
Université Libre de Bruxelles
Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

Frankenstein’s PSO: A Composite Particle

Swarm Optimization Algorithm

Marco A. Montes de Oca, Thomas Stützle,
Mauro Birattari and Marco Dorigo

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2007-006

March 2007

IRIDIA – Technical Report Series

ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles

Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2007-006

Revision history:

TR/IRIDIA/2007-006.001 March 2007
TR/IRIDIA/2007-006.002 January 2008

The information provided is the sole responsibility of the authors and
does not necessarily reflect the opinion of the members of IRIDIA. The
authors take full responsability for any copyright breaches that may
result from publication of this paper in the IRIDIA – Technical Report
Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

Frankenstein’s PSO: A Composite Particle

Swarm Optimization Algorithm

Marco A. Montes de Oca mmontes@ulb.ac.be

Thomas Stützle stuetzle@ulb.ac.be

Mauro Birattari mbiro@ulb.ac.be

Marco Dorigo mdorigo@ulb.ac.be

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

January 2008

Abstract

During the last decade, many modifications of the original particle
swarm optimization (PSO) algorithm have been proposed. In many cases,
it is claimed that the modified variant is superior to some reference variant
in some way. The differences between two variants can often be seen as an
algorithmic component being present in one variant but not in the other.
From this perspective, the question arises as to whether it is possible to
integrate different algorithmic components into a single PSO variant that
performs better than the variants from which its components are taken.

In this paper, we take this perspective to design a new PSO algorithm
whose components were selected after a careful evaluation of their impact
on optimization speed and reliability. We call this composite algorithm
Frankenstein’s PSO in an analogy to the popular character of Mary Shel-
ley’s novel. The evaluation of Frankenstein’s PSO performance suggests
that the answer to the driving question is positive.

We present the process that guided us in selecting and adapting the al-
gorithmic components included in Frankenstein’s PSO. The performance
of the composite algorithm is validated via a comparison with the vari-
ants from which the components were taken on a number of well-known
benchmark problems.

1 Introduction

Since particle swarm optimization (PSO) was introduced [1, 2], many researchers
have proposed modifications to the original algorithm (for reviews see [3] and
[4]). In many cases, the modifications are algorithmic components that are
included to provide an improved performance. The nature of these algorith-
mic components ranges from added constants in the particles’ velocity update
rule [5] to stand-alone algorithms that are used as components of hybrid PSO
algorithms [6].

Over the years, almost all effort has been devoted to study the effects of
different components on the behavior of a PSO algorithm (although not exactly
from this perspective); however, little or no effort has been put into the study of

1

2 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

the possible interactions between algorithmic components. The explicit study
of these interactions provides the possibility of improving our understanding of
the PSO approach in general and helps in the task of designing more effective
PSO algorithms.

This paper is organized in two parts. First, we carry out a comparison of
some PSO variants on a set of common benchmark problems. The comparison is
based on a detailed empirical performance analysis from which we identify algo-
rithmic components that provide a positive effect on some performance aspect.
Second, we design and evaluate a new composite algorithm, called Franken-
stein’s PSO, which integrates the algorithmic components that were identified
during the first phase. The final evaluation consists in comparing Frankenstein’s
PSO with the variants from which its components were taken.

The experimental setup and the choice of the PSO variants allow the identi-
fication of performance differences that can be ascribed to specific algorithmic
components. Our comparison focuses on the differences between mechanisms
for updating a particle’s velocity, although other factors such as the selection of
the population topology, the number of particles and the strategies for updating
at run-time various parameters that influence performance are also considered.
The comparison of PSO variants is performed with their most commonly used
parameter settings (i.e., those commonly found in the literature).

Algorithm composition is an approach to the study of the effects of algo-
rithmic components and their interactions. The results presented in this paper
show that high-performance PSO algorithms can be assembled in this way.

2 Particle Swarm Optimization Algorithms

To optimize a d-dimensional continuous objective function f : R
d → R, a popu-

lation of particles P = {p1, . . . , pn} (called swarm) is randomly initialized in the
solution space. The objective function determines the quality of the solution
represented by a particle’s position. (Without loss of generality, we restrict the
following discussion to minimization problems.)

At any time step t, a particle pi has an associated position vector x t
i and

a velocity vector v t
i . A vector pb

t
i (known as personal best) stores the best

position the particle has ever visited. Particle pi is said to have a topological
neighborhood Ni ⊆ P of particles. The best personal best vector in a particle’s
neighborhood (called local best) is a vector lb

t
i such that f(lb t

i) ≤ f(pb
t
j)∀pj ∈

Ni.

PSO algorithms update the particles’ velocities and positions iteratively until
a stopping criterion is met. The basic velocity- and position-update rules are:

v t+1
i = v t

i + ϕ1U
t
1(pb

t
i − x t

i) + ϕ2U
t
2(lb

t
i − x t

i) , (1)

and

x t+1
i = x t

i + v t+1
i , (2)

where ϕ1 and ϕ2 are two parameters called the cognitive and social acceleration
coefficients respectively, U

t
1 and U

t
2 are two d × d diagonal matrices with in-

diagonal elements distributed in the interval [0, 1) uniformly at random. (These
matrices are generated at every iteration.) It was soon noticed that a particle’s

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 3

velocity tended to grow beyond useful limits, so a maximum velocity parame-
ter Vmax was introduced to prevent velocities from growing to extremely large
values [7, 8].

In the following paragraphs, we describe the variants that are part of our
study. Inevitably, there is a personal factor involved in the selection; however,
we believe the chosen variants are among the most influential and promising
ones.

2.1 Constricted Particle Swarm Optimizer

Clerc and Kennedy [5] added a constriction factor to the particles’ velocity-
update rule to avoid the unlimited growth of the particles’ velocity. Eq. 1 is
modified to

v t+1
i = χ

(

v t
i + ϕ1U

t
1(pb

t
i − x t

i) + ϕ2U
t
2(lb t

i − x t
i)

)

, (3)

with χ = 2/
∣

∣

∣
2 − ϕ −

√

ϕ2 − 4ϕ
∣

∣

∣
where χ is the constriction factor, ϕ =

∑

i ϕi

and ϕ > 4. Usually, ϕ1 and ϕ2 are set to 2.05, giving as a result χ equal to
0.729 [8, 9]. This variant will be referred to as constricted PSO in the rest of
the article.

2.2 Time-Varying Inertia Weight Particle Swarm Opti-

mizers

Shi and Eberhart [10, 11] noticed that the first term of the right hand side of
Eq. 1 plays the role of a particle’s “inertia” and they introduced the idea of an
inertia weight. The velocity-update rule was modified to

v t+1
i = w tv t

i + ϕ1U
t
1(pb

t
i − x t

i) + ϕ2U
t
2(lb t

i − x t
i) , (4)

where w t is the time-dependent inertia weight. Shi and Eberhart proposed
to set the inertia weight according to a time-decreasing function so as to have
an algorithm that initially explores the search space and only later focuses on
the most promising regions. Experimental results showed that this approach is
effective [7, 10, 11]. The function used to schedule the inertia weight is defined
as

w t =
wtmax − t

wtmax

(wmax − wmin) + wmin , (5)

where wtmax marks the time at which w t = wmin; wmax and wmin are the max-
imum and minimum values the inertia weight can take, respectively. Normally,
wtmax coincides with the maximum time allocated for the optimization pro-
cess. We identify this variant as decreasing-IW PSO. The constricted PSO can
be considered a special case of this variant but with a constant inertia weight.
We treat them as different variants because of their different behavior and for
historical reasons.

Zheng et al. [12, 13] studied the effects of using a time-increasing inertia
weight function obtaining, in some cases, better results than the decreasing-IW
variant. Concerning the schedule of the inertia weight, Zheng et al. also used
Eq. 4, except that the values of wmax and wmin were interchanged. This variant
is referred to as increasing-IW PSO.

4 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

Eberhart and Shi [14] proposed a variant in which an inertia weight vector
is randomly generated according to a uniform distribution in the range [0.5,1.0)
with a different inertia weight for each dimension. This range was inspired
by Clerc and Kennedy’s constriction factor because the expected value of the
inertia weight in this case is 0.75 ≈ 0.729. Accordingly, in this stochastic-IW
PSO algorithm, acceleration coefficients are set to the product of χ · ϕi with
i ∈ {1, 2}.

