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Fr6chet differentiability of boundary integral operators in 
inverse acoustic scattering 

Roland Potthast 
Institut f"r Numerische und Angewandte Mathematik der UniversitZt G6ttingen, Lotzes- 
Vasse 16-18, 37083 GBttingen, Federal Republic of Germany 

Received 16 July 1993 

Abstract. Using integral equation methods to solve the time-harmonic acoustic scattering 
problem with Dirichlet boundary conditions. it is possible to reduce the solution of the scattering 
problem to the solution of a boundary integral equation of the second kind. We show the 
Fkchet differentiability of the boundary integral operators which occur. We then use this to 
prove the FrCchet differentiability of lhe sattered field with respect to the boundary. Finally 
we characterize the Frechet derivative of the scattered field by a boundary value problem with 
Dirichlet conditions, in an analogous way to that used by Firsch. 

1. Introduction 

In this paper we deal with the time-harmonic acoustic obstacle scattering problem with 
Dirichlet boundary condition [3]. There exist different methods of solving this standard 
problem of mathematical physics. Here we refer to the integral equation approach which 
can be found in [3]. 

It is especially interesting in the framework of inverse problem to study the dependence 
of the solutions to the scattering problems on the domain of the scatterer. Let r denote the 
boundary of a suitable domain D c R3. The scattering operator R' maps the boundary r 
onto the solution 

us = RS(r) (1) 

of the direct scattering problem for a fixed entire incident field ui. The inverse problem 
consists of looking for a solution of ( I )  given us on an exterior domain or the far field 
um = FuS of us. respectively. In order to invert equation ( I )  we are interested in properties 
of RS. RS is nonlinear and equation (1) is ill-posed, which makes it difficult to solve. In 
this paper we prove the Frkhet differentiability of RS and describe two possibilities of 
computing the derivative. In principle this allows the application of Newton-type methods 
to the inversion of equation (1) [4.6,71. 

Using boundary integral equation methods to solve the scattering problem, following 
Colton and Kress, one can derive a representation of RS in terms of acoustic single- and 
double-layer potentials and weakly singular boundary integral operators. We briefly recall 
this method in section 2. We use section 3 to state some facts about the Frichet derivative 
of integral operators. In section 4 we prove the FrCchet differentiability with respect to 
the domain and derive the explicit form of the Frkchet derivative of the integral operators 
used in section 2 which are considered as operators in the space of continuous functions 
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on r. This Frkchet differentiability implies T-differentiability’ and the ‘domain derivative’ 
defined in [4,6]. Using well-known properties of the Frkchet derivative it is then possible to 
obtain the Frichet differentiability of the scattering operator RS. In section 5 we characterize 
the derivative of us with respect to the boundary as a solution of a Dirichlet boundary value 
problem. 

Our method of establishing the Fdchet differentiability of the scattered field i s  new to 
scattering theory. In principle, the method can be carried over to other boundary value 
problems, for example to the time-harmonic acoustic scattering problem with Neumann 
boundary conditions or to time-harmonic electromagnetic boundary value problems. For 
the case of the Dirichlet scattering problem the differentiability has already been verified 
by Kress (cf [3]) and by Kirsch [4] using variational methods. Also with the help of the 
variational approach the characterization of the derivative was obtained by Kirsch [4]. 

2. The scattering map Rs and the inverse scattering problem 

For each normed space we denote by KL the open ball with radius L and centre 0. Let 
D c KL c R3 be a bounded domain with boundary aD of class C2, B 3 an open set 
and k E C with Imk > 0. A function w f C’(R3 \E) satisfies the Sommerfeld radiation 
condition if 

2 . (grad w)(x) - ikw(x) = o (1,’Ixl) 1x1 + 00 (2) 

holds uniformly on C2 = [.t E R3, I.? = I]. We denote by 

1 $klx-rl 
Q ( x ,  y )  = -- 

4n Ix - YI x, y E R3; x # y 

the fundamental solution of the Helmholtz equation 

Au + kZu = 0. (3) 

