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ABSTRACT 
Ranking problem is becoming increasingly important in many 
applications, especially in information retrieval.  Many machine 
learning technologies have been proposed to solve this problem, 
such as RankSVM, RankBoost and RankNet.  Among them, 
RankNet, which is based on the probabilistic ranking framework, 
is leading to promising results and has been applied to 
commercial Web search engine.  Inspired by the success of 
RankNet, we conduct further study on the probabilistic ranking 
framework in this paper, and propose a novel loss function named 
Fidelity to measure loss of ranking.  This new loss function not 
only inherits effective properties of the loss function used in 
RankNet, it also possesses several new properties that are helpful 
for ranking.  This includes Fidelity loss obtaining zero for each 
desired document pair, and having a finite upper bound that is 
necessary for conducting query-level normalization.  In these 
aspects, the Fidelity loss is more consistent with widely-used 
query-level evaluation criteria for information retrieval.  To 
efficiently minimize Fidelity loss and learn an effective ranking 
function, we propose an algorithm named FRank based on a 
generalized additive model.  We provide experiments and 
significance test on a large-scale dataset collected from a 
commercial Web search engine showing that the proposed FRank 
algorithm provides significantly better results than RankSVM, 
RankBoost, and RankNet. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Retrieval Models 

General Terms 
Algorithms 

Keywords 
Learning to Rank 

1. INTRODUCTION 
In this information explosion era it is becoming more and more 
important to accurately retrieve relevant information based on 
user information needs.  The information retrieval (IR) problem is 
usually formulated as a ranking problem: provided a query and a 
set of documents, an IR system should provide an output of 
relevant documents ranked higher than irrelevant ones based on 
the query.  Several methods were proposed to solve this problem 
in the literature, such as Boolean model, vector space model, 

probabilistic model, and the language model.  These methods can 
be classified as empirical IR methods.  In addition, many machine 
learning methods have become more widely used over the past 
several years.  The learning-based methods aims to use the labeled 
dataset to learn the underlying ranking function of IR. 

There are several different ways to use learning-based methods to 
solve IR problems.  Indeed, one may regard IR as a binary 
classification problem in which documents are categorized as 
relevant or irrelevant.  However, for real-world search engines, 
documents cannot simply be classified into two types relative to 
user information needs; they should have multiple grades, such as 
highly relevant, partially relevant, definitely irrelevant, and so on.  
In contrast, several methods view IR as a ranking problem, such 
as RankBoost, RankSVM, and RankNet.  Unlike the classification 
method, ranking algorithms construct pairs between documents 
and use machine learning technique to minimize the number of 
misordered pairs.  Specifically, RankSVM is an ordinal regression 
approach to minimize the number of discordant document pairs.  
RankBoost attempts to directly solve the preference learning 
problem, rather than solving an ordinal regression problem.  
RankNet models the ordinal relationship between two documents 
by means of probability, and adopts a cross entropy to measure 
the distance between two probability distributions. 

According to [7], the probabilistic ranking framework has many 
optimal properties, and can better model multiple relevance levels.  
As a result, RankNet leads to efficient retrieval performance and 
is used in a commercial search engine.  Inspired by the success of 
RankNet, we conduct further study on probabilistic ranking 
framework and propose a novel loss function named Fidelity loss.  
This new loss function is inspired by the concept of Fidelity [21], 
which is widely in use to measure the difference between two 
states of a quantum in the field of physics [4].  Moreover, this 
new loss function inherits those properties of the probabilistic 
ranking framework, and has several additional usable properties.  
For instance, Fidelity loss can achieve zero for each desired pair 
probability, whereas cross entropy does not.  Moreover, Fidelity 
pair loss is bounded between 0 and 1, whereas cross entropy has 
no upper bound.  These new properties make Fidelity more 
feasible for defining an optimal ranking function in information 
retrieval. 

To learn the underlying ranking function, we further propose a 
generalized additive model to minimize this Fidelity loss.  As a 
result, our new learning method named Fidelity Rank (FRank) 
combines the generalized additive model with the probabilistic 



ranking framework.  Experimental results show the algorithm 
performs well on a large-scale dataset, which encompassed 19,600 
queries collected from a commercial internet search engine.  We 
also perform a t-test with the confidence level of 98%.  The 
corresponding results from our t-test show the improvements are 
statistically significant. 

The remainder of this paper is organized as follows.  We review 
the previous research in Section 2.  In Section 3, we revisit the 
probabilistic ranking framework and the fidelity measure, and 
describe the FRank algorithm.  Section 4 reports experimental 
results and discusses the relationship between different methods.  
We conclude our paper and discuss future plans in Section 5. 