2.3 Fully Informed Particle Swarm Optimizer

Mendes et al. [15] proposed the fully informed particle swarm (FIPS), in which a
particle uses information from all its topological neighbors. Clerc and Kennedy’s
constriction factor is also adopted in FIPS; however, the value ϕ (i.e., the sum
of the acceleration coefficients) is equally distributed among all the neighbors
of a particle.

For a given particle pi, ϕ is decomposed as ϕk = ϕ/|Ni| , ∀pk ∈ Ni. As a
result, the velocity-update equation becomes

v t+1
i = χ



v t
i +

∑

pk∈Ni

ϕkU t
k(pb

t
k − x t

i)



 . (6)

2.4 Self-Organizing Hierarchical Particle Swarm Optimizer

with Time-varying Acceleration Coefficients

Ratnaweera et al. [16] proposed the self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients (HPSOTVAC), in which
the inertia term in the velocity-update rule is eliminated. Additionally, if any
component of a particle’s velocity vector becomes zero (or very close to zero), it
is reinitialized to a value proportional to Vmax, the maximum velocity allowed.
This gives the algorithm a local search behavior that is amplified by linearly
adapting the value of the acceleration coefficients ϕ1 and ϕ2. The cognitive
coefficient ϕ1 is decreased from 2.5 to 0.5 and the social coefficient ϕ2 is increased
from 0.5 to 2.5. In HPSOTVAC, the maximum velocity is linearly decreased
during a run so as to reach one tenth of its value at the end. A low reinitialization
velocity near the end of the run allows particles to move slowly near the best
region they have found. The resulting PSO variant is a kind of local search
algorithm with occasional magnitude-decreasing unidimensional restarts.

2.5 Adaptive Hierarchical Particle Swarm Optimizer

Differently from the other variants, the adaptive hierarchical PSO (AHPSO)
[17] modifies the neighborhood topology at run time. It uses a tree-like topol-
ogy structure in which particles with better objective function evaluations are
located in the upper nodes of the tree. At each iteration, a child particle updates
its velocity considering its own previous best performance and the previous best
performance of its parent. Before the velocity-update process takes place, the
previous best fitness value of any particle is compared with that of its parent.
If it is better, child and parent swap their positions in the hierarchy. Addition-
ally, AHPSO adapts the branching degree of the tree while solving a problem

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 5

to balance the exploration-exploitation behavior of the algorithm: a hierarchy
with a low branching degree has a more exploratory behavior than a hierarchy
with a high branching degree. In AHPSO, the branching degree is decreased by
kadapt degrees (one at a time) until a certain minimum degree dmin is reached.
This process takes place every fadapt number of iterations. For more details, see
[17].

3 Experimental Setup

The focus of the comparison is on the impact on performance of different mech-
anisms for updating a particle’s velocity. However, other factors are also con-
sidered. The complete experimental design examines five factors:

1. PSO algorithm. This factor considers the differences between PSO vari-
ants. Specifically, we focused on (i) different strategies for updating inertia
weights, (ii) the use of static and time-varying population topologies and
(iii) different strategies for updating a particle’s velocity.

2. Problem. We selected some of the most commonly used benchmark
functions in experimental evolutionary computation. Since most of these
functions have their global optimum located at the origin, we shifted it to
avoid any possible search bias as suggested by Liang et al. [18]. In most
cases, we used the shift values proposed in the set of benchmark functions
used for the special session on real parameter optimization of the IEEE
CEC 2005 [19]. Table 1 lists the benchmark functions used in our study.
In all cases, we used their 30-dimensional versions. (Their definitions can
be found in this paper’s supplementary information web page [20]1.) All
algorithms were run 100 times on each problem.

Table 1: Benchmark Problems
Function Name Search Range Modality

Ackley [−32.0, 32.0]n Multimodal
Griewank [−600.0, 600.0]n Multimodal
Rastrigin [−5.12, 5.12]n Multimodal
Salomon [−100.0, 100.0]n Multimodal

Schwefel (sine root) [−512.0, 512.0]n Multimodal
Step [−5.12, 5.12]n Multimodal

Rosenbrock [−30.0, 30.0]n Unimodal
Sphere [−100.0, 100.0]n Unimodal

3. Population topology. We use three of the most commonly used pop-
ulation topologies: The fully connected topology, in which every particle
is a neighbor of any other particle in the swarm; the square topology, in
which each particle is a neighbor of 4 other particles; and the ring topol-
ogy, in which each particle is a neighbor of another 2 particles. In our
setup, all particles are also neighbors to themselves. These three topolo-
gies are tested with all variants except in the case of AHPSO which uses a

1 At this same address the reader can find all the supporting supplementary information
(definitions, tables and graphs) that, for the sake of conciseness, we do not present here.

6 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

time-varying topology. The selected topologies provide different degrees of
connectivity between particles. The goal is to favor exploration in different
degrees: The less connected is a topology, the more it delays the propa-
gation of the best-so-far solution. Thus, low connected topologies result
in more exploratory behavior than highly connected ones [21]. Although
recent research suggests that random topologies can be competitive to
predefined ones [22], they are not included in our setup in order not to
have an unmanageable number of free variables.

4. Population size. We considered three population sizes: 20, 40 and 60
particles. With low connected topologies and large populations, the prop-
agation of information is slower and thus it is expected that a more “paral-
lel” search takes place. Square topologies can have different configurations
for the same number of particles. The configurations that we considered
for 20, 40 and 60 particles were 5 × 4, 5 × 8 and 6 × 10 respectively. The
population is initialized uniformly at random over the ranges specified in
Table 1. Since the problems’ optima were shifted, the initialization range
is asymmetric with respect to them.

5. Maximum number of function evaluations. This factor determined
the stopping criterion. The limit was set to 106 function evaluations. How-
ever, data were collected during a run to determine relative performances
for shorter runs. The goal was to find variants that are well suited for
different application scenarios. The first two cases (103 and 104 function
evaluations) model scenarios in which there are scarce resources and the
best possible solution is sought given a restrictive time limit. The other
two cases (105 and 106 function evaluations) model scenarios in which the
main concern is to find high quality solutions without paying too much
attention to the time it takes to find them.

In our experimental setup, each algorithm was run with the same param-
eter settings across all benchmark problems. When possible, we use the most
commonly used parameter settings found in the literature. These parameter
settings are listed in Table 2.

In our experimental analysis, we examined the algorithms’ performance at
different levels of aggregation. At a detailed level, we analyze the algorithms’
qualified run-length distributions (RLDs, for short). At a more aggregate level,
we use the median solution quality reached by the algorithms at different stop-
ping criteria. The most important elements of the RLD methodology are ex-
plained below (for a detailed exposition, see [23]).

The number of function evaluations needed by a stochastic optimization
algorithm to find a solution of a certain quality on a given problem can be
modeled as a random variable. Its associated cumulative probability distribution
is the algorithm’s RLD.

Formally, an algorithm’s RLD is denoted by RLq(l) and is defined as

RLq(l) = P (Lq ≤ l) , (7)

where Lq is the random variable representing the number of function evalua-
tions needed to find a solution of quality q, and P (Lq ≤ l) is the probability
that Lq takes a value less than or equal to a certain number of evaluations l.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 7

Table 2: Parameter settings
Algorithm Settings
Constricted Acceleration coefficients ϕ1 = ϕ2 =

2.05. Constriction factor χ = 0.729.
Maximum velocity Vmax = ±Xmax,
where Xmax is the maximum of the
search range.

Decreasing-
IW

Acceleration coefficients ϕ1 = ϕ2 = 2.0.
Linearly-decreasing inertia weight from
0.9 to 0.4. The final value is reached at
the end of the run. Maximum velocity
Vmax = ±Xmax.

Increasing-
IW

Acceleration coefficients ϕ1 = ϕ2 = 2.0.
Linearly-increasing inertia weight from
0.4 to 0.9. The final value is reached at
the end of the run. Maximum velocity
Vmax = ±Xmax.