@(, y )  solves the Helmholtz equation in R3 \ ( y )  and satisfies the SommerjWd radiation 
condition uniformly for y E KL. We denote by v the exterior unit normal vector on the 
surface aD. For ‘p E C(aD)  the acoustic single-layer potential 

u(x)  := 1 w, Y ) w ) w )  x E ~3 \ a~ (4) 
aD 

and the acoustic double-layer potential 

are solutions to the Helmholtz equation in R3 \ aD and satisfy the Sommerfeld radiation 
condition. We now consider the Dirichlet obstacle scattering problem: For a given solution 
ui E C ’ ( B )  to the Helmholtz equation, find a function us E C2(R3 \ 5) n C(R3 \ D),  
which satisfies the Helmholtz equation in R3 \ 5 and the Sommerfeld radiation condition 
with boundary values ui + us = 0 on aD. Following Colton and Kress [3] we look for a 
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solution to the Dirichlet obstacle scattering problem using a combined single- and double- 
layer potential 

q E k, IJ # 0. Using the classical jump relations for the single- and double-layer potential 
[2] ,  the potential (6) can be seen to solve the Dirichlet scattering problem if the density 
'p E C(aD)  is a solution to the boundary integral equation 

( I  + K - iqS)'p = -2u'. (7) 

Here the operators 

'W9 y)v(y)ds(y) x E aD (8) 

and 

are linear with weakly singular kernels, and therefore are compact operators C(aD) + 
C(8D).  Existence and boundedness of the inverse of the operator I + K - irjS can be 
obtained by Riesz-Fredholm theory for equations of the second kind with compact operators 
[5 ] .  We are interested in the values of the scattered field on a set M c R3 \E. Therefore we 
combine the potential (6) with the restriction to M that P : C(aD) + C(M), 'p H u s I ~  is 
a linear bounded mapping. Using the restriction operator R : C ( B )  + C(aD),  ui H ui la~ 
we can write the solution of the Dirichlet scattering problem in the form 

us = - 2P(I + K - iqS)-'Rui. (10) 

The inverse Dirichlet scattering problem consists in determining a domain D ,  which 
satisfies (IO) for a given number of incident fields ui with corresponding scattered fields us. 

In order to use Newrun-type methods to solve this inverse scattering problem we have 
to study the differentiability properties of the mapping aD n us.  For this we first study 
the differentiability properties of the operators which occur in equation (IO), and then use 
the chain and product rule to derive the differentiability of the mapping aD H us.  

First we have to transform the operators onto a fixed reference boundary. Similarly to 
[4,6,8] we use the mapping q$ : aD + aD, : x H x + r ( x )  where r E C*(aD) is a twice 
continuously differentiable vector field and aD, is defined by aD, := ( x  + r ( x ) ,  x E aD]. 
For a sufficiently small 1 > 0 depending on aD, each aD, with l l r [ [CyaD) < 1 is again a 
class-C2 boundary of a domain D,. We use V, := ( r  E C2(aD),  I[rllczcaD, < I } .  We denote 
by U,@) the exterior unit normal vector on the boundary aD, at the point x, := x + r ( x ) ;  
we abbreviate vo to V .  

We denote the space of all bounded linear operators mapping a normed space X 
into a normed space Y by B ( X .  Y ) .  Now for each r E V, we transform functions 
'p E C(aD,) into functions 6 E C(aD) using @ ( x )  := 'p(x,). Analogously we transform 
operators I : C(aD,) + C(aD,) to operators f : C(aD)  + C(aD).  Since in this 
way the space C(aD)  is isomorphic to C(aDr) and B(C(aD),  C ( a D ) )  is isomorphic to 
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B(C(aD,), C(aD,)) we usually just write ij = fp and i = I .  We will study the Frkhet 
differentiability of the mappings 

s : V, + B(C(BD), c ( a D ) )  

K : V, -+ B(C(aD), C ( a D ) )  

R : V, -+ B ( C 1 ( B ) ,  C ( a D ) )  

P : V, --f B(C(aD),  C ( M ) )  

r H S[r] 

r H f [ r ]  

r H ri[r 

r H P [ r ] .  

3. Some remarks on Frechet differentiability of integral operators 

For the well-known properties of the Frkchet derivative of a nonlinear mapping we refer to 
[ I ] ;  here we just give a summary of our notation. 

