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SUMMARY

For multivariate functional data recorded for a sample of subjects on a common domain, one 10

is often interested in the covariance between pairs of the component functions, extending the

notion of a covariance matrix for multivariate data to the functional case. A straightforward

approach is to integrate the pointwise covariance matrices over the functional time domain. We

generalize this approach by defining the Fréchet integral, which depends on the metric chosen

for the space of covariance matrices, and demonstrate that the ordinary integration is a special 15

case when the Frobenius metric is used. As the space of covariance matrices is nonlinear, we

propose a class of power metrics as alternatives to the Frobenius metric. For any such power

metric, the calculation of Fréchet integrals is equivalent to transforming the covariance matrices

with the chosen power, applying the classical Riemann integral to the transformed matrices, and

finally applying the inverse transformation to return to the original scale. We also propose data- 20

adaptive metric selection with respect to a user-specified target criterion, for example fastest

decline of the eigenvalues, establish consistency of the proposed procedures and demonstrate

their effectiveness in a simulation. The proposed functional covariance approach through Fréchet

integration is illustrated in a comparison of connectivity between brain voxels for normal subjects

and Alzheimer’s patients based on fMRI data. 25

Some key words: Box–Cox Transformation, Covariance Matrix, Connectivity, Dependency, Fréchet Mean, Functional
Correlation, Functional Data Analysis, functional Magnetic Resonance Imaging.

1. INTRODUCTION

Multivariate functional data are frequently encountered in practice. While several aspects of

multivariate functional data have been studied, including various versions of principal component 30

expansions (Zhou et al., 2008a; Berrendero et al., 2011; Serban et al., 2013; Chiou et al., 2014)

and measures of depth (Claeskens et al., 2014), there are many open questions regarding the

statistical modeling and analysis of such data. A prominent example of multivariate functional

data occurs in neuroimaging, where fMRI scans result in signals that are measured over a time

domain for a large number of voxels in the brain, for each individual in a sample. Measuring the 35

association of the components of such multivariate functional data is of specific interest in many

applications, for example to quantify functional connectivity in the brain. Functional connectivity

between brain regions is thought to be associated with the overall functioning of the brain and is
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used to quantify its aging and pathology (Friston, 2011; Lee et al., 2013). Specifically, patterns

of connectivity seen in subjects with Alzheimer’s disease may differ from those observed in40

cognitively normal subjects (Sheline & Raichle, 2013).

For many traditional applications of multivariate techniques, covariance matrices are a fun-

damental tool to quantify the dependence of the multivariate components. Functional theory for

cross-covariance operators was developed by Baker (1974) and Gualtierotti (1979). Instead of

cross-covariance operators, which are infinite-dimensional objects, our targets are covariance45

matrices that reflect the key features of dependency of the multivariate components. Important

applications of covariance matrices in standard multivariate analysis include principal compo-

nent analysis, which provides an optimal means of linear dimensionality reduction, and partial

correlation, which is central for the construction of Gaussian graphical models. In the latter, pre-

cision matrices are used to compute partial correlations and to infer conditional independence50

between component pairs. The extension of these techniques to multivariate functional data is

not straightforward since there is no obvious notion of a scalar covariance between two random

functions. We address this issue here by proposing a simple approach to defining scalar measures

of functional covariance.

Various notions of functional covariance and correlation have been explored. A first con-55

cept was functional canonical correlation (Leurgans et al., 1993; He et al., 2003, 2004) which,

however, suffers from instability due to the inverse nature of canonical correlation. While this

does not impede its use in low-dimensional multivariate settings, it causes problems for higher-

dimensional and especially functional data. In such settings, regularization must be used to ob-

tain a viable inverse of the auto-covariance operators, in generalization of the multivariate case60

where canonical correlation relies on a reliable estimate of the inverse covariance matrices of

the random vectors between which canonical correlation is to be defined. When regularizing, the

problem with the inverse is reflected by the fact that the canonical correlation is highly sensitive

to the choice of the regularization parameter.