Stochastic-
IW

Acceleration coefficients ϕ1 = ϕ2 =
1.494. Uniformly distributed random
inertia weight in the range [0.5, 1.0].
Maximum velocity Vmax = ±Xmax.

FIPS Acceleration parameter ϕ = 4.1. Con-
striction factor χ = 0.729. Maximum
velocity Vmax = ±Xmax.

HPSOTVAC Acceleration coefficient ϕ1 linearly de-
creased from 2.5 to 0.5 and coefficient
ϕ2 linearly increased from 0.5 to 2.5.
Linearly decreased reinitialization ve-
locity from Vmax to 0.1 · Vmax. Max-
imum velocity Vmax = ±Xmax.

AHPSO Acceleration coefficients ϕ1 = ϕ2 =
2.05. Constriction factor χ = 0.729.
Initial branching factor is set to 20,
dmin, fadapt, and kadapt were set to 2,
1000 ·m, and 3 respectively, where m is
the number of particles.

8 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

Theoretical RLDs are estimated empirically using multiple independent runs of
an algorithm.

An empirical RLD provides a graphical view of the development of the prob-
ability of finding a solution of a certain quality as a function of time. When this
probability does not increase or it does but very slowly, the algorithm is said to
stagnate. In this paper we use the word stagnation to refer to the phenomenon
of slow or no improvement of the solution quality over time or, as in this case,
to the slow or no increment of the probability of finding a solution of a specific
quality. Note that no reference to the state of the optimization algorithm is
implied.

In stagnation cases, the probability of finding a solution of a certain quality
can be increased by restarting the algorithm at fixed intervals of time instead
of letting it run for longer. A restart is the process of rerunning the algorithm
using the same parameter settings without passing over any information from
the previous run and using a different sequence of random numbers.

The RLD of an algorithm that is restarted periodically will approximate, in
the long run, an exponential distribution. However, when an algorithm’s origi-
nal RLD grows faster than an exponential distribution, the use of independent
restarts is detrimental. It is possible to estimate, from an empirically estimated
RLD, the number of function evaluations needed to find the required solution
with a probability greater than or equal to z if an optimal restart policy is sup-
posed to be used. This estimation is sometimes called computational effort [24]
and it is defined as

effort = min
l

{

l ·
ln(1 − z)

ln(1 − RLq(l))

}

. (8)

We use this measure to complement our analysis by considering the possibility
of restarting the compared algorithms with optimal restart policies.

Fig. 1 shows an example RLD of an algorithm with and without restarts
together with the exponential distribution that the algorithm with restarts is
ideally following. Both the cut-off time and the estimated effort for a probability
of z = 0.99 are indicated with arrows.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

 Cut-off

Estimated effort

Exp(median=7397)
With restarts

Without restarts

Figure 1: Example of empirical RLDs of an algorithm with and without restarts. See

the text for more details.

Another measure that will be used in the description of the results is the
first hitting time Hq for a specific solution quality q. Hq is an estimation of the
minimum number of evaluations that an algorithm needs for finding a solution

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 9

of a quality level q. It is defined as

Hq = min{l ≥ 0; RLq(l) > 0} . (9)

4 Performance Comparison of Particle Swarm

Optimization Algorithms

The comparison is carried out in three phases. In the first one, a problem-
dependent run-time behavior comparison based on RLDs is performed (a pre-
liminary series of results is published in [25]). In the second phase, data from
all the problems of our benchmark suite are aggregated and analyzed. In the
third phase, we study the effects of using different inertia weight schedules on
the performance of the concerned variants. Results that are valid for all the
tested problems are explicitly summarized.

4.1 Results: Run-Length Distributions

The graphs presented in this section show a curve for each of the compared
algorithms corresponding to a particular combination of a population topology
and a population size. Since AHPSO does not use a fixed topology, its RLDs are
the same across topologies and its results can therefore be used as a reference
across plots for a same problem. The RLDs we present here were obtained using
swarms of 20 and 60 particles.

Because of space constraints, we present only one representative example of
the results we obtained. Fig. 2 shows some of the algorithms’ RLDs when solving
Griewank’s function. These plots are given with respect to a bound of 0.001%
above the optimum value, corresponding to an absolute error of 0.0018. The
smallest first hitting times for the same algorithm across different population
size and topology settings are obtained with a population size of 20 and the fully
connected topology. Conversely, the largest ones are obtained with a population
size of 60 and the ring topology. With 20 particles, the right tails of the RLDs
show a slowly-increasing or a non-increasing slope. This means that with 20
particles all PSO variants have a strong stagnation tendency in this problem.
In fact, no variant is capable of finding a solution of the required quality with
a probability of 1.0 with this population size. With 60 particles and a ring
topology, only FIPS finds the required solution quality with a probability of
1.0, while the constricted PSO and HPSOTVAC reach a solution of the required
quality with a probability of 0.99.

Result 1: Depending on the problem and required solution quality, PSO
algorithms exhibit a stagnation tendency with different degrees of severity. This
tendency is smaller when using large population sizes and/or low connected
topologies than it is when using small population sizes and/or highly connected
topologies. However, even though the probability of solving the problem increases,
first hitting times are normally delayed.

An interesting fact is the strong influence of the topology on the algortihms’
performance. For example, FIPS with a fully connected topology does not find a
single solution of the required quality; however, with a ring topology, it is among
the fastest algorithms (in terms of the first hitting times). AHPSO seems to
profit from a highly connected topology at the beginning of a run. It is also

10 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Constricted
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(a) 20 particles, Fully connected topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

Number of function evaluations

Constricted
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(b) 60 particles, Fully connected topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Constricted
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(c) 20 particles, Square topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

Number of function evaluations

Constricted
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(d) 60 particles, Square topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

Constricted
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(e) 20 particles, Ring topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

Number of function evaluations

Constricted
Decreasing-IW
Increasing-IW
Stochastic-IW

FIPS
HPSOTVAC

AHPSO

(f) 60 particles, Ring topology

Figure 2: RLDs on Griewank’s function. The solution quality bound is set to 0.001%

above the global optimum (equivalent to an absolute error of 0.0018). Plots (a), (c),

and (e) in the left column show the RLDs obtained with 20 particles. Plots (b), (d),

and (f) in the right column show the RLDs obtained with 60 particles. The effect of

using different population topologies can be seen by comparing plots in different rows.

The effect of using a different number of particles can be seen by comparing columns.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 11

among the fastest variants when the rest of the algorithms use a square or ring
topology. However, it is unable to solve the problem with a high probability.

FIPS’s poor performance with a fully connected topology could be explained
by looking at the evolution of the average distance of the particles’ previous best
positions to their centroid (a measure of convergence in space). Fig. 3 shows
the development of this measure over time on Griewank’s problem. FIPS with a
fully connected topology drives the swarm of particles to a single point in space
much faster than with other topologies. Recently, it has been suggested that
FIPS with a fully connected topology exhibits a random behavior [4]. However,
our empirical results show that the distance between particles decreases over
time and that the decrement is faster when the fully connected topology is
used. Consequently, we believe that FIPS’s poor behavior is actually due to the
collapse of the swarm in the search space and not to a random behavior. It is
worth to mentioning that this behavior is observed on all the tested functions.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 1000 10000

A
ve

ra
ge

 d
is

ta
nc

e

Number of function evaluations

Fully connected
Ring

Square

Figure 3: Evolution of the average distance of the particles’ previous best positions

to their centroid for FIPS solving Griewank’s function with different topologies and

20 particles. The graph shows the mean and the standard deviation over 100 runs.

Result 2: PSO algorithms are sensitive to a change in the population topol-
ogy in different degrees. Among those tested, FIPS is the most sensitive variant
to a change of this nature. On the contrary, HPSOTVAC and the decreasing
inertia weight PSO algorithm are quite stable to topology changes.

As a best-case analysis, we now consider the possibility of restarting the
algorithms with an optimal restart policy. In order to estimate the number of
function evaluations needed to find the required solution quality with a certain
probability, we use Eq. 8. In Table 3 we show the best configuration of each
algorithm to solve Griewank’s problem (at 0.001% above the global optimum)
with a probability of 0.99. The best performing configurations of FIPS and the
constricted PSO, both with 60 particles and the ring topology, do not benefit
from restarts under these conditions, and they are the two best variants for
the considered goal. In this case, the joint effect of choosing the right algo-
rithm, with an appropriate population size and with the right topology, cannot
be outperformed by configurations that benefit from restarts (i.e., those that
stagnate).

