
FRank: A Ranking Method with Fidelity Loss

Ming-Feng TSAI1, Tie-Yan LIU2, Tao QIN3, Hsin-Hsi CHEN1, Wei-Ying MA2

1Dept. Computer Science and Information Engineering, National Taiwan University, Taiwan 106, ROC
2Microsoft Research Asia, No.49 Zhichun Road, Haidian District, Beijing 100080, P.R. China

3Dept. Electronic Engineering, Tsinghua University, Beijing, 100084, P.R. China
1{mftsai, hhchen}@nlg.csie.ntu.edu.tw

2{tyliu, wyma}@microsoft.com
3qinshitao99@mails.tsinghua.edu.cn

ABSTRACT
Ranking problem is becoming increasingly important in many
applications, especially in information retrieval. Many machine
learning technologies have been proposed to solve this problem,
such as RankSVM, RankBoost and RankNet. Among them,
RankNet, which is based on the probabilistic ranking framework,
is leading to promising results and has been applied to
commercial Web search engine. Inspired by the success of
RankNet, we conduct further study on the probabilistic ranking
framework in this paper, and propose a novel loss function named
Fidelity to measure loss of ranking. This new loss function not
only inherits effective properties of the loss function used in
RankNet, it also possesses several new properties that are helpful
for ranking. This includes Fidelity loss obtaining zero for each
desired document pair, and having a finite upper bound that is
necessary for conducting query-level normalization. In these
aspects, the Fidelity loss is more consistent with widely-used
query-level evaluation criteria for information retrieval. To
efficiently minimize Fidelity loss and learn an effective ranking
function, we propose an algorithm named FRank based on a
generalized additive model. We provide experiments and
significance test on a large-scale dataset collected from a
commercial Web search engine showing that the proposed FRank
algorithm provides significantly better results than RankSVM,
RankBoost, and RankNet.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval Models

General Terms
Algorithms

Keywords
Learning to Rank

1. INTRODUCTION
In this information explosion era it is becoming more and more
important to accurately retrieve relevant information based on
user information needs. The information retrieval (IR) problem is
usually formulated as a ranking problem: provided a query and a
set of documents, an IR system should provide an output of
relevant documents ranked higher than irrelevant ones based on
the query. Several methods were proposed to solve this problem
in the literature, such as Boolean model, vector space model,

probabilistic model, and the language model. These methods can
be classified as empirical IR methods. In addition, many machine
learning methods have become more widely used over the past
several years. The learning-based methods aims to use the labeled
dataset to learn the underlying ranking function of IR.

There are several different ways to use learning-based methods to
solve IR problems. Indeed, one may regard IR as a binary
classification problem in which documents are categorized as
relevant or irrelevant. However, for real-world search engines,
documents cannot simply be classified into two types relative to
user information needs; they should have multiple grades, such as
highly relevant, partially relevant, definitely irrelevant, and so on.
In contrast, several methods view IR as a ranking problem, such
as RankBoost, RankSVM, and RankNet. Unlike the classification
method, ranking algorithms construct pairs between documents
and use machine learning technique to minimize the number of
misordered pairs. Specifically, RankSVM is an ordinal regression
approach to minimize the number of discordant document pairs.
RankBoost attempts to directly solve the preference learning
problem, rather than solving an ordinal regression problem.
RankNet models the ordinal relationship between two documents
by means of probability, and adopts a cross entropy to measure
the distance between two probability distributions.

According to [7], the probabilistic ranking framework has many
optimal properties, and can better model multiple relevance levels.
As a result, RankNet leads to efficient retrieval performance and
is used in a commercial search engine. Inspired by the success of
RankNet, we conduct further study on probabilistic ranking
framework and propose a novel loss function named Fidelity loss.
This new loss function is inspired by the concept of Fidelity [21],
which is widely in use to measure the difference between two
states of a quantum in the field of physics [4]. Moreover, this
new loss function inherits those properties of the probabilistic
ranking framework, and has several additional usable properties.
For instance, Fidelity loss can achieve zero for each desired pair
probability, whereas cross entropy does not. Moreover, Fidelity
pair loss is bounded between 0 and 1, whereas cross entropy has
no upper bound. These new properties make Fidelity more
feasible for defining an optimal ranking function in information
retrieval.

To learn the underlying ranking function, we further propose a
generalized additive model to minimize this Fidelity loss. As a
result, our new learning method named Fidelity Rank (FRank)
combines the generalized additive model with the probabilistic

ranking framework. Experimental results show the algorithm
performs well on a large-scale dataset, which encompassed 19,600
queries collected from a commercial internet search engine. We
also perform a t-test with the confidence level of 98%. The
corresponding results from our t-test show the improvements are
statistically significant.

The remainder of this paper is organized as follows. We review
the previous research in Section 2. In Section 3, we revisit the
probabilistic ranking framework and the fidelity measure, and
describe the FRank algorithm. Section 4 reports experimental
results and discusses the relationship between different methods.
We conclude our paper and discuss future plans in Section 5.

2. RELATED WORK
How to improve IR accuracy is attracting great attention, and in
recent years, many machine learning technologies
[7][8][10][11][15][19][20] have been studied to learn underlying
ranking functions. In [20], Nallapati treated IR as a binary
classification problem that directly classifies a document as
relevant or irrelevant with respect to given queries. However, in
real-world web searches, a page has multiple relevance levels,
such as highly relevant, partially relevant, and definitely irrelevant.
Therefore, some studies regard IR as a ranking problem: highly
relevant web pages are ranked higher than partially relevant ones,
and partially relevant ones are above irrelevant ones. In the
literature, many ranking algorithms are proposed; typical
examples include RankBoost, RankSVM, and RankNet.