Alternative approaches aiming to avoid the inverse problem include dynamic correlation (Du-65

bin & Müller, 2005), where one applies the interpretation of correlation as the cosine of an angle

to the functional case by using the Hilbert space inner product (Chiou & Li, 2007), and singular

correlation (Yang et al., 2011), where the inverse problem is circumvented by a singular value

decomposition of the functional covariance surfaces. Dynamic correlation has been extended to

a notion of functional partial correlation (Opgen-Rhein & Strimmer, 2006) with the goal of con-70

structing networks based on Gaussian graphical models in genomics. Nonparametric versions

such as Spearman correlation have also been proposed (Valencia et al., 2014).

The methodology presented in this paper aims at three central goals: first, to extend and com-

plement the existing approaches for quantifying functional covariance by extending pointwise

covariance to the multivariate functional case through generalized integration of covariance ma-75

trices over the time domain. This generalized integration is dependent on the metric chosen

for the space of covariance matrices, which determines the underlying geometry. Second, we

demonstrate the effects of different metrics in statistical applications and propose a method of

data-adaptive metric selection. Various such metrics and their statistical implications have been

recently discussed (Dryden et al., 2009; Pigoli et al., 2014). It is then a natural next step to dis-80

cuss the data-adaptive selection of a specific metric from a pool of candidate metrics. Thirdly, we

showcase the importance of functional covariance for the analysis of fMRI brain imaging data,

where resting state scans are available for a sample of subjects. Specifically, we will show that

our methods are well-suited to explore differences in neural connectivity between cognitively

normal subjects and subjects who have been diagnosed with Alzheimer’s disease. 85
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2. COVARIANCE INTEGRATION FOR MULTIVARIATE FUNCTIONAL DATA

2·1. Preliminaries

Consider a multivariate stochastic process X = {X1(t), . . . , Xp(t) : t ∈ T } on a common

domain T , where we assume that T = [0, 1] and that X has the pointwise covariance matrices

{Σ(t)}kl = cov{Xk(t), Xl(t)} (0 ≤ t ≤ 1). (1)

The goal is to utilize this collection of covariance matrices to define an overall functional p× p 90

covariance matrix S, where the (k, l)th element provides a scalar measure of the covariance

between component functions Xk and Xl. This problem does not have a unique solution. A

straightforward idea is to integrate the pointwise covariances for each component, obtaining

Skl =
∫ 1
0 {Σ(t)}kl dt. In practice, the integral would be approximated by taking an average of

the estimated pointwise covariances over a grid of support points at which measurements of 95

processes X are available, as integrals can be defined as a limit of Riemann sums,
∫ 1
0 f(x) dx ≈

N−1
∑N

i=1 f {(i− 1)/N} for a continuous function f , if one has N equidistant support points.

This averaging aspect opens a connection to the work of Dryden et al. (2009) and Pigoli et al.

(2014). Working in a different context, the authors propose to average a sample of covariance

matrices by computing Fréchet means for metrics other than the Frobenius distance. They show 100

that various such metrics improve upon the Frobenius distance in a variety of applications. In-

tuitively, since the Frobenius distance is induced by a Hilbert inner product on the space of all

square matrices, its use for the nonlinear and more structured subset of covariance matrices may

be suboptimal. In our simulation and data analysis in Section 4, we find that the use of other

metrics often yields more powerful analyses than the Frobenius distance. Our starting point is to 105

demonstrate how the usual Riemann integral of a multivariate function can be generalized to a

Fréchet integral that depends on the specific metric on the space of covariance matrices.