2. RELATED WORK 
How to improve IR accuracy is attracting great attention, and in 
recent years, many machine learning technologies 
[7][8][10][11][15][19][20] have been studied to learn underlying 
ranking functions.  In [20], Nallapati treated IR as a binary 
classification problem that directly classifies a document as 
relevant or irrelevant with respect to given queries.  However, in 
real-world web searches, a page has multiple relevance levels, 
such as highly relevant, partially relevant, and definitely irrelevant.  
Therefore, some studies regard IR as a ranking problem: highly 
relevant web pages are ranked higher than partially relevant ones, 
and partially relevant ones are above irrelevant ones.  In the 
literature, many ranking algorithms are proposed; typical 
examples include RankBoost, RankSVM, and RankNet. 

Freund et al. [11] used the Boosting approach for learning a 
ranking function and propose RankBoost to solve the problem of 
combining preferences.  Their method aims to minimize the 
weighted number of pairs of instances that are misordered by the 
final ranking function.  The algorithm can be summarized as 
follows.  For each round t, RankBoost chooses tα and the weak 
learner th so as to minimize the pair-wise loss, which is defined 
by 
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where 0x is the instance ranked higher than 1x , 0 1( , )tD x x is the 
weight of pair 0 1( , )x x . After the optimal weak learner th is 
selected, the weight 0 1( , )tD x x is adjusted with respect to tα and 

th . The rule of adjustment is to decrease the weight of pairs if th
gives a correct ranking ( 1 0( ) ( )t th x h x> ) and increase otherwise.  
Finally, this algorithm outputs the ranking function by combining 
selected weak learners.  Owing to the greedy search nature of 
Boosting, RankBoost can be implemented in parallel and thus 
scale up to large datasets. 
Thorsten Joachims [19] proposed RankSVM algorithm, which 
uses Support Vector Machines (SVM) to learn retrieval function 
from click-through data.  RankSVM aims to minimize the number 
of discordant pairs, which is similar to RankBoost, and to 
maximize the margin (this is equal to minimize L-2 norm of the 
hyperplane parameter ω

��
).  Given a query, if the ground truths 

assert that document 1d is more relevant than 2d , the constraint 
of RankSVM is 1 2( , )  ( , )q d q dω ωΦ Φ>

�� ��
, where ( , )iq dΦ is the 

feature vector calculated from document id relative to query q.
Then, the whole RankSVM algorithm can be expressed as the 
following constrained optimization problem. 
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From a theoretical perspective, RankSVM is well-founded in the 
structure risk minimization framework, and is verified in a 
controlled experiment.  Moreover, the advantage of RankSVM is 
that it does not need human-labeled data, and can automatically 
learn the ranking function from click-through data. 

Burges et al. [7] proposed a pair-wise differentiable loss function 
based on their probabilistic ranking framework and used neural 
networks to optimize this criterion in a method named RankNet.  
Assume that the ranking model is : df R R� , so that the rank 
order of a set of testing samples is specified by the real value that 
the model takes.  Therefore, 1 2( ) ( )f d f d> is taken to mean that 
the model asserts that 1 2d d� . Given a set of pairs of training 
samples [di, dj] together with the target probability *

ijP of sample i
being ranked higher than sample j, a logistic function [3] can be 
used to map the output of the ranking function to a probability as 
follows: 
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where ( ) ( )ij i jo f d f d= − , and ( )ij i jP P d d= � . Then, cross 
entropy is adopted as the loss function for training, which can be 
represented as: 
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where ijC is the cross entropy loss of a pair (i, j), *
ijP is the 

desired probability, and ijP is the modeled probability. 
RankNet uses back-prop equation to optimize the above criterion.  
As compared to RankBoost and RankSVM, the loss function in 
RankNet is pair-wise differentiable, which can be regarded as an 
advantage in cases in which ground truths come from several 
annotators that may disagree.  Therefore, RankNet performs well 
in practice and successfully applies when used on a commercial 
search engine. 

3. FIDELITY RANK 
Inspired by the success of RankNet, we investigate probabilistic 
ranking framework [7] in this paper and propose a novel loss 
function named Fidelity loss.  In this section we discuss 
probabilistic ranking framework and the motivation of proposing 
a new loss function.  We also describe the fidelity loss function 
and its properties, and derive the FRank algorithm based on the 
additive model for minimizing the fidelity loss function.  This 
algorithm successfully combines probabilistic ranking framework 
with Boosting for learning an effective ranking function in 
information retrieval. 

 



3.1 Probabilistic Ranking Framework 
As mentioned in Section 2, in the probabilistic ranking framework, 
the map from outputs to probabilities is modeled by logistic 
function.  According to [7], this framework has the following 
properties: 

(1) The model puts consistency requirements on the *
ijP (for 

example, if ( )i jP d d� = 0.5, and ( )j kP d d� = 0.5, then 
( )i kP d d� = 0.5); 

(2) Any set of adjacency posteriors can uniquely identify a 
target posterior *0 1ijP≤ ≤ for every pairs of sample di, dj.