Freund et al. [11] used the Boosting approach for learning a
ranking function and propose RankBoost to solve the problem of
combining preferences. Their method aims to minimize the
weighted number of pairs of instances that are misordered by the
final ranking function. The algorithm can be summarized as
follows. For each round t, RankBoost chooses tα and the weak
learner th so as to minimize the pair-wise loss, which is defined
by

1 0

0 1 0 1(,)exp((() ()))t t t t t
x x

Z D x x h x h xα= −∑ ,

where 0x is the instance ranked higher than 1x , 0 1(,)tD x x is the
weight of pair 0 1(,)x x . After the optimal weak learner th is
selected, the weight 0 1(,)tD x x is adjusted with respect to tα and

th . The rule of adjustment is to decrease the weight of pairs if th
gives a correct ranking (1 0() ()t th x h x>) and increase otherwise.
Finally, this algorithm outputs the ranking function by combining
selected weak learners. Owing to the greedy search nature of
Boosting, RankBoost can be implemented in parallel and thus
scale up to large datasets.
Thorsten Joachims [19] proposed RankSVM algorithm, which
uses Support Vector Machines (SVM) to learn retrieval function
from click-through data. RankSVM aims to minimize the number
of discordant pairs, which is similar to RankBoost, and to
maximize the margin (this is equal to minimize L-2 norm of the
hyperplane parameter ω

��
). Given a query, if the ground truths

assert that document 1d is more relevant than 2d , the constraint
of RankSVM is 1 2(,) (,)q d q dω ωΦ Φ>

�� ��
, where (,)iq dΦ is the

feature vector calculated from document id relative to query q.
Then, the whole RankSVM algorithm can be expressed as the
following constrained optimization problem.

, ,

*
1 1 1 , ,1

*
, ,

, ,

1min : (,)
2

(,) : (,) (,) 1

. . (,) : (,) (,) 1
: 0

i j k

i j i j i j

i j n n i n j i j n

i j k

V C

d d r q d q d

s t d d r q d q d
i j k

ω ξ ω ω ξ

ω ω ξ

ω ω ξ
ξ

Φ Φ

Φ Φ

= ⋅ +

∀ ∈ ≥ + −

∀ ∈ ≥ + −
∀ ∀ ∀ ≥

∑
�� � �� ��

�� ��

�� ��




From a theoretical perspective, RankSVM is well-founded in the
structure risk minimization framework, and is verified in a
controlled experiment. Moreover, the advantage of RankSVM is
that it does not need human-labeled data, and can automatically
learn the ranking function from click-through data.

Burges et al. [7] proposed a pair-wise differentiable loss function
based on their probabilistic ranking framework and used neural
networks to optimize this criterion in a method named RankNet.
Assume that the ranking model is : df R R� , so that the rank
order of a set of testing samples is specified by the real value that
the model takes. Therefore, 1 2() ()f d f d> is taken to mean that
the model asserts that 1 2d d� . Given a set of pairs of training
samples [di, dj] together with the target probability *

ijP of sample i
being ranked higher than sample j, a logistic function [3] can be
used to map the output of the ranking function to a probability as
follows:

1

ij

ij

o

ij o
eP

e
=

+

where () ()ij i jo f d f d= − , and ()ij i jP P d d= � . Then, cross
entropy is adopted as the loss function for training, which can be
represented as:

 * *

*

()

log (1)log(1)

log(1)ij

ij ij

ij ij ij ij

o
ij ij

C C o

P P P P

P o e

≡

= − − − −

= − + +

where ijC is the cross entropy loss of a pair (i, j), *
ijP is the

desired probability, and ijP is the modeled probability.
RankNet uses back-prop equation to optimize the above criterion.
As compared to RankBoost and RankSVM, the loss function in
RankNet is pair-wise differentiable, which can be regarded as an
advantage in cases in which ground truths come from several
annotators that may disagree. Therefore, RankNet performs well
in practice and successfully applies when used on a commercial
search engine.

3. FIDELITY RANK
Inspired by the success of RankNet, we investigate probabilistic
ranking framework [7] in this paper and propose a novel loss
function named Fidelity loss. In this section we discuss
probabilistic ranking framework and the motivation of proposing
a new loss function. We also describe the fidelity loss function
and its properties, and derive the FRank algorithm based on the
additive model for minimizing the fidelity loss function. This
algorithm successfully combines probabilistic ranking framework
with Boosting for learning an effective ranking function in
information retrieval.

3.1 Probabilistic Ranking Framework
As mentioned in Section 2, in the probabilistic ranking framework,
the map from outputs to probabilities is modeled by logistic
function. According to [7], this framework has the following
properties:

(1) The model puts consistency requirements on the *
ijP (for

example, if ()i jP d d� = 0.5, and ()j kP d d� = 0.5, then
()i kP d d� = 0.5);

(2) Any set of adjacency posteriors can uniquely identify a
target posterior *0 1ijP≤ ≤ for every pairs of sample di, dj.

(3) The expected strengthening (or weakening) of confidence
in the ordering of a given pair can be held. (For instance, if

()i jP d d� = 0.6, and ()j kP d d� = 0.6, then ()i kP d d�
> 0.6).

When the outputs are mapped to probabilities, the general
measure of probability distribution can be applied as the criterion
for training, such as cross entropy, KL-divergence, and
information radius. In RankNet [7], cross entropy is adopted for
this purpose, and a pair-wise differentiable loss function is
proposed. The loss function of a pair can be represented by

* log(1)ijo
ij ij ijC P o e= − + + , which is shown in Figure 1(a).

The pair-wise cross entropy loss function provides a principal way
to make the samples have the same rank of ground truths.
Previous works show that the loss function is effective and the
corresponding RankNet algorithm is successful. However, if we
carefully investigate Figure 1(a), we will find there are still some
problems with this loss function.

(1) Cross entropy loss function cannot achieve the real
minimal loss, zero, expect for the posterior is 0 and 1. This
may make the corresponding learning algorithm inaccurate.

(2) The penalization is too great when a pair is in the wrong
position. In other words, there is no upper bound for the
loss of a pair, which may cause the training procedure to
become biased by some hard pairs.