Let Y be a normed space, let X be a Banach space and let U c Y be an open set. A 
mapping A : U + X is called Frkhet differentiable in ro E U ,  if there is a bounded linear 
mapping aA/ar E B(Y,  X ) ,  a neighbourhood V of 0 in Y and a mapping AI  : V -+ X 
such that 

aA 
ar A h  + h )  = A h )  + - ( h )  + A I @ )  

A i ( h )  =o(llhll). 

V h  E V 
(11)' 

If A is Frkchet differentiable in U the derivative can be considered as a mapping 
U + B(Y, X ) ,  r -+ aA(r; )/ai-. If this mapping is again Frkchet differentiable, we 
speak of the second derivative of A. We have aZA/arZ E B ( Y , B ( Y , X ) )  and we 
use a2A(r; h)/arz := aZA(r;  h ,  h)/ar2.  The chain rule and the product rule are valid 
analogously to the finite-dimensional case. As a consequence of Taylor's theorem for twice 
continuously F k h e t  differentiable functions we obtain: 

Theorem I .  Let Y be a normed space, let X be a Banach space and let U c Y be an open 
set. Assume that f : U + X is a twice continuously differentiable function on U and let 
the second derivative be bounded, i.e. there exists c > 0 such that l la2f(r; )/ar211 < c on 
U .  If r + th E U for all t E [O, I] we have the equality 

(12) 
f ( r + h ) = f ( r ) + a , ( r ; h ) + f i ( r , h )  a f  

with some function f i  satisfying 
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Proof. An application of Taylor's theorem [ l ]  yields 

Since we have l [az f ( ) /a r z l [  < c on U the statement of the theorem is a direct consequence 
of the inequality 

In order to show the Frichet differentiability of ( I  + K - iqS)-I we need the following 
theorem. 

Theorem 2. Let Y be a normed space, U c Y an open set and X a Banach algebra with 
neutral element e.  Let A : U + X be Frechet differentiable in yo E U .  Assume there is 
a neighbourhood W of yo such that for all y E W the element A(y) is invertible in X and 
the mapping y H (A(y))-' is continuous in yo. Then A-'(y) is Frbchet differentiable in 
yo with Frkchet derivative 

Proof. Here we follow [3]: define 

aA 
Z(YO, h )  := A-'(Yo + h )  - A-'(yo) + A-'(Yo)-(Yo; h)A-I(yo). ar 

We have to show z(yo, h )  = o(Ijhl1). For this we multiply from the left and from the right 
by A(yo), and use the continuous invertibility and FrLchet differentiability of A. We obtain 

0 A(yo)z(yo; h)A(yo) = o (llh 11) and therefore the statement of the theorem. 

We want to show the Frkhet  differentiability of integral operators of the form 

( A [ r I v ) W  : = s , ~ f ( ~ . Y . r ) v ( y ) d i L ( y )  x E G I ;  r E V .  (17) 

Here GI and Gz are subsets of R3, p denotes a measure on Gz and V c Y is a subset of a 
normed space Y .  For fixed r E V and a suitable kernel the operator A is a bounded linear 
operator C(G2) + C(G1). We consider A as a mapping V + B(C(Gz), C(G1)). In the 
next theorem we will show that, for suitable properties of the kernel f ,  the differentiation 
of (17) can be reduced to the differentiation of the kernel f ,  and that the derivative of A is 
given by the operator 

(&r; h](o)(x) := - ( x ,  y, r ;  h)rp(y)dF(y) x E G I ;  r E V; h E Y. (18) 

This includes the classical theorem concerning the differentiation of an integral depending 
on a parameter. 

s,, :: 
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We use the following notation. Let Yi, i = 1, . . . , II be normed spaces, U, c E. We 
of n variables XI, . . . , x, of the form t : U1 x . . . x U,, -+ @, 

,rj.,.xj+l.. ..In we denote the function 
consider a function 
(XI.. . . . XJ H .$(XI,. . . , xd .  BY 

uj -+ c xj H f(x1,. . . , X " )  

for fixed XI. . . . , x j - I ,  xj+l, . . . , x,,. If ,..... rj-,,xj+ ,.._.. is Frichet differentiable, we denote 
the FrCchet derivative by a t / a x j .  The derivative can be considered as a function 