(3) The expected strengthening (or weakening) of confidence 
in the ordering of a given pair can be held. (For instance, if 

( )i jP d d� = 0.6, and ( )j kP d d� = 0.6, then ( )i kP d d�
> 0.6). 

When the outputs are mapped to probabilities, the general 
measure of probability distribution can be applied as the criterion 
for training, such as cross entropy, KL-divergence, and 
information radius.  In RankNet [7], cross entropy is adopted for 
this purpose, and a pair-wise differentiable loss function is 
proposed.  The loss function of a pair can be represented by 

* log(1 )ijo
ij ij ijC P o e= − + + , which is shown in Figure 1(a). 

The pair-wise cross entropy loss function provides a principal way 
to make the samples have the same rank of ground truths.  
Previous works show that the loss function is effective and the 
corresponding RankNet algorithm is successful.  However, if we 
carefully investigate Figure 1(a), we will find there are still some 
problems with this loss function. 

(1) Cross entropy loss function cannot achieve the real 
minimal loss, zero, expect for the posterior is 0 and 1.  This 
may make the corresponding learning algorithm inaccurate. 

(2) The penalization is too great when a pair is in the wrong 
position.  In other words, there is no upper bound for the 
loss of a pair, which may cause the training procedure to 
become biased by some hard pairs. 

Considering these problems, it is meaningful to investigate the 
other measures of probability distribution that can provide better 
properties for probabilistic ranking.  This is a key point in this 
paper. 

3.2 Fidelity Loss Function 
After investigating many different measures of probability 
distributions such as KL-divergence and information radius, we 
find that an optimal candidate for the criterion of ranking problem 
is Fidelity [21].  Fidelity is originally a distance metric in physics 
to measure the difference between two states of a quantum.  The 
fidelity of two probability distributions is defined by 

 ( , )x x x x
x

F p q p q≡∑

where { }xp and { }xq are the probability distributions.  Note that 
when the distributions { }xp and { }xq are identical, ( , )x xF p q =

xx p∑ = 1.  A better geometric understanding of the fidelity is 
that the fidelity is just the inner product between vectors with 
components xp and xq , which lie on a unit sphere. 
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(a)                                                 (b)            
Figure 1. Loss Function: (a) Cross Entropy Loss Function, (b) 

Fidelity Loss Function 
Fidelity is a useful quantity for mathematical purposes and is a 
clear physical interpretation.  Moreover, it is a meaningful 
measure candidate for the loss function of probabilistic ranking 
framework.  We adapt the fidelity measure so that the loss of a 
pair is measured by 

 * *( ) 1 ( (1 ) (1 ))ij ij ij ij ij ijF F o P P P P≡ = − ⋅ + − ⋅ −  

where *
ijP is the given target value for the posterior probability 

and ijP is the modeled probability; then, after the logistic function 
is adopted, ijF becomes 
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Figure 1(b) plots ijF as a function of ijo for three values *P = {0, 
0.5, 1}.  If * 0.5ijP = , it means that there is no information 
available as to the relative rank of the two samples, then ijF has 
its minimum at the origin.  Note that the loss of this pair can 
obtain zero.  This also gives us a principal way of training 
samples that we desire to have the same rank as the ground truth. 
Actually, the fidelity loss possesses all three properties of cross 
entropy in RankNet.  In addition, it also has some other properties 
that are helpful for ranking.  We elaborate on these properties in 
detail as follows. 

(1) Fidelity loss achieves the real minimal loss for each desired 
probability *P of pairs. 

Unlike the cross entropy in [4], the fidelity loss function has the 
zero loss for each pair.  This property makes the algorithm more 
accurate in the training phrase.   

(2) Fidelity loss of a pair is bounded between 0 and 1. 
If the loss of a wrong pair does not have an appropriate upper 
bound, some hard pairs lose too much when still not be placed in 
the correct position.  Therefore, their performance deteriorates, 
since the whole model is dominated by these hard pairs.  In this 
sense, fidelity loss is superior to cross entropy. 