Considering these problems, it is meaningful to investigate the
other measures of probability distribution that can provide better
properties for probabilistic ranking. This is a key point in this
paper.

3.2 Fidelity Loss Function
After investigating many different measures of probability
distributions such as KL-divergence and information radius, we
find that an optimal candidate for the criterion of ranking problem
is Fidelity [21]. Fidelity is originally a distance metric in physics
to measure the difference between two states of a quantum. The
fidelity of two probability distributions is defined by

 (,)x x x x
x

F p q p q≡∑

where { }xp and { }xq are the probability distributions. Note that
when the distributions { }xp and { }xq are identical, (,)x xF p q =

xx p∑ = 1. A better geometric understanding of the fidelity is
that the fidelity is just the inner product between vectors with
components xp and xq , which lie on a unit sphere.

0

2

4

6

8

10

12

-10 -5 0 5 10

C
r
o
s
s

E
n
t
r
o
p
y

L
o
s
s

(
C
i
j
)

oij

P*=0.0
P*=0.5
P*=1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-10 -5 0 5 10

F
i
d
e
l
i
t
y

L
o
s
s

(
F
i
j
)

oij

P*=0.0
P*=0.5
P*=1.0

(a) (b)
Figure 1. Loss Function: (a) Cross Entropy Loss Function, (b)

Fidelity Loss Function
Fidelity is a useful quantity for mathematical purposes and is a
clear physical interpretation. Moreover, it is a meaningful
measure candidate for the loss function of probabilistic ranking
framework. We adapt the fidelity measure so that the loss of a
pair is measured by

 * *() 1 ((1) (1))ij ij ij ij ij ijF F o P P P P≡ = − ⋅ + − ⋅ −

where *
ijP is the given target value for the posterior probability

and ijP is the modeled probability; then, after the logistic function
is adopted, ijF becomes

1 1
2 2* * 11 () (1) ()

1 1

ij

ij ij

o

ij ij ijo o
eF P P

e e

 
    = − × + − ×    + +    

 

Figure 1(b) plots ijF as a function of ijo for three values *P = {0,
0.5, 1}. If * 0.5ijP = , it means that there is no information
available as to the relative rank of the two samples, then ijF has
its minimum at the origin. Note that the loss of this pair can
obtain zero. This also gives us a principal way of training
samples that we desire to have the same rank as the ground truth.
Actually, the fidelity loss possesses all three properties of cross
entropy in RankNet. In addition, it also has some other properties
that are helpful for ranking. We elaborate on these properties in
detail as follows.

(1) Fidelity loss achieves the real minimal loss for each desired
probability *P of pairs.

Unlike the cross entropy in [4], the fidelity loss function has the
zero loss for each pair. This property makes the algorithm more
accurate in the training phrase.

(2) Fidelity loss of a pair is bounded between 0 and 1.
If the loss of a wrong pair does not have an appropriate upper
bound, some hard pairs lose too much when still not be placed in
the correct position. Therefore, their performance deteriorates,
since the whole model is dominated by these hard pairs. In this
sense, fidelity loss is superior to cross entropy.

(3) It is easy to define the fidelity loss of a query.
The loss functions of RankSVM, RankBoost, and RankNet are all
based on pair levels; however, the evaluation of IR is based on
query level, such as mean average precision (MAP) [24][25], and
normalized discounted cumulative gain (NDCG) [16][17]. This
inconsistency causes some queries to be neglected in the training
process. However, since the fidelity loss of a pair is between 0
and 1, the loss of a query can be easily considered by means of

dividing the number of pairs in the given query, which can be
represented as follows:

 1
| # | ij

q ijq

F∑ ∑

where | # |q is the number of pairs for query q and ijF is the
fidelity loss of a pair. In this way, each query contributes equally
to the total loss in the training process. Therefore, the model is
not dominated by those queries with a large number of document
pairs.
Although this definition of query-level fidelity loss looks natural,
the similar extension to the query-level loss for previous ranking
methods such as RankBoost and RankNet is non-trivial. The
major reason is that their loss functions do not have an
appropriate upper bound. Therefore, even after being normalized
by the number of document pairs per query, we still cannot
guarantee that every query contributes equally to the total loss.

With the three new properties, we regard our proposed Fidelity
loss as a more suitable measure of ranking loss. In the next
subsection, we discuss how to efficiently minimize this loss
function so as to learn an effective ranking function.

3.3 Algorithm Derivation
Considering the efficiency and scalability for large-scale datasets,
we adopt a generalized additive model similar to the boosting
approach. The primary consideration is that the additive model
has great potential to implement in parallel since the evaluation of
features is independent in the training process.

In the additive model, the final ranking function is defined as:

 () ()t t
t

H x h xα= ∑ ,

where ()th x is a weak learner and tα is the combination
coefficient of the weak learner, and t is the index of iterations.
Consider the ranking function after the k-th iteration,

1

() ()
k

k t t
t

H x h xα
=

= ∑ or 1() () ()k k k kH x H x h xα−= +

The fidelity loss of ()kH x over all queries is

()

1 1
() () 2 2* *

() () () ()

1()
| # |

1 11 () (1) ()
| # | 1 1

k i k j

k i k j k i k j

k
k ij

q ijq

H x H x

ij ijH x H x H x H x
q ijq

J H F

eP P
e e

−

− −

=

 
    = − × − − ×    + +   

 

∑ ∑

∑ ∑

Given 1()kH x− and ()kh x , the criterion can be re-written as:

, ,
1

, , , ,
1 1

1 1
2 2

* *

()

1 11 () (1) ()
| # | 1 1

i j i j
kk k

i j i j i j i j
k kk k k k

k

H h

ij ijH h H h
q ijq

J H

eP P
e e

α

α α

−

− −

+

+ +

 
   = − × − − ×   

+ +    
 

∑ ∑

where ,
1 1 1() ()i j

k k i k jH H x H x− − −−� and , () ()i j
k k i k jh h x h x−� .