The effect of using restarts is algorithm- and problem-dependent. As an
example, consider the data shown in Table 4. This table shows the best con-
figuration of each algorithm to solve Rastrigin’s problem (at 20.0% above the
global optimum) with a probability of 0.99. Differently from what was observed

12 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

Table 3: Best performing configurations of each algorithm
using independent restarts on Griewank’s function1, 2

Algorithm Pop. Size Topology Cut-off Effort Restarts
FIPS 60 Ring 46440 46440 0

Constricted 60 Ring 71880 71880 0
Sto-IW 40 Ring 52160 131075 2
Inc-IW 20 Ring 24040 138644 5

HPSOTVAC 40 Ring 132080 155482 1
AHPSO 40 Dynamic 17360 207295 11
Dec-IW 60 Ring 663000 1326000 1

1 Probabilities taken from the RLDs.
2 Cut-off and effort measured in function evaluations. The effort

is computed using Eq. 8.

in the previous case, the best performing variants use a configuration with a
strong stagnation tendency that benefits from restarts.

Table 4: Best performing configurations of each algorithm
using independent restarts on the Rastrigin function1, 2

Algorithm Pop. Size Topology Cut-off Effort Restarts
Inc-IW 40 Fully connected 12760 41176 3
Sto-IW 60 Square 50220 59119 1

Constricted 40 Square 17880 61126 3
AHPSO 60 Adaptive 18660 63792 3

HPSOTVAC 20 Ring 70220 70220 0
FIPS 40 Square 38640 93797 2

Dec-IW 20 Fully connected 460200 460200 0
1 Probabilities taken from the RLDs.
2 Cut-off and effort measured in function evaluations. The effort is

computed using Eq. 8.

Result 3: Independent restarts can improve the performance of various
PSO algorithms. In some cases, configurations that favor an exploitative be-
havior can outperform those that favor an exploratory one if optimal restart
policies are used. However, the optimal restart policy is algorithm- and problem-
dependent and therefore cannot be defined a priori.

4.2 Results: Aggregated Data

The analysis that follows is based on the median solution quality achieved by
an algorithm after some specific number of function evaluations. This analysis
considers only the 40 particles case which represents the intermediate case in
terms of population size in our experimental setup. For each problem, we ranked
19 configurations (6 PSO algorithms × 3 topologies + AHPSO) and selected
only those that were ranked in the first three places (what we call the top-three
group). For this analysis, we assume that the algorithms are neither restarted
nor fine-tuned for any specific problem.

Table 5 shows the distribution of appearances of the compared PSO algo-
rithms in the top-three group. The table shows configurations ranked among
the three best algorithms for different numbers of function evaluations (FES).
The topology used by a particular configuration is shown in parenthesis. If two
or more configurations found solutions with the same quality level (differences

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 13

smaller than 10−15 are not considered) and they were among the three best
solution qualities, these configurations were considered to be part of the top-
three group. In fact, we observed that, as the number of function evaluations
increases, more and more algorithms appear in the top-three group. This indi-
cates that the difference in the solution quality achieved by different algorithms
decreases and that many algorithms achieve the same quality level.

1
4

IR
ID

IA
–

T
ech

n
ica

l
R

ep
o
rt

S
eries:

T
R

/
IR

ID
IA

/
2
0
0
7
-0

0
6

Table 5: Distribution of appearances of different PSO algorithms in the top-three group1

FES Ackley Griewank Rastrigin Salomon Schwefel Step Rosenbrock Sphere

103

FIPS (F,S) FIPS (F,S) FIPS (F,S) FIPS (F,S) Inc-IW (F,S,R) FIPS (F,S) AHPSO FIPS (F,S)
Inc-IW (F) Inc-IW (F) Inc-IW (F) HPSOTVAC Inc-IW (F) Constricted (F) Inc-IW (F)

Sto-IW (F)

104

FIPS (S,R) Constricted (F) AHPSO Constricted (F) AHPSO AHPSO AHPSO AHPSO
Inc-IW (F) FIPS (S) Constricted (F) Inc-IW (F) Inc-IW (F) Constricted (F) Constricted (F) Constricted (F)

Inc-IW (F) Inc-IW (F) Sto-IW (F) Sto-IW (F) Inc-IW (F) Sto-IW (F) Inc-IW (F)
Sto-IW (F)

105

Constricted (S) Constricted (S,R) FIPS (S) Constricted (S,R) HPSOTVAC (F,S,R) Constricted (S) AHPSO AHPSO
FIPS (R) FIPS (R) Inc-IW (S) FIPS (R) Inc-IW (F) Constricted (F) Constricted (F,S,R)

Inc-IW (F) Inc-IW (S,R) Sto-IW (S) Inc-IW (F,S) Sto-IW (F) Sto-IW (F) FIPS (R)
Sto-IW (S,R) Sto-IW (F,S,R) Inc-IW (F,S,R)

Sto-IW (F,S,R)

106

Constricted (S,R) Constricted (S,R) HPSOTVAC (F,S,R) Constricted (S,R) Dec-IW (S) Constricted (S,R) AHPSO AHPSO
Dec-IW (F,S,R) Dec-IW (S,R) Dec-IW (F,S,R) FIPS (R) Dec-IW (F,S,R) Constricted (F) Constricted (F,S,R)

FIPS (R) FIPS (R) FIPS (R) HPSOTVAC (R) FIPS (R) Sto-IW (F) Dec-IW (F,S,R)
Inc-IW (S,R) HPSOTVAC (F,S,R) HPSOTVAC (F,S,R) HPSOTVAC (F,S,R) FIPS (R)
Sto-IW (S,R) Inc-IW (S,R) Inc-IW (S,R) Inc-IW (F,S,R) HPSOTVAC (S)

Sto-IW (S,R) Sto-IW (S,R) Sto-IW (F,S,R) Inc-IW (F,S,R)
Sto-IW (F,S,R)

1 F, S and R stand for fully connected, square and ring, respectively. FES stands for function evaluations.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 15

Table 6 shows the algorithms that most often appear in the top-three group
in Table 5 for different termination criteria. The column labeled “Σ” shows the
total number of times each algorithm appeared in the top-three group. The
rightmost column shows the distribution of appearances in the top-three group
between multi- and unimodal functions.

Table 6: Best PSO variants for different termination criteria
Budget (in FES) Algorithm(Topology) Σ multi/unimodal

103 Inc-IW(F), FIPS(F,S) 6 5/1
104 Inc-IW(F) 7 6/1
105 Constricted(S) 5 4/1
106 Dec-IW(S), FIPS(R) 6 5/1

Note that the connectivity of the topology used by the best ranked variants
decreases as the maximum number of function evaluations increases. It is also
interesting to note that FIPS is the best ranked algorithm in the shortest as well
as in the longest runs. Our results extend those of Mendes [21] who studied the
behavior of FIPS using only a fixed number of function evaluations as stopping
criterion.

Result 4: When a limited number of function evaluations are allowed, con-
figurations that favor an exploitative behavior (i.e., those with highly connected
topologies and/or low inertia weights) obtain the best results. When solution
quality is the most important aspect, algorithms with exploratory properties are
the best performing.

4.3 Results: Different Inertia Weight Schedules

In the current literature, the change of the inertia weight value in the time-
decreasing/increasing inertia weight variants is scheduled over the whole op-
timization process. In this section, we present a study on the effects of us-
ing different schedules. To do so, we modified the inertia weight schedule,
which is based on Eq. 5, so that whenever the inertia weight reaches its limit
value, it remains there. We experimented with five inertia weight schedules
of wtmax ∈ {102, 103, 104, 105, 106} function evaluations each. The remaining
parameters were set as shown in Table 2.

As an example of the effects of different inertia weight schedules, consider
Fig. 4, which shows the development of the solution quality over time (using both
the time-decreasing and time-increasing inertia weight variants) for different
inertia weight schedules on the Rastrigin function.