- : U] x . . . x U" x Yj + c 
axj 

or as a mapping 

ac - : U, x . . . x U. -+ B(Y;., e) 
axj 

Theorem 3. Let GI ,  Gz be subsets of R3 , p a measure on Gz and V c Y an open convex 
subset of a Banach space Y .  Define AG := ((x,y). x = y. x E G1,y E Gz}. Take 
ro E V and let f : ((GI x Gz) \A,) x V -+ U2 be a continuous function with the following 
properties: 

for all fixed x E G I ,  y E Gz, x # y the function fx.y : V -+ C is two times continuously 
Fdchet differentiable; 

0 fx,r : GZ \ (XI -+ C and (af /ar)x ,m,h  : GZ \ { x }  + @. are integrable for all x E G1, 
r E V ,  h E Y ;  
A[rl and &ro, h] given by (17) and (18) are elements of B(C(Gz), C(GI)) for all 
r E V ,  h E Y ;  
there is a Lebesgue-integrable function 

g :  (GI x Gz) \ A ,  --f R 

with i G 2 g ( x ,  y)dp(y) < c for all x E GI. For all x E GI,  y E Gz, x # y we have the 
estimate I (a2f /ar2) (x ,  y. r: h)l < g(x ,  y) uniformly for all r E V ,  h E Y ,  IlhII < 1. 

Then considered as a mapping V + B(C(Gz), C(Gl)), r H A [ r ]  the operator A is 
Frichet differentiable in ro and the derivative of A is given by (aA/ar)(ro; h )  = 4 r 0 ;  h] 
where is given by (18). 

Remark. The theorem covers the case GI =. Gz and weakly singular f as well as 
G I  n Gz = 0 and continuous f . Therefore it can be applied to the operators S, K 
and P. 

Proof. 
ro + th  E V for all t E 10, I ] .  Then, as in theorem 1, the decomposition 

For all sufficiently small h we have ro + h E V and the convexity of V yields 

(1% 
a f  f (x ,  Y. ro+ h )  = f (x ,  Y. ro) + ~ ( x .  y. ro; h )  + f i ( x ,  Y ,  ro, h )  
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Because of 

we find 

Therefore we obtain integrability of fi and the inequality 

We now know that all terms in equation (19) are integrable on Gz, and can use the linearity 
of the integral to obtain 

= (AIrol(o)(x) +(&o; hI(o)(.C + (Ai[ro. hIv)(x) 
where the operator AI satisfies 

I(&[ro. hl(o)(x)l 6 ~llvl lmll~l lz. 
Therefore A is Frichet differentiable in ro considered as a mapping V + B(C(G2). C(G1)) 

0 with the derivative given by aA/ar = A. 

4. Frichet differentiability of boundary integral operators 

As an application of theorem 3 we want to show the Frkchet differentiability of the operators 
occurring in section 2. 

First we deal with S and K. Using the transformations described in section 2 the 
operators can be brought into the form 

x Jr(yMy)ds(y). (21) 
where the functions hl ,  hZ and h3 are analytic complex valued functions, and where J,(y) 
denotes the Jacobian of the transformation q4r in y E aD. 
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Theorem 4. 
mappings 

The integral operators S and K are Fr6chet differentiable in V,, considered as 

V, --f B(c(aD), c(ao)). 

The FrCchet derivative is obtained by differentiation of the kernels according to theorem 3. 

We base the proof of the theorem on the following lemma: 

Lemma 1. The kernels of the integral operators given by (20) and (21) are two times 
continuously Frkhet differentiable as mappings V, -+ C for all fixed x # y. x ,  y E aD. 
The kernels and their first two derivatives are bounded on V, by 

for all r E V,; x ,  y E aD 1 
g(x ,  y )  = c- 

Ix - YI 

with some constant C > 0. 