Then, we denoted

 1(,)
| # |q

D i j = , (1)

the fidelity loss over all queries can be formulated as

, ,
1

, , , ,
1 1

1 1
2 2* *

()

1(,) 1 () (1) ()
1 1

i j i j
kk k

i j i j i j i j
k kk k k k

k

H h

ij ijH h H h
ij

J H

eD i j P P
e e

α

α α

−

− −

+

+ +

 
   = × − × − − ×   + +    

 

∑ (2)

Setting the derivative of Equation (2) with respect to kα to zero,
we have the expression as follows:

, ,, ,
11

, , , ,
1 1

, ,
1

, ,
1

1
2

* *

2

1
,2

* *

()

1 ()
2 1 (1)

(,)
1 1(1) () (1)
2 1

i j i ji j i j
kk k kk k

i j i j i j i j
k kk k k k

i j i
kk k

i j i j
kk k

k

k

H hH h
k

ij ijH h H h

H hi j
k

ij ijH h

J H

h ij eeP P
e e

D i j
h e

P P
e

αα

α α

α

α

α

−−

− −

−

−

−
++

+ +

−
+

+

∂
∂

   ⋅
− × ×  

  + +   = ⋅

− ⋅ 
− − × − × 

+ 
, ,

1 2

0

(1)

j

i j i j
kk k

ij

H he α− +

 
 
 
  = 
  
  
  +  

∑

Note that for a general weak learner ()kh x , solving a close form
for kα from the above equation is quite difficult. For simplicity,
we adopt the same choice of weak learners as in [11], which are
binary weak learners, to construct the final ranking function.
When a binary weak learner is introduced, the above equation can
be simplified because ,i j

kh only takes values -1, 0, and 1.
Therefore, the equation can be expressed by

()

()

, ,1 1

, ,,
1 1

,
1 1

, ,
1 1

1 1
* 2 * 2

3 1
31 2 2

1
1

* 2 * 2

3
32

(1)
(,)

() (())

(1)
(,)

() (()

i j i jk k k k

i j i ji j
k k k k kk

i j
k k k k

i j i j
k k k k k

H H
ij ij

H Hh

H H ij
ij ij

H H

P e e e P e
D i j

e e e e e

P e e e P e
D i j

e e e e e

α α

α α α

α α

α α α

− −

− −

− −

− −

− −

− − −=

 
⋅ ⋅ ⋅ − ⋅

 ⋅ −
 + ⋅ + 
 

⋅ ⋅ ⋅ − ⋅
= ⋅ −

+ ⋅ +

∑

,
1

1 2)
i j
kh =−

 
 
 
 
 
 

∑

With some further derivations and relaxations, we eventually
obtain

,

,

,
1

,
1

1 ln
2

i j
k

i j
k

i j
h

k
i j

h

W

W
α =

=−

=
∑

∑
(3)

where

(), ,

1 1

,
1

1 1
2* * 2

, 3
2

(1)
(,)

(1)

i j i j
k k

i j
k

H H
ij ij

i j
H

P e e P
W D i j

e

− −

−

 
 ⋅ − ⋅ −
 = ⋅
 + 
 

(4)

Consequently, the algorithm operates in this way. Using Equation
(3), we train a new weak learner ()kh x according to the current
pair weight ,i jW , and combine this weak learner with the previous
ones using the combination coefficient kα . In a stepwise manner,
we eventually can obtain the final ranking function. We name this
algorithm Fidelity Rank (FRank), for which details are
summarized in Figure 2.

Algorithm: FRank

Given: pair over all training queries, and weak learner candidates
hc(x), i=1,2, …

Initialization:
Initialize pair weight by Eq. (1)

For t=1,2, …, k
(a)For each weak learner candidate hc(x)

(a.1) Calculate the optimal αt,c by Eq. (3)
 (a.2) Calculate the loss over all queries by Eq. (2)

(b) Choose the weak learner ht,c(x) with the minimal loss as the
weak learner ht(x) in this round

(c) Choose the corresponding αt,c as αt
(d) Update pair weight by Eq. (4)

Output: the final ranking function
1

() ()
k

t t
t

H x h xα
=

= ∑
Figure 2. The Algorithm of FRank

4. EXPERIMENTS
In this section we first introduce the evaluation metrics: precision
at position n (P@n) [1], mean average precision (MAP) [1], and
normalized discount cumulative gain (NDCG) [16][17]. Then, we
briefly describe three comparison methods and one non-learning
based method. We also describe the experiments for verifying the
effectiveness of our proposed ranking algorithm on two datasets:
TREC and Web search dataset.

4.1 Evaluation Measures
4.1.1 Precision at Position n (P@n)
Precision is an information retrieval performance measure that
quantifies the fraction of retrieved documents which are known to
be relevant. P@n is capable to measure the accuracy within top n
results of the returned rank list for a query.

of relevant docs in top n results@P n

n
=

For instance, if there are 5 returned documents for a query
{relevant, irrelevant, irrelevant, relevant, irrelevant}, then P@n of
the query is {1, 1/2, 1/3, 2/4, 3/5}. For a set of queries, we obtain
P@n by means of averaging P@n values of all queries. In general,
the present Internet search engines display 10 returned documents
for each page and many users only browse the results in the first
page. Therefore, we use precision within ten returned documents
to evaluate the performance of each ranking algorithm.

4.1.2 Mean Average Precision (MAP)
For comparison, we also use MAP as evaluation metric for
evaluating ranking methods. MAP is a widely used evaluation
metric in conventional IR in which there are two categories for a
document: relevant and irrelevant. MAP calculates the mean of
average precisions over a set of queries. Given a query qi, average
precision is defined as the average of precision after each relevant
document is retrieved. Given a query qi, its average precision (AP)
is calculated as:

()

1

() ()

of relevant docs in

N

j
i

i

P j pos j
AP

q
=

×
=

∑

where N is the number of docs retrieved, P(j) is the precision
value at position j as described in previous subsection, and pos(j)
is a binary function to indicates whether the documents in
position j is relevant. Then, we obtain MAP by average the AP
values of all the queries.