(3) It is easy to define the fidelity loss of a query. 
The loss functions of RankSVM, RankBoost, and RankNet are all 
based on pair levels; however, the evaluation of IR is based on 
query level, such as mean average precision (MAP) [24][25], and 
normalized discounted cumulative gain (NDCG) [16][17].  This 
inconsistency causes some queries to be neglected in the training 
process.  However, since the fidelity loss of a pair is between 0 
and 1, the loss of a query can be easily considered by means of 



dividing the number of pairs in the given query, which can be 
represented as follows: 

 1
| # | ij

q ijq

F∑ ∑

where | # |q is the number of pairs for query q and ijF is the 
fidelity loss of a pair.  In this way, each query contributes equally 
to the total loss in the training process.  Therefore, the model is 
not dominated by those queries with a large number of document 
pairs. 
Although this definition of query-level fidelity loss looks natural, 
the similar extension to the query-level loss for previous ranking 
methods such as RankBoost and RankNet is non-trivial.  The 
major reason is that their loss functions do not have an 
appropriate upper bound.  Therefore, even after being normalized 
by the number of document pairs per query, we still cannot 
guarantee that every query contributes equally to the total loss. 

With the three new properties, we regard our proposed Fidelity 
loss as a more suitable measure of ranking loss.  In the next 
subsection, we discuss how to efficiently minimize this loss 
function so as to learn an effective ranking function. 

3.3 Algorithm Derivation 
Considering the efficiency and scalability for large-scale datasets, 
we adopt a generalized additive model similar to the boosting 
approach.  The primary consideration is that the additive model 
has great potential to implement in parallel since the evaluation of 
features is independent in the training process. 

In the additive model, the final ranking function is defined as: 

 ( ) ( )t t
t

H x h xα= ∑ ,

where ( )th x is a weak learner and tα is the combination 
coefficient of the weak learner, and t is the index of iterations. 
Consider the ranking function after the k-th iteration, 
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Given 1( )kH x− and ( )kh x , the criterion can be re-written as: 
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Setting the derivative of Equation (2) with respect to kα to zero, 
we have the expression as follows: 
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Note that for a general weak learner ( )kh x , solving a close form 
for kα from the above equation is quite difficult.  For simplicity, 
we adopt the same choice of weak learners as in [11], which are 
binary weak learners, to construct the final ranking function.  
When a binary weak learner is introduced, the above equation can 
be simplified because ,i j

kh only takes values -1, 0, and 1.  
Therefore, the equation can be expressed by 
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With some further derivations and relaxations, we eventually 
obtain 
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(4) 

Consequently, the algorithm operates in this way.  Using Equation 
(3), we train a new weak learner ( )kh x according to the current 
pair weight ,i jW , and combine this weak learner with the previous 
ones using the combination coefficient kα . In a stepwise manner, 
we eventually can obtain the final ranking function.  We name this 
algorithm Fidelity Rank (FRank), for which details are 
summarized in Figure 2. 
 



Algorithm: FRank 

Given: pair over all training queries, and weak learner candidates 
hc(x), i=1,2, … 

Initialization:
Initialize pair weight by Eq. (1) 

For t=1,2, …, k
(a)For each weak learner candidate hc(x)

(a.1) Calculate the optimal αt,c by Eq. (3) 
 (a.2) Calculate the loss over all queries by Eq. (2) 

(b) Choose the weak learner ht,c(x) with the minimal loss as the 
weak learner ht(x) in this round 

(c) Choose the corresponding αt,c as αt
(d) Update pair weight by Eq. (4) 

Output: the final ranking function 
1

( ) ( )
k

t t
t

H x h xα
=

= ∑
Figure 2. The Algorithm of FRank 

4. EXPERIMENTS 
In this section we first introduce the evaluation metrics: precision 
at position n (P@n) [1], mean average precision (MAP) [1], and 
normalized discount cumulative gain (NDCG) [16][17].  Then, we 
briefly describe three comparison methods and one non-learning 
based method.  We also describe the experiments for verifying the 
effectiveness of our proposed ranking algorithm on two datasets: 
TREC and Web search dataset. 

4.1 Evaluation Measures 
4.1.1 Precision at Position n (P@n) 
Precision is an information retrieval performance measure that 
quantifies the fraction of retrieved documents which are known to 
be relevant.  P@n is capable to measure the accuracy within top n
results of the returned rank list for a query. 

 
# of relevant docs in top n results@P n

n
=

For instance, if there are 5 returned documents for a query 
{relevant, irrelevant, irrelevant, relevant, irrelevant}, then P@n of 
the query is {1, 1/2, 1/3, 2/4, 3/5}.  For a set of queries, we obtain 
P@n by means of averaging P@n values of all queries.  In general, 
the present Internet search engines display 10 returned documents 
for each page and many users only browse the results in the first 
page.  Therefore, we use precision within ten returned documents 
to evaluate the performance of each ranking algorithm. 