Proof of theorem 4. We establish the assumptions made in theorem 3. Lemma 1 states 
the Frichet differentiability of the kernels of S and K and also gives estimates for their 
singularity and those of their derivatives: there is a weakly singular majorante g and 
therefore they are weakly singular. Now by standard arguments S, K and the operators 
which are built by integration of the derivatives of the kernels are well defined bounded 
linear operators C(aD)  -+ C(aD).  Thus we apply theorem 3 to obtain theorem 4. 0 

Proofoflemma 1. We verify the Frichet differentiability of the kernels by four elementary 
steps. We will use the letter c to denote a generic constant. 

Step 1. The mapping gx.Y : V, -+ W3 defined by 

gr,r(r) := xr - Y, = ( x  + r (x) )  - (Y + r ( y ) )  

is the sum of a constant and a linear mapping and therefore, for all fixed x .  y E a D ,  it is 
Frkhet differentiable with derivative 

a& Y -(r; h)  = h ( x )  - h(y)  h E Cz(aD). 
ar 

The derivative does not depend on r E V, and therefore it is continuous. Since for x # y we 
have x, - y,  # 0 for all r E V,, using the chain rule, we obtain the FrCchet differentiability 
of the mapping 

gl.x,y : V, -+ R r H Ix, - yrl 

for all r E V,, x f y and x ,  y E aD. The Frkchet derivative is given by 

We use the mean-value theorem for the differentiable vector fields r E V, on the manifold 
8D to obtain the estimates 

YllX - YI < 1x7 - Yrl 

Ixr - Yrl < Y21X - YI 
(W 
(U) 
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uniformly on V,, where yl and y2 are constants depending on 1 and aD. Again with the 
help of the mean-value theorem-this time applied to h-we derive from (24) and (25) the 
inequalities 

(26) I [ ~ ( r ;  agl,,., h) < C \ l h l l c q a D ) l X  - Y \  V r  E V,; h E C2(aD) 

with some constant c. Proceeding as for gl,,,y we obtain the Frkhet differentiability of the 
mapping 

1 
1% - Yrl" 

g2.x.y : V, + r ++ 

the derivative 

and the estimate 

with some constant c. We also want to compute the second derivatives of the terms and 
to give similar estimates. To do so we have to consider the first derivatives as mappings 
V, + B(Cz(3D),R). Using the same arguments as above we obtain 

and 

The estimates show that the degree of the singularity in Ix - yI of the functions under 
consideration does not increase when we differentiate. We also want to prove this for the 
other components of the kernels. 
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Step 2. Consider the term ( u r ( x ) , x ,  - y r )  and use local coordinates @,U). With 
x = X ( U I .  UI) and y = y(u2, U Z )  we have the estimate q , [ (u l ,  V I )  - (u2, U Z ) ~  < In - yI 6 
f2[(u1. V I )  - ( U Z ,  u2)I for x E U(y), where U ( y )  is a neighbourhood of y and and 72 
are constants [Z]. In U(y) we can. write 

( b ( X ) , X I  - Y r )  

with 

The function g3.y is Frichet differentiable in V, and there exist constants c1 and c2 with 
0 < CI 6 g3,y 6 c2 and 0 < CI < ag3,,/ar < cz Vr E V,. Therefore l/g3,y is also Frbchet 
differentiable in V, and the derivative is bounded. Using the chain rule, clearly the other 
terms of (34) are Frechet differentiable. For the derivative 

we want to show that 

If(ut, V l ) l  < Ll(Ul, ut) - ( U Z .  .2)12 (36) 

uniformly for r E V, and h E K I  c C2(aD). The estimate (36) is a direct consequence of 
Taylor’s theorem applied to the twice continuously differentiable function f : IR + R, if we 
are able to show that g rad (u~ ,u~~  f[u,=u3,ul=m = 0. This can be verified by a straightforward 
but lengthy calculation. Now collecting all terms and using the product rule for the 
differentiation of (34) we obtain the estimate 

for all r E V,. For the second derivative we obtain the analogous result 

l s { V r ( x ) .  a2 (x,  - Y , ) I ( ~ ;  C I I ~ I I ~ C ~ ( ~ ~ ) I X  - Y I  2 

for all r E V,. 