4.1.3 Normalized Discount Cumulative Gain
Considering that the web search dataset has multiple rating grades,
we use the normalized discount cumulative gain (NDCG) [16][17]
to evaluate the performance of ranking algorithms. For a given
query, the NDCG value for a ranked document at position i is
computed as follows:

(1) Compute the gain ()2 1r j − of each document j;

(2) Discount the gain of each document j by its ranked position,

which can be expressed by
()(2 1)

log(1)

r j

j
−
+

;

(3) Cumulate the discounted gain for document j at position i,

which can be express by
()

1

(2 1)
log(1)

r ji

j j=

−
+∑ ;

(4) Normalize the discounted cumulative gain for document j

at position i is
()

1

(2 1)
log(1)

r ji

i
j

n
j=

−
+∑

where ()r j is the rating of the j-th document in the ordered list,
and the normalization constant in is chosen so that a perfect
ordering gets NDCG value 1. We use NDCG within ten returned
documents to evaluate the performance in experiments.

4.2 Comparison Methods
In this study we choose three machine learning algorithms for
comparison: RankBoost, RankNet, and RankSVM. For
RankBoost, we use binary weak learner whose output is 0 and 1.
For RankNet, we used linear neural net and two-layer net, and
those are denoted as RankNet_Linear and RankNet_TwoLayer.
For RankSVM, we directly used the binary code of SVMlight.
For our proposed algorithm, FRank, we also use binary weak
learner as weak learner for comparison.

To compare with conventional IR approach, we employ a widely
used non-learning based ranking algorithm, BM25, as the baseline.
BM25 computes the relevance score of a document as follow:

1 3

3

(1) (1)
()()T Q

k tf k qtfrelevance
K tf k qtf

ω
∈

+ +
=

+ +∑

where Q is a query consisting of terms T; tf is the occurrence
frequency of the term T within the web page, qtf is the frequency
of the term T within the topic from which Q was derived, and ω is
the Robertson/Sparck Jones weight [25] of T in Q. K is calculated
by

()1 (1) /K k b b dl avdl= − + ×

where dl and avdl denote the page length and the average page
length.

4.3 Experiment on TREC Dataset
In this section, we first describe TREC Web Track data collection,
and then report experimental results on the collection. Due to the
great impact of Text REtrieval Conference (TREC) [29] in
information retrieval community, we evaluate the performance of
FRank on TREC Web Track data collection.

This corpus is crawled from the .gov domain in early 2002, and
has been used as the data collection of Web Track since TREC
2002. There are totally 1,053,110 pages with 11,164,829
hyperlinks in it. When conducting the experiments on this corpus,
we used the topic distillation task in the Web Track of TREC
2003 [9] as our query sets (with 50 queries in total). The ground
truths of this task are provided by the TREC committee with
binary judgment: relevant and irrelevant. The number of relevant
pages for each query spans from 1 to 86.

For learning algorithms, we extracted 14 features for each
document. The details of these features are listed in Table 1.

Table 1. Extracted features for TREC data
Feature Name Number of Features

BM25 [24] 1
MSRA1000 [26] 1
PageRank [22] 1
HostRank [30] 1

Relevance Propagation [23] 10

Since the size of TREC dataset seems inadequate for learning
algorithm, we conduct 4-fold cross validation for each ranking
algorithm. We also tune the parameters for BM25 with one of the
trials and apply the parameters to other trials directly. The
experimental results are plotted in Figure 3 in which the value is
averaged score over the four trials.
From Figure 3, the proposed algorithm, FRank, outperforms all
other algorithms in MAP, while the other learning algorithms get
similar results. This may imply that these three state-of-the-art
algorithms (RankSVM, RankBoost, and RankNet) have similar
learning ability for information retrieval.
Note that all learning-based methods outperform BM25. The
MAP value of BM25 is about 0.13. We note that learning
algorithm is cable to obtain at least 40% improvement over non-
learning BM25. That would suggest that learning to rank is a
promising direction for IR.
We also can note that FRank outperforms other ranking
algorithms on precision, especially precision at position 1. The
result indicates that the proposed method is also suitable for
conventional IR in which relevant document should be ranked as
high as possible. Moreover, FRank obtains better performance of
NDCG value at top position such as NDCG@1 and NDCG@3.

Table 2. Details of Data Set
Number of queries Number of docs

Training data 12,000 385,293
Validation data 3,800 663,457

Testing data 3,800 693,180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MAP P@1 P@3 P@5 NDCG@1NDCG@3NDCG@5

(Non-Learning) BM25
RankSVM
RankBoost

RankNet_Linear
RankNet_TwoLayer

FRank

Figure 3. Results of FRank on TREC Dataset

4.4 Experiment on Web Search Data
In this subsection we describe the dataset collected from a
commercial search engine. We also describe the experiments for
verifying the effectiveness of our proposed ranking algorithm.
We first examine the training performance of FRank on the huge
Web search dataset. Then, we compare the performance of FRank
with that of RankNet and RankBoost; moreover, we also test the
performance of standard IR model, BM25 [5][24][25], for a
comparison of learning-based and non-learning ranking methods.
Finally, we perform experiments to investigate how the number of
training queries affects the performance of the ranking algorithms.

4.4.1 Dataset
The dataset consists of 19,600 queries of more than 3,300,000
web pages within a commercial Internet search engine. These
web pages are partially labeled with ratings from 1 (irrelevant) to
5 (highly relevant) by human annotators. Because the dataset is
too large to label completely, the unlabelled pages are given the
rating 0. For a given query, a page is represented by query-
dependent (e.g. term frequency) and query-independent (e.g.
PageRank) features extracted from the page itself and the
preprocessed indices. The total number of features is 619. Since
several features are a larger number, the whole features are
preprocessed with global normalization. Considering that these
features reflect the business secrete of that search engine company,
we would not describe them in detail. However, this does not
influence our experimental study since all the learning methods
under investigation actually operate on the same feature set.