4.1.2 Mean Average Precision (MAP) 
For comparison, we also use MAP as evaluation metric for 
evaluating ranking methods.  MAP is a widely used evaluation 
metric in conventional IR in which there are two categories for a 
document: relevant and irrelevant.  MAP calculates the mean of 
average precisions over a set of queries.  Given a query qi, average 
precision is defined as the average of precision after each relevant 
document is retrieved.  Given a query qi, its average precision (AP) 
is calculated as: 
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where N is the number of docs retrieved, P(j) is the precision 
value at position j as described in previous subsection, and pos(j) 
is a binary function to indicates whether the documents in 
position j is relevant.  Then, we obtain MAP by average the AP 
values of all the queries. 

4.1.3 Normalized Discount Cumulative Gain 
Considering that the web search dataset has multiple rating grades, 
we use the normalized discount cumulative gain (NDCG) [16][17] 
to evaluate the performance of ranking algorithms.  For a given 
query, the NDCG value for a ranked document at position i is 
computed as follows: 

(1) Compute the gain ( )2 1r j − of each document j;

(2) Discount the gain of each document j by its ranked position, 

which can be expressed by 
( )(2 1)

log(1 )

r j

j
−
+

;

(3) Cumulate the discounted gain for document j at position i,

which can be express by 
( )

1

(2 1)
log(1 )

r ji

j j=

−
+∑ ;

(4) Normalize the discounted cumulative gain for document j

at position i is 
( )

1
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log(1 )
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i
j

n
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−
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where ( )r j is the rating of the j-th document in the ordered list, 
and the normalization constant in is chosen so that a perfect 
ordering gets NDCG value 1.  We use NDCG within ten returned 
documents to evaluate the performance in experiments. 

4.2 Comparison Methods 
In this study we choose three machine learning algorithms for 
comparison: RankBoost, RankNet, and RankSVM.  For 
RankBoost, we use binary weak learner whose output is 0 and 1.  
For RankNet, we used linear neural net and two-layer net, and 
those are denoted as RankNet_Linear and RankNet_TwoLayer.  
For RankSVM, we directly used the binary code of SVMlight.  
For our proposed algorithm, FRank, we also use binary weak 
learner as weak learner for comparison. 

To compare with conventional IR approach, we employ a widely 
used non-learning based ranking algorithm, BM25, as the baseline.  
BM25 computes the relevance score of a document as follow: 

1 3

3

( 1) ( 1)
( )( )T Q

k tf k qtfrelevance
K tf k qtf

ω
∈

+ +
=

+ +∑

where Q is a query consisting of terms T; tf is the occurrence 
frequency of the term T within the web page, qtf is the frequency 
of the term T within the topic from which Q was derived, and ω is 
the Robertson/Sparck Jones weight [25] of T in Q. K is calculated 
by 

( )1 (1 ) /K k b b dl avdl= − + ×  

where dl and avdl denote the page length and the average page 
length. 



4.3 Experiment on TREC Dataset 
In this section, we first describe TREC Web Track data collection, 
and then report experimental results on the collection.  Due to the 
great impact of Text REtrieval Conference (TREC) [29] in 
information retrieval community, we evaluate the performance of 
FRank on TREC Web Track data collection. 

This corpus is crawled from the .gov domain in early 2002, and 
has been used as the data collection of Web Track since TREC 
2002.  There are totally 1,053,110 pages with 11,164,829 
hyperlinks in it.  When conducting the experiments on this corpus, 
we used the topic distillation task in the Web Track of TREC 
2003 [9] as our query sets (with 50 queries in total).  The ground 
truths of this task are provided by the TREC committee with 
binary judgment: relevant and irrelevant.  The number of relevant 
pages for each query spans from 1 to 86. 

For learning algorithms, we extracted 14 features for each 
document.  The details of these features are listed in Table 1. 

Table 1. Extracted features for TREC data 
Feature Name Number of Features

BM25 [24] 1 
MSRA1000 [26] 1 
PageRank [22] 1 
HostRank [30] 1 

Relevance Propagation [23] 10 

Since the size of TREC dataset seems inadequate for learning 
algorithm, we conduct 4-fold cross validation for each ranking 
algorithm.  We also tune the parameters for BM25 with one of the 
trials and apply the parameters to other trials directly. The 
experimental results are plotted in Figure 3 in which the value is 
averaged score over the four trials. 
From Figure 3, the proposed algorithm, FRank, outperforms all 
other algorithms in MAP, while the other learning algorithms get 
similar results.  This may imply that these three state-of-the-art 
algorithms (RankSVM, RankBoost, and RankNet) have similar 
learning ability for information retrieval.   
Note that all learning-based methods outperform BM25.  The 
MAP value of BM25 is about 0.13.  We note that learning 
algorithm is cable to obtain at least 40% improvement over non-
learning BM25.  That would suggest that learning to rank is a 
promising direction for IR.   
We also can note that FRank outperforms other ranking 
algorithms on precision, especially precision at position 1.  The 
result indicates that the proposed method is also suitable for 
conventional IR in which relevant document should be ranked as 
high as possible.  Moreover, FRank obtains better performance of 
NDCG value at top position such as NDCG@1 and NDCG@3. 
 