Step 3. We obtain the differentiability of I,@) using the representation 

which is valid locally. The derivatives of J, are uniformly bounded for r E V,, y E aLJ. 
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Step 4. The statement of lemma 1 can now be verified using the estimates of steps 1-3, 
0 

The operator (I+K-iqS)-l is Frkhet differentiable considered as a mapping 

the chain and product rule. 

Corollary 1. 
V, -+ B(C(aD). C ( a D ) )  and the Frkchet derivative is given by 

Proof. The statement follows by combining theorems 2 and 4. 

We transform the operator P onto the reference surface a D  

(p[rlrp)(x) = d r .  rpl(x) 

and establish the following result 

Theorem 5. The integral operator P : !4 + B(C(BD), C ( M ) )  is Frkchet differentiable 
and the derivative can be computed by differentiation of the kernel of P. 

Analogously to the proof of theorem 4 we base the proof on the following lemma which 
can be shown analogously to lemma 1. It is actually more simple since the kernels have no 
singularities. 

Lemma 2.  The kernel of the operator P given by (39) is two times continuously Frkhet 
differentiable as a mapping V, + C for fixed x E M , y  E iJD. The derivatives are 
continuous on M x a D  x V, and bounded by a constant C E R. 

Proof of theorem 5. We verify the assumptions of theorem 3. The differentiability of the 
kernels and their continuity is stated in lemma 2. Therefore P and the operators which 
are built by integration of the derivatives of the kernel are well defined bounded linear 
operators C(8D)  + C ( M ) .  Since fl(aD) < CO the constant C is an integrable majorante 
of the kernels and their derivatives. Now theorem 3 can be applied to obtain the statement 
of theorem 5 .  n 

Now consider the operator R. We can write 

( ~ [ r l u ' ) ( x )  = u'(xr) = u ' (x  + r ( x ) )  x E CID. 
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Theorem 6. The operator R : V, + B(C' (B) ,  C(aD))  is Frkhet differentiable with 
derivative 

- r ;  h]u' ( x )  = (pdu')(x,) . h(x )  x E aD. I3 '1 x 

Proof: The proof is a simple application of the chain rule. 0 

Corollary 2. The nonlinear mapping RS : V, + C(M), r H usly is Frtchet differentiable 
and the derivative is given by 

a p  
ar ar 
- = -2-(I + K - +'- 'RIA' 

( I  + K - iqS)-'Ru' , a(K - iqS) 
ar 

+ 2P(I  + K - iqS)- 

5. Characterization of the derivative of P 

The actual numerical evaluation of a(Rs)/ar  using corollary 2 is rather lengthy. Therefore 
we characterize the derivative of Rs as the solution of a Dirichlet boundary value 
problem [4]. 

Theorem 7. The Frtchet derivative aRs(r; h) /ar  of RS is given by the solution to the 
exterior Dirichlet problem for the domain D with boundary values 

au 
a V, - (h(x),gradu(x,)) = - (h(x) ,  ur (x ) ) - (x )  x E aD (41) 

where U = ui + u s  is &e solution of the scattering problem. 

Proof: We show that aRs(r; h) /ar  given by corollary 2 is the solution of the exterior 
Dirichlet problem with boundary values given by (41). aRs(r; h) /ar  solves the Helmholtz 
equation in R3 \z and satisfies the Sommerfeld radiation condition because differentiation 
with respect to x E R3 \ z and the Frtchet differentiation with respect to r may be 
interchanged. We have to compute the boundary values of a R S ( r ;  h)/ar .  

The strip 

is bijectively mapped onto the set ( ( x ,  T), x E aD, -TO < T < ro} by 

x: := x + r ( x )  + u,(x) .r  

for fixed r E V, and for r < TO, TO sufficiently small. For brevity in this proof we will write 
S[r]  = S, K [ r ]  = K ,  P[r]  = P and R[r] = R. 
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Step 1. We compute the boundary values of P(Z+K -iqS)-'(aR/ar)ui, i.e. the last term 
of (40). Since lim,,o(2Pa,)(x:) = ( ( I  + K - iqS)a,)(x), x E aD we obtain 

= - (h (x ) ,  gradu'(x,)). 
x 

Srep 2. We want to show that for the limiting value of the first two terms in (40) we have 