For ease of experimental study, we divide the aforementioned data
into three sets: 12,000 queries for training, 3,800 queries for
validation, and 3,800 queries for testing. We did not conduct 4-
fold cross validation in web search dataset since the size of dataset
is too large. Since some unlabeled documents are highly relevant,
performance is affected if we use the whole unlabeled documents
for training. Therefore, 20 unlabeled documents are randomly
selected as the poorly relevant documents for training. This
results in our training of 385,293 documents; it totally contains
2,635,976 pairs. Table 2 summarizes the details of the training,
validation, and testing datasets.

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

30 60 90 120 150 180 210 240 270 300
1200

1300

1400

1500

1600

1700

1800

N
D

C
G

@
10

Fi
de

lit
y

L
os

s

Number of Weak Learners

NDCG@10_Training
Fidelity Loss

Figure 4. Results of FRank on Training Data

4.4.2 Training Process of FRank
We check whether the fidelity loss function is minimized using
our proposed generalized additive model, and whether the fidelity
loss function is consistent with the evaluation of IR, i.e. NDCG.
The corresponding result is shown in Figure 4, in which the
number of weak learners starts from 5. The figure shows the
fidelity loss decreases with the increasing number of weak
learners; on the other hand, the value of NDCG@10 increases
when the fidelity loss decreases. This indicates FRank really can
reduce fidelity loss and boost NDCG value.

4.4.3 Performance Comparisons
We compare FRank with RankBoost, RankSVM, and RankNet
verifying that the fidelity loss function is superior to the loss
functions of these reference algorithms. For RankBoost [11], we
implemented binary weak learner which is denoted by RankBoost.
According to [7], we also implemented RankNet_Linear and
RankNet_TwoLayer. For RankSVM [18][19], we directly adopt
the binary code of SVMlight. For FRank, we used the binary
weak learner, which output is 0 or 1. Since the number of pairs in
the training set (with 12,000 queries) is 2,635,976, RankSVM ran
out of memory, even with linear kernel. Therefore, we only report
the experimental results for FRank, RankBoost, and RankNet.
To evaluate the performance of these ranking methods, we first
ran experiments on validation set to select the best parameter
setting for each method. For example, for FRank and RankBoost,
we determine how many weak learners are used in the final
ranking function. In addition, for RankNet, we need to determine
the number of training epochs. The validation data is taken to
guarantee the most effective generalization performance of these
ranking algorithms. We adopt NDCG@10 as the evaluation
criterion to select the best parameter setting on the validation set.
Figure 5 plots the NDCG@10 curves of three ranking algorithms
on validation data; the number of weak learners starts from 10 in
this figure. Figure 5(a) shows that FRank performs better than
RankBoost on the validation set. In addition, when the number of
weak learners is smaller than 20, RankBoost obtains worse
performance. However, when the number of weak learners is over
20, RankBoost eventually gets better performance on the
validation dataset. That is because the weak learner in RankBoost
only has 0/1 outputs, with few weak learners, the corresponding
power of representation is quite limited.

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

50 100 150 200 250 300

N
D

C
G

@
10

Number of Weak Learners

FRank
RankBoost

(a)

0.675

0.68

0.685

0.69

0.695

0.7

0.705

0.71

0 5 10 15 20 25 30 35 40 45 50

N
D

C
G

@
10

Number of Epochs

RankNet_TwoLayer
RankNet_Linear

(b)
Figure 5. Results on Validation Data: (a) FRank and

RankBoost, (b) RankNet
When the number of weak learners continues to increase, the non-
linear nature of RankBoost eventually makes the model more
complex and representative. On the other hand, we note from this
figure that all the curves have a flat long tail when the number of
weak learners continues to increase. To make sure generalizations
about our model are correct, we select some point in the middle of
this flat tail as our best parameter settings. Accordingly, we
finally select 224 weak learners for RankBoost, and 271 weak
learners for FRank.
In Figure 5(b), we observe that RankNet_TwoLayer performs well.
Its result is more accurate than RankNet_Linear. However,
although RankNet_TwoLayer is accurate, it seems sensitive to the
dataset. The performance of RankNet_TwoLayer drops when the
number of epoch was more than 10. In contrast, the ranking
algorithms based on generalized additive model such as
RankBoost and FRank are robust against this problem. The
robustness also corresponds to the essential property of an
additive model. According to Figure 5(b), we selected 25 epochs
for RankNet_Linear and 9 epochs for RankNet_TwoLayer.

Table 3. Parameter Settings for Each Ranking Algorithm
Ranking Algorithm Parameter NDCG@10

FRank 271 0.713802
RankNet_TwoLayer 9 0.707845

RankBoost 224 0.706398
RankNet_Linear 25 0.697004

Table 3 summarizes the parameter setting and the corresponding
NDCG@10 value on the validation set for each ranking algorithm.
As shown in this table, our proposed method outperforms the
other ranking algorithms; moreover, the models with probabilistic
loss functions (i.e. FRank and RankNet) also perform better than
those with conventional pair-based loss functions (i.e. RankBoost).
After the parameter tuning on the validation set, we use the best
parameter setting to examine the performance of the ranking
algorithms on the testing data. In the test trail we calculate the
value of NDCG from 1 to 10 comprehensively to evaluate the
performance for each ranking algorithm.
For comparison of learning-based and non-learning methods, we
also conduct an experiment of applying standard IR model
[5][24][25], i.e. BM25, which is the well-recognized IR model
without learning technique on the testing dataset. Moreover, we
also simply use a linear combination of BM25 and PageRank to
rank the documents. The better performance is obtained when the
parameter is 0.2 (i.e. 0.8 * BM25 + 0.2 * PageRank) after we try
many different combination parameters. Table 4 summarizes the
results of learning-based and non-learning methods. From these
results, it is inadequate to simply use a standard IR model for the
large-scale IR problem, especially for the Web searching. In other
words, learning-based methods have their advantages in
leveraging large number of features to boost search performance.
Figure 6 plots NDCG values from 1 to 10 of learning-based
methods on the testing dataset. This figure shows that FRank
outperforms the other ranking algorithms from NDCG@1 to
NDCG@10. RankNet_TwoLayer also performs well on this
large-scale dataset. RankBoost was in the third position. These
results indicate that the loss function based on the probabilistic
ranking framework is more accurate than that used in RankBoost.
In addition, although FRank and RankNet both are based on the
probabilistic ranking framework, FRank can obtain more accurate
ranking function than RankNet; this is consistent with the
discussion about the superiority of fidelity in Section 3.2.
To verify whether the above improvements are statistically
significant, we further perform t-test for FRank and
RankNet_TwoLayer with a confidence level of 98%. The
corresponding p-values are 0.0114 for NDCG@1, 0.007 for
NDCG@5, and 0.0056 for NDCG@10. This result indicates that,
as to information retrieval, FRank is significantly better than
RankNet_TwoLayer, and thus significantly better than other
ranking algorithms under investigation.