2·2. Fréchet Integrals

For a metric space (Q, d), an interval T ⊂ R and a function q : T → Q, we define the Fréchet

integral of q as an element ω∗ ∈ Q that satisfies 110

ω∗ =arginf
ω∈Q

∫

T

d2 {q(t), ω} dt. (2)

The existence and uniqueness of the Fréchet integral are not guaranteed in general, although

existence is implied if Q is compact. We use this term to emphasize the interpretation of Fréchet

integrals as an extension of the commonly used Fréchet mean (Fréchet, 1948) to the case of

a continuous index, which is time in our case. If q were to be observed on a finite lattice of

fixed dimension, the usual Fréchet mean would be applicable and, for the case of constructing a 115

mean covariance matrix from a sample of covariance matrices, regular Fréchet means have been

studied for various metrics and settings (Le, 2001; Ando et al., 2004; Arsigny et al., 2007).

Consider the special case where Q is a convex subset of Rm or, more generally, of an m-

dimensional vector space. If
∫

T
q(t) dt exists, it lies in Q by convexity. If one chooses the dis-

tance or metric d as the Euclidean distance dE, it holds that120

∫

T

d2E

{

q(t),

∫

T

q(s) ds

}

dt <

∫

T

d2E {q(t), ω} dt

for all ω ∈ Rm with ω 6=
∫

T
q(t) dt, so that ω∗ =

∫

T
q(t) dt. Hence, the usual Riemann integral

is a special case of the Fréchet integral when d = dE.
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2·3. Fréchet Integration of Covariance Matrices

Let P denote the space of p× p symmetric positive definite matrices and d a generic metric

on P . Using the matrix-valued function Σ(t) defined in (1), a functional p× p covariance matrix125

can then be obtained by means of the Fréchet integral in (2) by taking Q = P and q(t) = Σ(t).
For the metric d, we consider a general class of power metrics, motivated by the square root and

logarithmic metrics utilized in Dryden et al. (2009). These metrics can be viewed in the context

of the class of Box–Cox matrix transformations Hα and their inverses

Hα(Σ) =

{

α−1(Σα − I), α > 0,
log(Σ), α = 0,

H−1
α (A) =

{

(αA+ I)1/α, α > 0,
exp(A), α = 0.

(3)

The domain of Hα is P for all α, while the domain of H−1
α is the space of symmetric matrices130

for α = 0 and, for α > 0, it is the space of symmetric matrices with eigenvalues greater than

−α−1. Let dF be the Frobenius metric, defined as dF(A,B)2 = tr
{

(A−B)2
}

for A and B
two matrices of the same dimensions. Corresponding to the above class of transformations is the

class of power metrics, indexed by α ≥ 0, with members

dα (Γ1,Γ2) = dF {Hα(Γ1), Hα(Γ2)} (Γ1,Γ2 ∈ P). (4)

The particular cases α = 0 and α = 1/2 correspond to the logarithmic and square root metrics135

in Dryden et al. (2009), while α = 1 is the ordinary Frobenius metric.

Assuming R =
∫ 1
0 Hα{Σ(t)} dt exists and Σ(t) ∈ P (0 ≤ t ≤ 1), for a given value α we can

compute the Fréchet integral

Sα =arginf
Γ∈P

∫ 1

0
dα {Σ(t),Γ}

2 dt (5)

analytically. If α > 0, the eigenvalues of Hα{Σ(t)} are all above −α−1 which implies that the

same is true for R. Hence, H−1
α (R) is well-defined for any α ≥ 0. Properties of the Frobenius140

metric imply that
∫ 1

0
dα {Σ(t),Γ}

2 dt =

∫ 1

0
dα
{

Σ(t), H−1
α (R)

}2
dt+ dα

{

Γ, H−1
α (R)

}2
,

whence

Sα = H−1
α (R) = H−1

α

[∫ 1

0
Hα{Σ(t)} dt

]

. (6)

2·4. Adaptive Metric Selection

The proposed functional covariance matrix through Fréchet integration depends on the chosen

geometry as represented by the transformation parameter α. For practical utility of this approach,145

a method for the selection of α is needed. For this we propose a criterion-based approach, where

the user specifies a target criterion M that measures the quality of the metric induced by the

parameter α. The metric can then be selected as

α∗ = argmax
α∈A

M(α), (7)

where A is an interval of the form [0, T ], for some T > 0.