In the case of the time-decreasing inertia weight variant, slow schedules
(wtmax = 105 or 106 function evaluations) perform poorly during the first phase
of the optimization process; however, they are the ones that are capable of
finding the best quality solutions. On the other hand, fast schedules (wtmax =
102 or 103 function evaluations) produce rapid improvement but at the cost of
stagnation later in the optimization process.

With the time-increasing inertia weight variant, slow schedules provide the
best performance. Fast schedules make the time-increasing inertia weight vari-
ant strongly stagnant. For both variants, the severity of the stagnation tendency
induced by different schedules is alleviated by both an increase in the number
of particles and the use of a low connected topology.

16 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

 0
 0.2
 0.4
 0.6
 0.8

 1

 100 1000 10000 100000 1e+06

In
er

tia
 W

ei
gh

t

Number of function evaluations

 1

 10

 100

R
el

at
iv

e
so

lu
tio

n
qu

al
ity

 [%
]

100
1000

10000
100000

1000000

(a) Decreasing inertia weight

 0
 0.2
 0.4
 0.6
 0.8

 1

 100 1000 10000 100000 1e+06

Number of function evaluations

 1

 10

 100

100
1000

10000
100000

1000000

(b) Increasing inertia weight

Figure 4: Solution quality and inertia weight development over time for different

inertia weight schedules on the Rastrigin function. The solution quality development

plots are based on the medians of the algorithms’ RLDs. The first and third quartiles

are shown at selected points. These results correspond to configurations of 20 particles

in a fully connected topology.

Result 5: By varying the inertia weight schedule, it is possible to control
the convergence speed of the time-varying inertia weight variants. In the case
of the time-decreasing inertia weight variant, faster schedules induce a faster
convergence speed, albeit at the cost of increasing the algorithm’s stagnation
tendencies. In the time-increasing inertia weight variant, slow schedules provide
the best performance both in terms of speed and quality.

4.4 Summary

The goal of the comparison presented above was not to declare a winner PSO
algorithm, but rather to identify algorithmic components that provide good
performance under different operating conditions (specially run-lengths). The
five main results give insight into what factors should be taken into account
when trying to solve effectively a problem using a PSO algorithm.

Among other results, we have seen that stagnation tendencies of PSO al-
gorithms can be alleviated by using a large population and/or low connected
topologies. Another approach to reduce stagnation in some cases is to use
restarts. However, optimal restart schedules are algorithm- and problem-dependent
and determining them requires previous experimentation. We have also seen
how different inertia weight schedules affect the performance of the time-varying
inertia weight variants.

Some algorithmic components are of special importance due to the dramatic
impact they have on the algorithms’ performance. On some variants, some of
these components have been relatively well studied (e.g., population topologies
in the constricted PSO and FIPS); however, the interactions between different
components on the algorithms’ performance have not received sufficient atten-
tion.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 17

5 Frankenstein’s Particle Swarm Optimization

Algorithm

Insights on experimental results ideally guide toward the definition of new,
better performing algorithms. In this section, a composite algorithm called
Frankenstein’s PSO is assembled from algorithmic components that are taken
from the PSO algorithms that we have examined or that are derived from the
analysis of the comparison results. Since the goal is to design a PSO algorithm
that works well regardless of the time allocated for the optimization process, the
algorithmic components included in Frankenstein’s PSO algorithm contribute
to either find good quality solutions in short runs or find solutions of very good
quality in long ones.

5.1 The Algorithm

Frankenstein’s PSO is composed of three main algorithmic components, namely
(i) a time-varying population topology that reduces its connectivity over time,
(ii) FIPS’s mechanism for updating a particle’s velocity which successfully ex-
ploits topologies of varying degree of connectivity, and (iii) a decreasing inertia
weight. Two of these components balance the exploration-exploitation behav-
iors during a run. The time-varying population topology enhances exploration
over time and the decreasing inertia weight favors exploitation over time.

The time-varying topology starts as a fully connected one and, as the opti-
mization process evolves, decreases its connectivity until it ends up being a ring
topology. Interestingly, it is the opposite approach than the one taken by Sug-
anthan [26]. Note, however, that our approach is entirely based on the results of
the empirical analysis presented in the previous section. Specifically, our choice
is based on the fact that a highly connected topology during the first iterations
gives an algorithm the opportunity to find good quality solutions early in a run
(see Table 6 and Results 1 and 4 in Section 4). The topology connectivity is then
decreased, so that the risk of getting trapped somewhere in the search space is
reduced and, hence, exploration is enhanced. Including this component into the
algorithm permits the achievement of good performance across a wider range
of run lengths as it will be shown later. A time-varying population topology
is also found in AHPSO. Information flow in AHPSO is very fast during the
first iterations because the topology connectivity is high. As the optimization
process evolves, its connectivity decreases. In Frankenstein’s PSO we do not use
a hierarchical topology as it is not clear from our results whether it contributes
to a good performance or not.

The topology is changed as follows. Suppose we have a particle swarm
composed of n particles. We schedule the change of the topology so that in k
iterations (with k ≥ n), we transform a fully connected topology with n(n−1)/2
edges into a ring topology with n edges. The total number of edges that have
to be eliminated are n(n − 3)/2. Every ⌈k/(n − 3)⌉ iterations we remove m
edges, where m of edges to remove follows an arithmetic regression pattern of
the form n − 2, n − 3, . . . , 2. We sweep m nodes removing one edge per node.
The edge to be removed is chosen uniformly at random from the edges that do
not belong to the exterior ring, which is predefined in advance (just as it is done
when using the normal ring topology). The transformation from the initially

18 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

(a) t = 0 (b) t = 4

(c) t = 8 (d) t = 12

Figure 5: Topology change process. Suppose n = 6 and k = 12. Then, every

⌈12/(6 − 3)⌉ = 4 iterations we remove some edges from the graph. In 6 − 3 = 3 steps,

the elimination process will be finished. (a). At t = 0 a fully connected topology is

used. (b). At t = 4 the 6− 2 = 4 edges to be removed are shown in dashed lines. (c),

at t = 8 the 6 − 3 = 3 edges to be removed are shown in dashed lines. (d). At t = 12

the remaining 6 − 4 = 2 edges to be removed are shown in dashed lines. From t = 12

on, the algorithm uses a ring topology.

fully connected to the final ring topology is performed in n−3 elimination steps.
Fig. 5 shows a graphical example of how the process just described is carried
out.

Changes in the population topology must be exploited by the underlying
particles’ velocity-update mechanism. In Frankenstein’s PSO we included the
mechanism used by FIPS. The reason for this is that we need a component that
offers good performance across different topology connectivities. According to
Table 6, the only velocity-update mechanism that is ranked among the best
variants when using different topologies is the one used by FIPS. For short
runs, FIPS’s best performance is obtained with the fully connected topology
(the way Frankenstein’s PSO topology starts); for long runs, FIPS reaches very
high performance with a low connected topology (the way Frankenstein’s PSO
topology ends).

The constriction factor originally used in FIPS is substituted by a decreasing
inertia weight. A decreasing inertia weight was chosen because it is a parameter
that can be used to control the algorithm’s exploration/exploitation capabilities.
In Section 4.3, we saw that a proper selection of the inertia weight schedule can
dramatically change the performance of a PSO algorithm. A decreasing inertia
weight would counterbalance the exploratory behavior that the chosen topology
change scheme could induce.

The pseudocode of Frankenstein’s PSO is shown in Algorithm 1. The main
loop cycles through the three algorithmic components: topology update, inertia
weight update, and the particles’ velocity and position updates. The topology
update mechanism is only executed while the algorithm’s current number of
iterations is lower than or equal to a parameter k, which specifies the topology
update schedule. Since it is guaranteed that the ring topology is reached after

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 19

iteration k, there is no need to call this procedure thereafter. In Algorithm 1,
a variable esteps is used to ensure that the number of eliminated edges in the
topology follows an arithmetic regression pattern. Note that the elimination of
neighborhood relations is symmetrical, that is, if particle r is removed from the
neighborhood of particle i, particle i is also removed from the neighborhood of
particle r. The inertia weight is then updated, and finally, the velocity-update
mechanism is applied in the same way as in FIPS.