Using the chain rule we derive 

We now take a, := ( Z  + K - iqS)-'Ru' and use us = -2P(Z + K - iqS)-'Ru' to obtain 
for the first term of (42) 

($(-2P}(r:  h)(Z + K - iqS)-]Ru' 

Since solutions ui to the Helmholtz equation are analytic, and since ( Z  + K - iq9- I  maps 
C'JyaD) into C1,u(aD), we have a, E C',a(aD). Therefore the term 

x x 
- ( h ( x ) .  grad{uS}(x:)) - ( r  . w ( r ;  h ) ,  grad{us)(x:) ar 

has the limiting value - ( h ( x ) ,  grad,{us](x,)) for T + 0 [2].  We know limr,o(2P(I + 
K - iqS)-'a,)(x;) = a,(x),  x E aD. To show (42) we still have to verify that 
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For the sake of simplicity we will establish this only for the theoretical potential case k = 0. 
The c a e  k # 0 can be handled analogously. We split the potential P into two parts: the 
double-layer potential PI and -iq times the single-layer potential 4. First we show 

The continuity of the first two terms of the right-hand side of (46) for z + 0 and their 
limiting value 

is a consequence of theorem 2.7 of [2]. The third integral in (46) can be written in the form 

Since E coqm) 
of [21. We find 

the term (47) is bounded for r z 0 as a consequence of theorem 

and hence we have proved (45). 
Now we have to show 

2.17 

The case of the double-layer potential turns out to be more complicated. We use the 
decomposition ur(x:) = V(x)w,(x:) + u,(x:), where ur denotes the double-layer potential 
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on aD, with density 'p given by (5). w, aenotes the double-layer potential with constant 
density 1 and ur is defined by 

and 

(r; h )  . 5 (51) 
a 

- (x :  - y r ) ( r ;  h )  = h(x) - h(y) + - ar ar 

a 
-(xF - yr)(r: h) < clx; - yrl. 

with 

(52) I ar 
Using the estimate (37) we obtain the continuity of a{ur(x:))/ar as a consequence of the 
following lemma 3. 0 

Lemma 3. For 'p E C(aD) define 

and 

where the kernel K is continuously differentiable with respect to x ,  x # y ,  &;h is bounded 
and we have laK(x,  y)/axl < C/jx - yI for all x # y. Then lil and it are continuous in 
soy. 
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Proof. Using 

121 and (37). we observe that the intepls  exist as improper integrals for r = 0 and represent 
continuous functions on aD,. It suffices to show that 

I ( ! J r (YLx r  - Y A l  < Llxr - YrlZ (55) 

limiii(x:)=ii(xr) i = l , 2  

uniformly on aD,. We carry out the proof for il 
Z-0 

Define 

= C(q+ 1 )  $C(Q + 1) (56) 
with Sx,q := aD n K q ( x )  and some constant C depending on aD and r .  From the mean- 
value theorem we see that 

for 21x: - x,l < Ixr - yrl and therefore 

with some constants C, and C,. Now we can combine (56) and (57) to obtain 

for some constant C. Given E > 0 we can choose q > 0 such that 

for all y ,x  E aD with jy - xj 
6 < (€/2C)q3, we see that 

for all IxF - x,l < 6 and the first part of the lemma is proved. The second part can 
be proved imitating the preceding proof but using (a/ar)(u,(y)(x: - yr)](r; h) instead of 

M Y )  - 4+)l d 2 C  
q since 'p is uniformly continuous on aD. Then taking 

Iu($, - u(xr)l < E 

ur(Y)(x: - Yr). 0 

Remark. We finally want to look at the statement of theorem 7 from a heuristic point 
of view. The boundary values of the Frechet derivative of the scattered field are the sum 
of the two terms - (h (x ) ,  (gradu')(x,)) and -(h(x), (gradus)(x,)). The first term is the 
boundary values of the Dirichlet problem with a given function - (h (x ) ,  (gradu')(x,)) on 
the boundary. This term comes from the change of us when the incident field is varied. The 
second term can be considered locally as the change of us when the boundary is translated 
in direction,h(x). 
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