Table 2. Details of Data Set 
Number of queries Number of docs

Training data 12,000 385,293 
Validation data 3,800 663,457 

Testing data 3,800 693,180 
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Figure 3. Results of FRank on TREC Dataset 

4.4 Experiment on Web Search Data 
In this subsection we describe the dataset collected from a 
commercial search engine.  We also describe the experiments for 
verifying the effectiveness of our proposed ranking algorithm.  
We first examine the training performance of FRank on the huge 
Web search dataset.  Then, we compare the performance of FRank 
with that of RankNet and RankBoost; moreover, we also test the 
performance of standard IR model, BM25 [5][24][25], for a 
comparison of learning-based and non-learning ranking methods.  
Finally, we perform experiments to investigate how the number of 
training queries affects the performance of the ranking algorithms. 

4.4.1 Dataset 
The dataset consists of 19,600 queries of more than 3,300,000 
web pages within a commercial Internet search engine.  These 
web pages are partially labeled with ratings from 1 (irrelevant) to 
5 (highly relevant) by human annotators. Because the dataset is 
too large to label completely, the unlabelled pages are given the 
rating 0.  For a given query, a page is represented by query-
dependent (e.g. term frequency) and query-independent (e.g. 
PageRank) features extracted from the page itself and the 
preprocessed indices.  The total number of features is 619.  Since 
several features are a larger number, the whole features are 
preprocessed with global normalization.  Considering that these 
features reflect the business secrete of that search engine company, 
we would not describe them in detail. However, this does not 
influence our experimental study since all the learning methods 
under investigation actually operate on the same feature set.  

For ease of experimental study, we divide the aforementioned data 
into three sets: 12,000 queries for training, 3,800 queries for 
validation, and 3,800 queries for testing.  We did not conduct 4-
fold cross validation in web search dataset since the size of dataset 
is too large.  Since some unlabeled documents are highly relevant, 
performance is affected if we use the whole unlabeled documents 
for training.  Therefore, 20 unlabeled documents are randomly 
selected as the poorly relevant documents for training.  This 
results in our training of 385,293 documents; it totally contains 
2,635,976 pairs.  Table 2 summarizes the details of the training, 
validation, and testing datasets. 
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Figure 4. Results of FRank on Training Data 

4.4.2 Training Process of FRank 
We check whether the fidelity loss function is minimized using 
our proposed generalized additive model, and whether the fidelity 
loss function is consistent with the evaluation of IR, i.e. NDCG.  
The corresponding result is shown in Figure 4, in which the 
number of weak learners starts from 5.  The figure shows the 
fidelity loss decreases with the increasing number of weak 
learners; on the other hand, the value of NDCG@10 increases 
when the fidelity loss decreases.  This indicates FRank really can 
reduce fidelity loss and boost NDCG value. 

4.4.3 Performance Comparisons 
We compare FRank with RankBoost, RankSVM, and RankNet 
verifying that the fidelity loss function is superior to the loss 
functions of these reference algorithms.  For RankBoost [11], we 
implemented binary weak learner which is denoted by RankBoost.  
According to [7], we also implemented RankNet_Linear and 
RankNet_TwoLayer.  For RankSVM [18][19], we directly adopt 
the binary code of SVMlight.  For FRank, we used the binary 
weak learner, which output is 0 or 1.  Since the number of pairs in 
the training set (with 12,000 queries) is 2,635,976, RankSVM ran 
out of memory, even with linear kernel.  Therefore, we only report 
the experimental results for FRank, RankBoost, and RankNet. 
To evaluate the performance of these ranking methods, we first 
ran experiments on validation set to select the best parameter 
setting for each method.  For example, for FRank and RankBoost, 
we determine how many weak learners are used in the final 
ranking function.  In addition, for RankNet, we need to determine 
the number of training epochs. The validation data is taken to 
guarantee the most effective generalization performance of these 
ranking algorithms.  We adopt NDCG@10 as the evaluation 
criterion to select the best parameter setting on the validation set. 
Figure 5 plots the NDCG@10 curves of three ranking algorithms 
on validation data; the number of weak learners starts from 10 in 
this figure.  Figure 5(a) shows that FRank performs better than 
RankBoost on the validation set.  In addition, when the number of 
weak learners is smaller than 20, RankBoost obtains worse 
performance.  However, when the number of weak learners is over 
20, RankBoost eventually gets better performance on the 
validation dataset.  That is because the weak learner in RankBoost 
only has 0/1 outputs, with few weak learners, the corresponding 
power of representation is quite limited. 
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Figure 5. Results on Validation Data: (a) FRank and 