5.2 Parameterization Effects

We studied the impact of using different schedules for the topology and inertia
weight updates on the algorithm’s performance. The remaining parameters were
the same as those used in the original context of the different algorithmic com-
ponents, that is, the maximum velocity Vmax = ±Xmax, the linearly-decreasing
inertia weight is varied from 0.9 to 0.4, and the sum of the acceleration coeffi-
cients, ϕ, is set to 4.0.

The experimental conditions under which we evaluated the performance of
the algorithm were the same that we used in the comparison of the different PSO
algorithms. Three swarm sizes (n = 20, 40, 60), four schedules of the topology
update (measured in iterations; k = n, 2n, 3n, 4n) and four schedules of the
inertia weight (measured in function evaluations; wtmax = n2, 2n2, 3n2, 4n2)
were tried. Note that the values of k and wtmax are independent from one
another.

As an illustrative example of the results, consider Fig. 6. It shows the RLDs
obtained by Frankenstein’s PSO algorithm on Griewank’s function. These dis-
tributions correspond, as before, to a solution quality 0.001% above the optimum
value. Only the results obtained with 4 out of the 12 possible combinations of
topology schedules and population sizes are shown2.

A combination of a slow topology update schedule (3n or 4n) and a fast iner-
tia weight schedule (n2 or 2n2) promotes the stagnation of the algorithm. This
can be explained if we recall that FIPS has a strong stagnation tendency when
using a highly connected topology: A slow topology update schedule maintains
a high topology connectivity for more iterations and a fast inertia weight sched-
ule quickly reduces the exploration capabilities of the particle swarm. These two
effects also increase the algorithm’s stagnation tendency. To counteract a fast
stagnation tendency, the two possibilities are to slow down the inertia weight
schedule or to speed up the change of the topology.

Increasing the number of particles increases the amount of information avail-
able to the algorithm during the first iterations. The exploitation of this infor-
mation depends on the topology update and inertia weight schedules. The
configurations that appear to better exploit it are those in which these two
schedules are slow.

Fig. 7 shows the average (over the 8 benchmark problems of the experimental
setup) standard solution quality (i.e., for each group, the mean is equal to zero
and the standard deviation is one) as a function of the topology update and the
inertia weight schedules for different termination criteria. Since we work with
minimization problems, a lower average standard solution quality means that
the specific configuration found better solutions.

2We remind the reader that the full experimental data are available on our supplementary

20 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

1xn2
2xn2
3xn2
4xn2

(a) 20 particles, 1 × n iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

1xn2
2xn2
3xn2
4xn2

(b) 60 particles, 1 × n iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

1xn2
2xn2
3xn2
4xn2

(c) 20 particles, 4 × n iterations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 th

e
pr

ob
le

m

Number of function evaluations

1xn2
2xn2
3xn2
4xn2

(d) 60 particles, 4 × n iterations

Figure 6: RLDs obtained by Frankenstein’s PSO algorithm on Griewank’s function.

The solution quality demanded is 0.001% above the global optimum. Columns show

the RLDs obtained with different number of particles. Rows show the RLDs obtained

with different topology update schedules. Each graph shows four RLDs that corre-

spond to different inertia weight schedules.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 21

-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

 1

 2

 3

 4

 1

 2

 3

 4

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

Solution Quality

 Best
 Topology schedule [x n]

IW schedule [x n2]

Solution Quality

(a) 20 particles, 103 evaluations

-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

 1

 2

 3

 4

 1

 2

 3

 4

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

Solution Quality

 Best

 Topology schedule [x n]

IW schedule [x n2]

Solution Quality

(b) 60 particles, 103 evaluations

-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6

 1

 2

 3

 4

 1

 2

 3

 4

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

Solution Quality

 Best

 Topology schedule [x n]

IW schedule [x n2]

Solution Quality

(c) 20 particles, 106 evaluations

-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

 1

 2

 3

 4

 1

 2

 3

 4

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

Solution Quality
 Best

 Topology schedule [x n]

IW schedule [x n2]

Solution Quality

(d) 60 particles, 106 evaluations

Figure 7: Average standard solution quality as a function of the topology update

and the inertia weight schedules for different termination criteria. Columns show the

results obtained with different number of particles. Rows show the results obtained

for different termination criteria. In each case, the best configuration is pointed by an

arrow.

22 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

Algorithm 1 Frankenstein’s PSO algorithm

/* Initialization */
for i = 1 to n do

Create particle pi and add it to the set of particles P
Initialize its vectors xi and vi to random values within the search range and maximum
allowed velocities
Set pbi = xi

Set Ni = P
end for

/* Main Loop */
Set t = 0
Set esteps = 0
repeat

/* Evaluation Loop */
for i = 1 to n do

if f(xi) is better than f(pbi) then

Set pbi = xi

end if

end for

/* Topology Update */
if t > 0 ∧ t <= k ∧ t mod ⌈k/(n − 3)⌉ = 0 then

/* t > 0 ensures that a fully connected topology is used first */
/* t <= k ensures that the topology update process is not called after iteration k */
/* t mod ⌈k/(n− 3)⌉ = 0 ensures the correct scheduling of the topology update process
*/
for i = 1 to n − (2 + esteps) do

/* n − (2 + esteps) ensures the arithmetic regression pattern */
if |Ni| > 2 then

/* |Ni| > 2 ensures proper node selection */
Select at random particle pr from Ni such that pr is not adjacent to pi

Eliminate particle pr from Ni

Eliminate particle pi from Nr

end if

end for

Set esteps = esteps + 1
end if

/* Inertia Weight Update */
if t ≤ iwtmax then

Set w(t) = wtmax−t

wtmax
(wmax − wmin) + wmin

else

Set w(t) = wmin

end if

/* Velocity and Position Update */
for i = 1 to n do

Generate U t
m ∀pm ∈ Ni

Set ϕm = ϕ/|Ni| ∀pm ∈ Ni

Set v
t+1

i = w tv t
i +

X

pm∈Ni

ϕkU t
k(pb t

k − x t
i)

Set x
t+1

i = x t
i + v

t+1

i

end for

Set t = t + 1
Set sol = argmin

pi∈P

f(pb t
i)

until f(sol) value is good enough or t = tmax

According to Fig. 7, the algorithm needs more exploratory configurations

information web page [20].

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 23

(i.e., fast topology update schedules and slow inertia weight schedules) for long
runs. For short runs, configurations with slow topology update schedules and
fast inertia weight schedules yield the best results. For runs of 104 and 105

function evaluations, the best configurations are intermediate ones (i.e., fast or
slow schedules for both the topology and inertia weight updates).

The more exploratory behavior that a large population provides needs to
be counterbalanced by the chosen configuration. For example, at 103 function
evaluations, the best configuration tends to have faster inertia weight sched-
ules for larger swarms. With 20 particles, the best configuration is at point
(4, 3) while with 40 and 60 particles, the best configurations are at (4, 2) and
(4, 1), respectively. These results are consistent with those of the experimental
comparison.

Like any other algorithm, Frankenstein’s PSO has its own set of parameters
that need to be set by the practitioner before trying to solve a problem. The
final parameter settings will depend on the class of problems one is trying to
solve and on the application scenario requirements. The results presented in this
section serve only to understand the behavior of the algorithm when different
parameterizations are used.

6 Performance Validation

The performance of Frankenstein’s PSO is evaluated by comparing its best con-
figurations with those of the PSO algorithms described in Section 4. To do so,
we first identify the best configurations of every PSO variant as a function of
the maximum number of function evaluations in a way analogous to Section 4.2.
(We select candidate configurations for each PSO algorithm separately to avoid
artificially favoring some PSO variants because of having more representatives in
the ranking.) For each PSO algorithm we consider all its configurations result-
ing from our experimental setup and we choose, for each termination criterion,
the best performing ones. Table 7 shows these best configurations (from those
tested) for each PSO algorithm and termination criterion.

In a second step, we compare the algorithms’ configurations shown in Ta-
ble 7. For this purpose, and to be able to compare their relative effectiveness,
we standardize the median solution qualities achieved by each of them. Table 8
shows the standardized median solution quality obtained by each configuration
(identified only by the algorithm’s name) for each termination criterion. The
best values for each individual problem and stopping criterion are highlighted
in boldface.