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

1 2 3 4 5 6 7 8 9 10

NDCG@1 - NDCG@10

FRank
RankNet_TwoLayer

RankBoost
RankNet_Linear

(Non-Learning) BM25 + PageRank
(Non-Learning) BM25

Figure 6. Results of Ranking Algorithms on Test Data

4.4.4 Experiment on Different Size of Training Data
Considering RankSVM ran out of memory on our large training
set, we further conduct several experiments on smaller-scale
datasets to provide more insight about RankSVM. It is also
meaningful to investigate how the number of training queries will
affect the performance of other ranking algorithms. For this
purpose we separately trained these referenced ranking algorithms
on 1,000, 2,000, 4,000, 8,000, and 12,000 queries. The detail
information of the training data is listed in Table 5. Note that,
according to our experiments, RankSVM can output reasonable
models when training with 1,000, 2,000, and 4,000 queries;
however, when the number of training queries is more than 8,000,
the binary code of RankSVM runs out of memory. This is mainly
because RankSVM has to construct as many constraints as the
document pairs, and then the number of variables in the dual
problem becomes voluminous when training on large-scale
dataset. For those cases that RankSVM can operate upon, we use
the linear kernel and tune the parameter C on the validation set;
other experimental settings are similar to those in Section 4.4.3.

Table 4. NDCG Values of Ranking Algorithms on Test Data

NDCG FRank
RankNet

TwoLayer
RankBoost

RankNet

Linear
BM25 +

PageRank BM25

1 0.682 0.670 0.661 0.659 0.605 0.535

2 0.679 0.671 0.664 0.659 0.609 0.550

3 0.684 0.679 0.670 0.664 0.617 0.566

4 0.692 0.685 0.679 0.671 0.623 0.577

5 0.698 0.692 0.686 0.679 0.630 0.587

6 0.706 0.699 0.695 0.686 0.636 0.595

7 0.713 0.706 0.701 0.695 0.642 0.603

8 0.720 0.715 0.710 0.703 0.649 0.611

9 0.727 0.722 0.717 0.710 0.655 0.619

10 0.734 0.729 0.724 0.717 0.661 0.626

0.69

0.7

0.71

0.72

0.73

0.74

2000 4000 6000 8000 10000 12000

N
D

C
G

@
10

Number of Training Queries

FRank
RankNet_TwoLayer

RankBoost
RankNet_Linear

RankSVM

Figure 7. Testing Results on the Different Training Data
Figure 7 plots the results of each of the ranking algorithms trained
on different numbers of queries. Table 6 also summaries the
value of NDCG@10 on different training datasets. From this
figure, we observe the following things:

(1) When the number of training queries is 1,000, the linear
model performs better than the complex non-linear models.
This is because the non-linear models are too complex, and
a small number of training data cannot lead to reliable
models. As a result, the complex models are statistically
incomplete or tend to over-fit the data. In contrast, since
FRank introduces query-level normalization in the loss
function, there is some kind of query-level smoothing
within it. Therefore, FRank performs relatively well on a
small number of training sets. As shown in the figure,
FRank far outperforms other algorithms when the number
of training queries is 1,000.

(2) The performance of each ranking algorithm increases when
the number of training queries increases. However, when
the number of queries is more than 8,000, the performance
only slightly improves, and sometimes even decreases (e.g.
RankBoost). This is interesting because it is not always
worth using more training data if considering the tradeoff
between effectiveness and scale of training.

(3) RankSVM performs as well as RankNet_TwoLayer when
the number of training queries is small. In this regard, we
can predict that if the scalability issue of RankSVM can be
fixed, it may be an effective candidate for learning to rank.

(4) The methods based on the probabilistic ranking framework
perform well when the amount of training data is large.
This is because more pair-wise information can make the
corresponding calculations of the probabilities more
accurate.

(5) Our proposed FRank method obtains more accurate
ranking functions than other algorithms for all cases, and it
was also more stable with respect to the number of training
queries. This strongly suggests that FRank is more suitable
for ranking purposes in information retrieval.

Table 5. Details of Different Training Data
Number of

training queries
Number of

docs
Number of

pairs
1000 27,745 141,305
2000 55,344 269,700
4000 117,702 654,253
8000 250,625 1,648,314

12000 385,293 2,635,976

Table 6. NDCG@10 on the Different Size of Training Queries
of

Training
Queries

FRank RankNet
TwoLayer

RankNet
Linear RankBoost RankSVM

1,000 0.723 0.699 0.696 0.698 0.704

2,000 0.725 0.711 0.705 0.706 0.711

4,000 0.730 0.720 0.712 0.716 0.719

8,000 0.732 0.727 0.715 0.724 None

12,000 0.734 0.729 0.717 0.723 None

5. CONCLUSIONS AND FUTURE WORK
This paper presented an approach to learning the underlying
ranking function with the goal of improving the accuracy of
information retrieval. On the basis of the probabilistic ranking
framework, we propose a novel loss function named Fidelity to
measure the loss of ranking, and accordingly derive a ranking
algorithm named FRank based on a generalized additive model.
Experiments with significance test show that the FRank algorithm
performs well in practice, even for large numbers of queries and
large numbers of features.
Several issues remain for future work.