RankBoost, (b) RankNet 
When the number of weak learners continues to increase, the non-
linear nature of RankBoost eventually makes the model more 
complex and representative.  On the other hand, we note from this 
figure that all the curves have a flat long tail when the number of 
weak learners continues to increase.  To make sure generalizations 
about our model are correct, we select some point in the middle of 
this flat tail as our best parameter settings.  Accordingly, we 
finally select 224 weak learners for RankBoost, and 271 weak 
learners for FRank. 
In Figure 5(b), we observe that RankNet_TwoLayer performs well.  
Its result is more accurate than RankNet_Linear.  However, 
although RankNet_TwoLayer is accurate, it seems sensitive to the 
dataset.  The performance of RankNet_TwoLayer drops when the 
number of epoch was more than 10.  In contrast, the ranking 
algorithms based on generalized additive model such as 
RankBoost and FRank are robust against this problem.  The 
robustness also corresponds to the essential property of an 
additive model.  According to Figure 5(b), we selected 25 epochs 
for RankNet_Linear and 9 epochs for RankNet_TwoLayer. 
 



Table 3. Parameter Settings for Each Ranking Algorithm 
Ranking Algorithm Parameter NDCG@10

FRank 271 0.713802
RankNet_TwoLayer 9 0.707845

RankBoost 224 0.706398
RankNet_Linear 25 0.697004

Table 3 summarizes the parameter setting and the corresponding 
NDCG@10 value on the validation set for each ranking algorithm.  
As shown in this table, our proposed method outperforms the 
other ranking algorithms; moreover, the models with probabilistic 
loss functions (i.e. FRank and RankNet) also perform better than 
those with conventional pair-based loss functions (i.e. RankBoost). 
After the parameter tuning on the validation set, we use the best 
parameter setting to examine the performance of the ranking 
algorithms on the testing data.  In the test trail we calculate the 
value of NDCG from 1 to 10 comprehensively to evaluate the 
performance for each ranking algorithm. 
For comparison of learning-based and non-learning methods, we 
also conduct an experiment of applying standard IR model 
[5][24][25], i.e. BM25, which is the well-recognized IR model 
without learning technique on the testing dataset.  Moreover, we 
also simply use a linear combination of BM25 and PageRank to 
rank the documents.  The better performance is obtained when the 
parameter is 0.2 (i.e. 0.8 * BM25 + 0.2 * PageRank) after we try 
many different combination parameters.  Table 4 summarizes the 
results of learning-based and non-learning methods.  From these 
results, it is inadequate to simply use a standard IR model for the 
large-scale IR problem, especially for the Web searching.  In other 
words, learning-based methods have their advantages in 
leveraging large number of features to boost search performance. 
Figure 6 plots NDCG values from 1 to 10 of learning-based 
methods on the testing dataset.  This figure shows that FRank 
outperforms the other ranking algorithms from NDCG@1 to 
NDCG@10.  RankNet_TwoLayer also performs well on this 
large-scale dataset.  RankBoost was in the third position.  These 
results indicate that the loss function based on the probabilistic 
ranking framework is more accurate than that used in RankBoost.  
In addition, although FRank and RankNet both are based on the 
probabilistic ranking framework, FRank can obtain more accurate 
ranking function than RankNet; this is consistent with the 
discussion about the superiority of fidelity in Section 3.2. 
To verify whether the above improvements are statistically 
significant, we further perform t-test for FRank and 
RankNet_TwoLayer with a confidence level of 98%.  The 
corresponding p-values are 0.0114 for NDCG@1, 0.007 for 
NDCG@5, and 0.0056 for NDCG@10.  This result indicates that, 
as to information retrieval, FRank is significantly better than 
RankNet_TwoLayer, and thus significantly better than other 
ranking algorithms under investigation. 
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Figure 6. Results of Ranking Algorithms on Test Data 

4.4.4 Experiment on Different Size of Training Data 
Considering RankSVM ran out of memory on our large training 
set, we further conduct several experiments on smaller-scale 
datasets to provide more insight about RankSVM.  It is also 
meaningful to investigate how the number of training queries will 
affect the performance of other ranking algorithms.  For this 
purpose we separately trained these referenced ranking algorithms 
on 1,000, 2,000, 4,000, 8,000, and 12,000 queries.  The detail 
information of the training data is listed in Table 5.  Note that, 
according to our experiments, RankSVM can output reasonable 
models when training with 1,000, 2,000, and 4,000 queries; 
however, when the number of training queries is more than 8,000, 
the binary code of RankSVM runs out of memory.  This is mainly 
because RankSVM has to construct as many constraints as the 
document pairs, and then the number of variables in the dual 
problem becomes voluminous when training on large-scale 
dataset.  For those cases that RankSVM can operate upon, we use 
the linear kernel and tune the parameter C on the validation set; 
other experimental settings are similar to those in Section 4.4.3. 
 