24 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

Table 7: Best configurations of different PSO variants for different
termination criteria

Configuration

FES Algorithm Particles (n) Topology1 Topology
Schedule

Inertia
Weight

Schedule

103

Constricted 20 F - -
Decreasing-IW 20 F - 102

Increasing-IW 20 F - 105

Stochastic-IW 20 F - -
FIPS 20 S - -

HPSOTVAC 20 S - -
AHPSO 20 T - -

Frankenstein’s PSO 20 T 4n 3n2

104

Constricted 20 S - -
Decreasing-IW 20 F - 103

Increasing-IW 20 S - 106

Stochastic-IW 20 S - -
FIPS 20 R - -

HPSOTVAC 20 S - -
AHPSO 40 T - -

Frankenstein’s PSO 20 T 4n 4n2

105

Constricted 40 S - -
Decreasing-IW 60 F - 104

Increasing-IW 60 F - 106

Stochastic-IW 20 S - -
FIPS 40 R - -

HPSOTVAC 20 R - -
AHPSO 60 T - -

Frankenstein’s PSO 20 T 4n 3n2

106

Constricted 60 S - -
Decreasing-IW 40 R - 105

Increasing-IW 60 S - 106

Stochastic-IW 60 S - -
FIPS 40 R - -

HPSOTVAC 40 S - -
AHPSO 60 T - -

Frankenstein’s PSO 60 T 2n 4n2

1 F, S, R, T stand for fully connected, square, ring, and time-varying, re-
spectively.

IR
ID

IA
–

T
ech

n
ica

l
R

ep
o
rt

S
eries:

T
R

/
IR

ID
IA

/
2
0
0
7
-0

0
6

2
5

Table 8: Best overall configurations of different PSO variants for different termination criteria. Each group is sorted by the average
standard solution quality in ascending order, so the best overall configuration is listed first

FES Algorithm Ackley Griewank Rastrigin Salomon Schwefel Step Rosenbrock Sphere Average

103

Frankenstein’s PSO -2.024 -0.955 -0.975 -0.517 1.378 -1.315 -0.302 -1.108 -0.727
Increasing-IW -0.013 -0.393 -0.950 -0.323 -1.229 -0.645 -0.367 -0.371 -0.536
Decreasing-IW -0.002 -0.386 -1.067 -0.316 -1.199 -0.359 -0.474 -0.425 -0.528

FIPS -0.765 -0.430 -0.080 -0.457 1.432 -0.932 0.206 -0.538 -0.195
Constricted 0.476 -0.156 0.287 -0.276 -0.213 0.406 -0.491 -0.057 -0.003

Stochastic-IW 0.656 0.124 0.652 -0.237 -0.046 0.693 -0.488 0.304 0.207
AHPSO 0.476 -0.156 0.287 2.464 -0.213 0.406 -0.491 -0.057 0.340

HPSOTVAC 1.198 2.353 1.847 -0.338 0.090 1.745 2.406 2.251 1.444

104

Increasing-IW -0.129 -0.564 -0.593 -0.349 -0.797 -0.539 -0.348 -0.359 -0.460
Constricted -0.212 -0.616 -0.591 -0.373 -0.459 -0.539 -0.376 -0.359 -0.441

Decreasing-IW -0.065 -0.518 -0.962 -0.341 -0.754 -0.085 -0.370 -0.358 -0.431
Frankenstein’s PSO -1.061 -0.761 0.056 -0.386 1.332 -0.993 -0.414 -0.361 -0.324

Stochastic-IW -0.131 0.443 -0.512 -0.361 -0.541 -0.085 -0.290 -0.359 -0.230
FIPS -1.056 -0.718 1.567 -0.378 1.760 -0.539 -0.364 -0.361 -0.011

AHPSO 0.569 0.656 -0.512 2.474 -0.641 0.596 -0.312 -0.316 0.314
HPSOTVAC 2.086 2.077 1.546 -0.287 0.101 2.185 2.473 2.475 1.582

105

Frankenstein’s PSO -0.354 -0.883 -1.192 -0.359 -1.548 -0.487 0.782 -0.354 -0.549
Decreasing-IW -0.354 0.631 -0.709 -0.355 -0.311 -0.787 -0.983 -0.354 -0.402
Increasing-IW -0.354 0.631 0.108 -0.355 -0.271 -0.787 -0.441 -0.354 -0.228
Constricted -0.354 -0.883 0.313 -0.359 0.729 -0.487 0.216 -0.354 -0.147

Stochastic-IW -0.354 0.631 1.130 -0.359 0.649 -0.787 -1.013 -0.354 -0.057
FIPS -0.354 -0.883 1.060 -0.355 1.372 0.712 1.008 -0.354 0.276

AHPSO -0.354 1.639 0.721 2.475 0.529 0.712 -1.019 -0.354 0.544
HPSOTVAC 2.475 -0.883 -1.431 -0.334 -1.149 1.911 1.449 2.475 0.564

106

Frankenstein’s PSO -0.354 -0.354 -0.787 -0.358 -1.257 -0.661 -0.058 -0.504 -0.542
Increasing-IW -0.354 -0.354 0.002 -0.354 0.019 -0.661 0.039 -0.504 -0.271
Decreasing-IW -0.354 -0.354 0.472 -0.354 0.367 -0.661 -0.778 -0.504 -0.271

FIPS -0.354 -0.354 -0.546 -0.354 -1.349 0.661 0.685 -0.504 -0.264
Stochastic-IW -0.354 -0.354 0.415 -0.358 0.705 -0.661 -0.529 -0.504 -0.205
Constricted -0.354 -0.354 0.815 -0.358 1.072 -0.661 -0.717 -0.504 -0.132
HPSOTVAC 2.475 -0.354 -1.760 -0.341 -0.705 0.661 2.129 2.184 0.536

AHPSO -0.354 2.475 1.388 2.475 1.149 1.984 -0.771 0.840 1.148

26 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

For runs of 103, 105 and 106 function evaluations, the best overall configu-
ration is the one of Frankenstein’s PSO. For runs of 104 function evaluations,
the configuration of Frankenstein’s PSO is ranked in the fourth place. However,
with this same number of function evaluations, the configuration of Franken-
stein’s PSO is the best configuration in 6 of the 8 benchmark problems. The
average rank of Frankenstein’s PSO after 104 function evaluations can be ex-
plained with the results on Schwefel’s function: FIPS (of which a component is
used in Frankenstein’s PSO) is the worst algorithm for this termination criterion
(and also for the one of 103 function evaluations) on Schwefel’s function.

The performance of Frankenstein’s PSO suggests that indeed it is possi-
ble and profitable to integrate different existing algorithmic components into a
single PSO variant. The results show that by composing existing algorithmic
components, new high-performance variants can be built. At the same time, it
is possible to gain insights into the effects of the interactions of different com-
ponents on the algorithm’s final performance. Of course, just as it is possible to
take advantage of the strengths of different components, it is also possible that
their weaknesses are passed on. In fact, the performance of Frankenstein’s PSO
on Schwefel’s function is an example of this.

7 Conclusions and Future Work

Many PSO variants are proposed in the current literature. This is a sign of the
great attention that PSO has received since its introduction. However, it is also
a sign of the generalized lack of knowledge about which algorithmic components
provide good performance on particular types of problems and under different
operating conditions.

In an attempt to gain insight into the performance advantages that different
algorithmic components provide, we compared what we consider to be some of
the most influential and promising PSO variants. For practical reasons, many
variants were left out of this study. Future algorithmic composition studies
should consider other variants in an effort to further understand the interactions
among PSO algorithmic components.

The results of the comparison revealed that no variant dominates all the
others on all benchmark problems and under all tested circumstances. These
results mean that some variants are able to find a solution of a certain quality
faster than others, or, given the possibility of using the same number of function
evaluations, they are able to find solutions of better quality. Since variants differ
on some specific algorithmic components, differences in performance must come
from these components and/or the way they interact with others. The ques-
tion then becomes: Is it possible to combine different algorithmic components
that seem to provide good performance into a single PSO variant capable of
performing better than the variants from which these components were taken?