(1) For theoretical aspects, we hope to investigate how to
prove the generalization bound based on the probabilistic
ranking framework.

(2) Considering that many approaches can be applied to
minimize the fidelity loss function, we would like to study
whether it is better to combine the Fidelity loss with other
machine learning methods, such as kernel methods.

(3) On scalability issues, we plan to implement a parallel
version of FRank that can handle even larger training
datasets.

6. ACKNOWLEDGMENTS

7. REFERENCES
[1] Baeza-Yates, R., Ribeiro-Neto, B. Modern Information

Retrieval. Addison Wesley, 1999.
[2] Bartell, B.T. Opitmizing Ranking Functions: A Connectionist

Approach to Adaptive Information Retrieval. Ph.D. Thesis,
University of California, San Diego, 1994.

[3] Baum, E., and Wilczek, F. Supervised learning of probability
distributions by neural networks. Neural Information
Processing Systems (pp. 52-61), 1988.

[4] Birrell, N.D., Davies, P.C.W. Quantum Fields in Curved
Space. Cambridge University Press, 1982.

[5] Bookstein, A. Outline of a general probabilistic retrieval
model. Journal of Documentation. Volume 39 (pp. 63-72),
1983.

[6] Borlund, P. The Concept of Relevance in IR. Journal of the
American Society for Information Science and Technology
54(10) (pp. 913-925), 2003.

[7] Burges, C., Shaked, T., Renshaw, A., Deeds, M., Hamilton,
N., and Hullender, G. Learning to Rank using Gradient
Descent. Proceedings of 22nd International Conference on
Machine Learning, Bonn, 2005.

[8] Crammer, K., and Singer, Y. Pranking with ranking. NIPS 14,
MIT Press, 2002.

[9] Craswell, N., Hawking, D., Wilkinson, R., and Wu, M.
Overview of the TREC 2003 Web Track. In NIST Special
Publication 500-255: The Twelfth Text REtrieval Conference
(TREC 2003), pages 78–92, 2003.

[10] Dekel, O., Manning, C., and Singer, Y. Loglinear models for
label-ranking. NIPS 16, MIT Press, 2004.

[11] Freund, Y., Iyer, R., Schapire, R., and Singer, Y. An efficient
boosting algorithm for combining preferences. Journal of
Machine Learning Research, 2003.

[12] Friedman, J., Hastie, T., and Tibshirani, R. Additive logistic
regression: a statistical view of boosting. Dept. of Statistics,
Stanford University Technical Report, 1998.

[13] Fuhr, N. Optimum polynomial retrieval functions based on
the probability ranking principle. ACM Transactions on
Information Systems (pp. 183-204), 1989.

[14] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of
Statistical Learning, Springer, New York, 2001.

[15] Herbrich, R., Graepel, T., and Obermayer, K. Large margin
rank boundaries for ordinal regression. Advances in Large
Margin Classiers, MIT Press (pp. 115-132), 2000.

[16] Jarvelin, K., and Kekalainen, J. IR evaluation methods for
retrieving highly relevant documents. Proceeding of 23rd
ACM SIGIR, 2000.

[17] Jarvelin, K., and Kekalainen, J. Cumulated Gain-Based
Evaluation of IR Techniques. ACM Transactions on
Information Systems, 2002.

[18] Joachims, T., Schölkopf, B., Burges, C., and Smola, A.
Making large-Scale SVM Learning Practical. Advances in
Kernel Methods - Support Vector Learning, MIT Press, 1999.

[19] Joachims, T. Optimizing Search Engines Using Clickthrough
Data. Proceedings of the ACM Conference on Knowledge
Discovery and Data Mining (KDD), ACM, 2002.

[20] Nallapati, R. Discriminative models for information retrieval.
Proceedings of SIGIR 2004 (pp. 64–71), 2004.

[21] Nielsen, M.A., and Chuang, I.L. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

[22] Page, L., Brin, S., Motwani, R., and Winograd, T. The
PageRank Citation Ranking: Bringing Order to the Web,
Technical report, Stanford University, Stanford, CA, 1998.

[23] Qin, T., Liu, T.Y., Zhang, X.D., Chen, Z., and Ma, W.Y. A
study of relevance propagation for web search. In SIGIR
2005: Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in
information retrieval. Salvador, Brazil, August 2005.

[24] Robertson, S.E. The probability ranking principle in IR.
Journal of Documentation. Volume 33 (pp. 294–304), 1977.

[25] Robertson, S.E., and Walker, S. Some simple effective
approximations to the 2-Poisson model for probabilistic
weighted retrieval. In Proceedings of the 17th Annual
International ACM SIGIR (pp. 345–354), 1994.

[26] Song, R., Wen, J. R., Shi, S. M., Xin, G. M., Liu, T. Y., Qin,
T., Zheng, X., Zhang, J. Y., Xue, G. R., and Ma, W. Y.
Microsoft Research Asia at Web Track and Terabyte Track
of TREC 2004, in the 13th TREC, 2004

[27] Sormunen, E. Liberal relevance criteria of TREC- Counting
on negligible documents? In Proceedings of the 25th Annual
International ACM SIGIR, 2002.

[28] Vapnik, V. Statistical learning theory. Addison Wiley, 1998.
[29] Voorhees, E.M. and Harman, D.K. TREC: Experiment and

Evaluation in Information Retrieval. MIT Press, 2005.
[30] Xue, G.R., Yang, Q., Zeng, H.J., Yu, Y., and Chen, Z.

Exploiting the hierarchical structure for link analysis. In Proc.
of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval. Salvador,
Brazil, August 2005.