Table 4. NDCG Values of Ranking Algorithms on Test Data 

NDCG FRank
RankNet 

TwoLayer 
RankBoost

RankNet 

Linear 
BM25 + 

PageRank BM25 

1 0.682 0.670 0.661 0.659 0.605 0.535

2 0.679 0.671 0.664 0.659 0.609 0.550

3 0.684 0.679 0.670 0.664 0.617 0.566

4 0.692 0.685 0.679 0.671 0.623 0.577

5 0.698 0.692 0.686 0.679 0.630 0.587

6 0.706 0.699 0.695 0.686 0.636 0.595

7 0.713 0.706 0.701 0.695 0.642 0.603

8 0.720 0.715 0.710 0.703 0.649 0.611

9 0.727 0.722 0.717 0.710 0.655 0.619

10 0.734 0.729 0.724 0.717 0.661 0.626
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Figure 7. Testing Results on the Different Training Data 
Figure 7 plots the results of each of the ranking algorithms trained 
on different numbers of queries.  Table 6 also summaries the 
value of NDCG@10 on different training datasets.  From this 
figure, we observe the following things: 

(1) When the number of training queries is 1,000, the linear 
model performs better than the complex non-linear models.  
This is because the non-linear models are too complex, and 
a small number of training data cannot lead to reliable 
models.  As a result, the complex models are statistically 
incomplete or tend to over-fit the data.  In contrast, since 
FRank introduces query-level normalization in the loss 
function, there is some kind of query-level smoothing 
within it.  Therefore, FRank  performs relatively well on a 
small number of training sets.  As shown in the figure, 
FRank far outperforms other algorithms when the number 
of training queries is 1,000. 

(2) The performance of each ranking algorithm increases when 
the number of training queries increases.  However, when 
the number of queries is more than 8,000, the performance 
only slightly improves, and sometimes even decreases (e.g. 
RankBoost).  This is interesting because it is not always 
worth using more training data if considering the tradeoff 
between effectiveness and scale of training. 

(3) RankSVM performs as well as RankNet_TwoLayer when 
the number of training queries is small.  In this regard, we 
can predict that if the scalability issue of RankSVM can be 
fixed, it may be an effective candidate for learning to rank. 

(4) The methods based on the probabilistic ranking framework 
perform well when the amount of training data is large.  
This is because more pair-wise information can make the 
corresponding calculations of the probabilities more 
accurate. 

(5) Our proposed FRank method obtains more accurate 
ranking functions than other algorithms for all cases, and it 
was also more stable with respect to the number of training 
queries.  This strongly suggests that FRank is more suitable 
for ranking purposes in information retrieval. 

 

Table 5. Details of Different Training Data 
Number of  

training queries
Number of  

docs 
Number of  

pairs 
1000 27,745 141,305 
2000 55,344 269,700 
4000 117,702 654,253 
8000 250,625 1,648,314 

12000 385,293 2,635,976 

Table 6. NDCG@10 on the Different Size of Training Queries 
# of

Training 
Queries

FRank RankNet 
TwoLayer

RankNet
Linear RankBoost RankSVM

1,000 0.723 0.699 0.696 0.698 0.704 

2,000 0.725 0.711 0.705 0.706 0.711 

4,000 0.730 0.720 0.712 0.716 0.719 

8,000 0.732 0.727 0.715 0.724 None 

12,000 0.734 0.729 0.717 0.723 None 

5. CONCLUSIONS AND FUTURE WORK 
This paper presented an approach to learning the underlying 
ranking function with the goal of improving the accuracy of 
information retrieval.  On the basis of the probabilistic ranking 
framework, we propose a novel loss function named Fidelity to 
measure the loss of ranking, and accordingly derive a ranking 
algorithm named FRank based on a generalized additive model.  
Experiments with significance test show that the FRank algorithm 
performs well in practice, even for large numbers of queries and 
large numbers of features. 
Several issues remain for future work. 

(1) For theoretical aspects, we hope to investigate how to 
prove the generalization bound based on the probabilistic 
ranking framework.   

(2) Considering that many approaches can be applied to 
minimize the fidelity loss function, we would like to study 
whether it is better to combine the Fidelity loss with other 
machine learning methods, such as kernel methods.   

(3) On scalability issues, we plan to implement a parallel 
version of FRank that can handle even larger training 
datasets. 
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