The results presented in this paper suggest that the answer to this question
is positive. The algorithm that we call Frankenstein’s PSO is a composite algo-
rithm with three main algorithmic components: (i) a time-varying population
topology that decreases its connectivity as the optimization process evolves; (ii)
a particles’ velocity-update mechanism that exploits every stage of the topology
change process, and (iii) a time-decreasing inertia weight that allows the user to
tune the algorithm’s exploration/exploitation capabilities. Frankenstein’s PSO

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 27

is capable of performing better than the variants from which its components
were taken. These components were chosen after analyzing the results of the
empirical comparison.

One algorithmic component that could further improve Frankenstein’s PSO
performance (or that of other variants), is the use of restarts. In our empir-
ical evaluation, we showed that simple independent restarts can dramatically
increase the probability of finding high-quality solutions. Unfortunately, there
is no fixed restart policy that would work equally well for all problems or al-
gorithms. A restarting mechanism that uses information collected during the
development of the optimization run, that is, an adaptive mechanism, is then a
promising research direction that deserves further investigation.

As a methodological approach, algorithm composition can help in identifying
positive and negative (in terms of performance) interactions among algorithmic
components. Another selection of PSO variants would have probably ended up
in a different Frankenstein’s PSO algorithm. For this reason, further research is
needed to understand which components are better suited for particular classes
of problems and operating conditions and whether some components can be
integrated into the same composite algorithm or not. Methods to quantify the
contribution of each component on the composite algorithms’ final performance
are also needed to achieve this goal.

Acknowledgment

This work was supported by the ANTS project, an Action de Recherche Con-
certée funded by the Scientific Research Directorate of the French Community
of Belgium. Marco A. Montes de Oca acknowledges support from Programme
Alβan, the European Union Programme of High Level Scholarships for Latin
America, scholarship No. E05D054889MX. Thomas Stützle, Mauro Birattari
and Marco Dorigo acknowledge support from the fund for scientific research
F.R.S-FNRS of the French Community of Belgium. We thank the anonymous re-
viewers and the editor for their comments that greatly improved this manuscript.

References

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings
of IEEE International Conference on Neural Networks. Piscataway, NJ,
USA: IEEE Press, 1995, pp. 1942–1948.

[2] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm the-
ory,” in Proceedings of the 6th International Symposium on Micro Machine
and Human Science. Piscataway, NJ, USA: IEEE Press, 1995, pp. 39–43.

[3] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
Chichester, England: John Wiley & Sons, 2005.

[4] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization. An
overview,” Swarm Intelligence, vol. 1, no. 1, pp. 33–57, 2007.

28 IRIDIA – Technical Report Series: TR/IRIDIA/2007-006

[5] M. Clerc and J. Kennedy, “The particle swarm–explosion, stability, and
convergence in a multidimensional complex space,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[6] S.-K. S. Fan and E. Zahara, “A hybrid simplex search and particle swarm
optimization for unconstrained optimization,” European Journal of Opera-
tional Research, vol. 181, no. 2, pp. 527–548, 2007.

[7] Y. Shi and R. Eberhart, “Parameter selection in particle swarm optimiza-
tion,” in LNCS 1447. Evolutionary Programming VII: 7th International
Conference. Berlin, Germany: Springer-Verlag, 1998, pp. 591–600.

[8] R. Eberhart and Y. Shi, “Comparing inertia weights and constriction fac-
tors in particle swarm optimization,” in Proceedings of the 2000 IEEE
Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE
Press, 2000, pp. 84–88.

[9] I. C. Trelea, “The particle swarm optimization algorithm: Convergence
analysis and parameter selection,” Information Processing Letters, vol. 85,
no. 6, pp. 317–325, 2003.

[10] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proceed-
ings of the IEEE International Conference on Evolutionary Computation.
Piscataway, NJ, USA: IEEE Press, 1998, pp. 69–73.

[11] ——, “Empirical study of particle swarm optimization,” in Proceedings of
the 1999 IEEE Congress on Evolutionary Computation. Piscataway, NJ,
USA: IEEE Press, 1999, pp. 1945–1950.

[12] Y.-L. Zheng, L.-H. Ma, L.-Y. Zhang, and J.-X. Qian, “On the convergence
analysis and parameter selection in particle swarm optimization,” in Pro-
ceedings of the 2003 IEEE International Conference on Machine Learning
and Cybernetics. Piscataway, NJ, USA: IEEE Press, 2003, pp. 1802–1807.

[13] ——, “Empirical study of particle swarm optimizer with an increasing in-
ertia weight,” in Proceedings of the 2003 IEEE Congress on Evolutionary
Computation. Piscataway, NJ, USA: IEEE Press, 2003, pp. 221–226.

[14] R. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems with
particle swarms,” in Proceedings of the 2001 IEEE Congress on Evolution-
ary Computation. Piscataway, NJ, USA: IEEE Press, 2001, pp. 94–100.

[15] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm:
Simpler, maybe better,” IEEE Transactions on Evolutionary Computation,
vol. 8, no. 3, pp. 204–210, 2004.

[16] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hi-
erarchical particle swarm optimizer with time-varying acceleration coeffi-
cients,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp.
240–255, 2004.

[17] S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer
and its adaptive variant,” IEEE Transactions on Systems, Man and
Cybernetics–Part B, vol. 35, no. 6, pp. 1272–1282, 2005.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-006 29

[18] J. J. Liang, P. N. Suganthan, and K. Deb, “Novel composition test func-
tions for numerical global optimization,” in Proceedings of IEEE Swarm
Intelligence Symposium. Piscataway, NJ, USA: IEEE Press, 2005, pp.
68–75.

[19] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization,” Nanyang Technologi-
cal University, Singapore and IIT Kanpur, India, Tech. Rep. 2005005, 2005.

[20] M. A. Montes de Oca, T. Stützle, M. Birattari, and M. Dorigo, “Franken-
stein’s PSO: Complete data,” 2007, Supplementary information page at
http://iridia.ulb.ac.be/supp/IridiaSupp2007-002/.

[21] R. Mendes, “Population topologies and their influence in particle swarm
performance,” Ph.D. dissertation, Escola de Engenharia, Universidade do
Minho, Portugal, 2004.

[22] A. Mohais, R. Mendes, C. Ward, and C. Posthoff, “Neighborhood re-
structuring in particle swarm optimization,” in LNCS 3809. Proceedings
of the 18th Australian Joint Conference on Artificial Intelligence. Berlin,
Germany: Springer, 2005, pp. 776–785.

[23] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations and Ap-
plications. San Francisco, CA, USA: Morgan Kaufmann, 2004.

[24] J. Niehaus and W. Banzhaf, “More on computational effort statistics for
genetic programming,” in LNCS 2610. Genetic Programming: 6th Euro-
pean Conference, EuroGP 2003. Berlin, Germany: Springer-Verlag, 2003,
pp. 164–172.

[25] M. A. Montes de Oca, T. Stützle, M. Birattari, and M. Dorigo, “A compari-
son of particle swarm optimization algorithms based on run-length distribu-
tions,” in LNCS 4150. Ant Colony Optimization and Swarm Intelligence.
5th International Workshop, ANTS 2006. Berlin, Germany: Springer-
Verlag, 2006, pp. 1–12.

[26] P. N. Suganthan, “Particle swarm optimiser with neighbourhood operator,”
in Proceedings of the 1999 IEEE Congress on Evolutionary Computation.
Piscataway, NJ, USA: IEEE Press, 1999, pp. 1958–1962.

	Introduction
	Particle Swarm Optimization Algorithms
	Constricted Particle Swarm Optimizer
	Time-Varying Inertia Weight Particle Swarm Optimizers
	Fully Informed Particle Swarm Optimizer
	Self-Organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients
	Adaptive Hierarchical Particle Swarm Optimizer

	Experimental Setup
	Performance Comparison of Particle Swarm Optimization Algorithms
	Results: Run-Length Distributions
	Results: Aggregated Data
	Results: Different Inertia Weight Schedules
	Summary

	Frankenstein's Particle Swarm Optimization Algorithm
	The Algorithm
	Parameterization Effects

	Performance Validation
	Conclusions and Future Work

