefore, we add the
constant value to the predicted result to formulate the order quantity. However, since there
is no case where the order quantity becomes negative, the minimum constant value is set to
2000. In the experiment, the change of performance according to the change of the constant
value is confirmed.
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Experimental results show that cost increases are more effective as the constant value
increases and the order quantity increases (Table 5). In addition, as the confidence interval
of 2D KDE becomes larger, the cost-saving effect is reduced. As a whole, since the constant
value has exceeded a certain level, the readjusted result is consistently meaningful, and the
maximum savings of KRW 9,715,207 have occurred. On the other hand, according to the
constant value, the cost-saving effect did not appear in less than a certain level. As a result,
the smaller the order quantity, the larger the exponential increase in the predicted cost per
unit. Finally, we confirm that the result of the rebalancing for cost reduction is realistic.
According to the 64 order datasets used in the curve fitting step of the order cost per unit,
the quantity ordered at one time ranges from a minimum of 111 to a maximum of 10,560.
Using the Gaussian kernel estimation technique, we calculated the probability distribution
of the order quantity. As a result, the quantity ordered at one time was more than 101 at
99% probability, more than 8453 at 95% probability, and more than 837 at 90% probability
(Table 6).

According to the above experiment and Figure 11, the cost savings were continuously
shown when the constants in # 2 and # 3 exceeded the order volume in 2010 and 2015,
respectively. At this time, the minimum number of orders used in the formula is 70 and 113,
respectively. In reality, the probability of such a small order is less than 2%. Therefore, it can
be concluded that the proposed method can record meaningful results with a probability of
98.87% or more in reality.

Table 5. Cost savings based on constant values in each confidence interval (unit: KRW).

Constant 2000 3000 4000 6000 8000 Average
#1
99% 1,859,188 943,453 2,107,159 3,682,191 4,787,882 2,675,975

95% 1,306,212 1,010,844 2,157,144 3,718,619 4,818,596 2,602,283

90% 1,088,777 1,046,362 2,183,678 3,738,059 4,835,016 2,578,378

80% 88,505 1,087,452 2,214,534 3,760,780 4,854,282 2,559,511
#2
99% −232,066 1,113,496 2,697,204 3,045,578 3,376,220 2,000,086

95% 167,343 1,238,132 2,726,510 3,032,720 3,369,273 2,106,796

90% 411,675 1,311,673 2,744,334 3,025,380 3,365,288 2,171,670

80% 704,250 1,404,160 2,767,349 3,016,418 3,360,421 2,250,520
#3
99% −2,171,166 708,077 1,074,873 1,816,772 2,248,345 735,380

95% −992,408 695,522 1,096,472 1,825,633 2,223,315 969,713

90% −389,000 689,064 1,110,058 1,831,240 2,208,289 1,089,930

80% 266,405 682,180 1,127,245 1,838,353 2,190,066 1,220,850
#4
99% 4,812,424 878,052 3,558,210 7,319,740 9,582,977 5,230,281

95% 6,715,737 1,014,776 3,679,376 7,381,905 9,640,613 5,686,481

90% 7,156,724 1,093,754 3,749,402 7,417,947 9,674,145 5,818,394

80% 6,109,901 1,189,924 3,834,778 7,461,947 9,715,207 5,662,351

Average 1,730,906 1,006,684 2,426,770 3,994,580 5,015,621
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Table 6. The minimum value of the order quantity used in Equation (1) according to the con-
stant value.

#2, const 2000 2010
99% −232,066 34,466

95% 167,343 455,022

90% 411,675 691,177

80% 704,250 970,307

Minimum order quantity 70
#3, const 2060 2065
99% −690,314 44,527

95% 227,802 605,691

90% 685,110 512,652

80% 513,394 514,342

Minimum order quantity 113

Confidence interval 99% 95% 90%

Order amount 101 453 837

As a result, it can be confirmed that the re-adjusted prediction result reflecting the
prediction error cost is more effective in cost reduction than the general LSTM predic-
tion model.

Figure 11. Probability distribution of order quantity (probability of more than 113 orders is more
than 98.87% in reality).

5. Conclusions

In this paper, we propose an efficient demand-forecasting algorithm that reflects the
characteristics of SMEs. In order to manage inventory, an order quantity or order point
should be derived from the predicted results based on the output quantity data of the items
held by the company. In terms of forecasting the volume of stock, the characteristics of
SMEs are that they do not have a lot of data, because they have no systematic management,
and the random variability is very large. This characteristic is a major factor that greatly
degrades the accuracy of the prediction model. In this paper, first, we develop a demand-
forecasting model by means of LSTM. In addition, we model the variability of historical
data by means of the 2D KDE method, and derive the maximum and minimum values of
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the forecast results according to the reliability along with the forecasted output. Finally, cost-
effective forecasting results are derived by reflecting inventory ordering costs and storage
costs. Experimental results show that the proposed algorithm can perform reliable interval
estimations and can derive prediction results that can reduce the inventory-management
cost of the enterprise better than the single LSTM method can. In this paper, we propose
an algorithm that can derive reliable prediction results for highly volatile data. These
predicted results can be used as a core module in designing a simulator that calculates the
timing and quantity of order items for a company by means of simulation. In the case of
section prediction using 2D KDE, all 40 actual values were present within the prediction
section, and the rest, except for 2, were located in the 80% confidence section. The results
were found to be very stable, and the reliability of the prediction results was ensured. In
addition, the cost-effective functional technique also showed a cost-saving effect with a
98.87% probability in the real data experiment. The algorithm that we actually developed
was provided as a module for an inventory-management solution for the company that
provided the data. Future studies will design simulators based on predictions to develop
inventory-management solutions that can be used by small and medium-sized enterprises.
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