As a concrete example, consider the common use of the covariance matrix for dimensional- 150

ity reduction through principal component analysis. Then a desirable feature for a covariance

matrix is that its eigenvalues decay rapidly, so that the first few eigenvectors provide a good ap-

proximation. One suitable criterion function which measures this decay rate is motivated by the
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cumulative scree plot. LetC ∈ P and define λC,j to be the jth largest eigenvalue ofC. For values

of k between 1 and p, one plots the pairs (k,
∑k

j=1 λC,j/
∑p

j=1 λC,j), reflecting the fraction of 155

variance explained by the first k components. If the eigenvalues decay rapidly, these cumulative

sums will increase quickly for small k, with only small increases for large k. The speed of the

increase in the cumulative sums can then be measured by

mFVE(C) =

p
∑

k=1

(

∑k
j=1 λC,j

∑p
j=1 λC,j

)

=

∑p
j=1(p− j + 1)λC,j
∑p

j=1 λC,j
. (8)

The criterion function can be set asM(α) = mFVE(Sα). As more weight is given to larger eigen-

values, functional covariance matrices Sα with faster increasing cumulative sums of eigenvalues 160

will lead to larger values of M(α), which are then harnessed to choose a best metric.

A second option is motivated by observing that the undesirable extreme is that all of the

eigenvalues are equal. Let ν, λC ∈ Rp be the vector of all ones and the vector of eigenvalues of

C ∈ P , respectively. The metric can be chosen so as to maximize the discrepancy between ν and

λC . While accounting for scaling differences, the geodesic distance between ν and λC is 165

mG(C) = arccos

(

〈λC , ν〉E
‖λC‖Ep1/2

)

, (9)

where 〈·, ·〉E and ‖·‖E are the standard Euclidean inner product and norm, respectively. This

criterion measures the angle between these vectors, so that large values of mG(C) indicate large

discrepancies between λC and ν. Hence, another criterion of interest is M(α) = mG(Sα).
Beyond dimensionality reduction, criterion-based metric selection can be used quite generally.

For example, in Section 4·2 we demonstrate how metric selection can be utilized to great advan- 170

tage in a two sample setting to distinguish two populations. Since many such criterion functions

are unobservable, we address the estimation of M in the next section.

2·5. Estimation

The main quantity requiring estimation is the functional covariance matrix Sα in (6). As a

first step, cross-covariance estimators Σ̂(t) are computed; such estimators exist for functional 175

data observed on dense or sparse grids, with and without noise (Yang et al., 2011). The final

functional covariance estimator is

Ŝα = H−1
α

[∫ 1

0
Hα{Σ̂(t)} dt

]

. (10)

Convergence of Ŝα to the target Sα naturally depends on the convergence properties of the plug-

in estimators Σ̂kl(t) as well as properties of the Box–Cox transformations Hα and will be ad-

dressed in Section 3. As an illustrative example, assume one observes a sample of n realizations 180

(Xi1, . . . , Xip) (i = 1, . . . , n) of the p−dimensional process (X1, . . . , Xp) across the entire con-

tinuum T . The empirical cross-sectional covariance matrices for each fixed time t are

Σ̂kl(t) =
1

n

n
∑

i=1

{Xik(t)− µ̂k(t)}{Xil(t)− µ̂l(t)} (k, l = 1, . . . , p), (11)

where µ̂k(t) are the sample means of Xik(t).
Additionally, the implementation of data-adaptive metric selection as outlined in Section 2·4

requires estimation if the criterion function M is not observable. This is notably the case for185

the criterion functions based on the fraction of variance explained quantity in (8) and geodesic
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distance in (9). Given an estimator M̂ of M , the obvious estimator of the best metric α∗ in (7) is

α̂∗ = argmax
α∈A

M̂(α). (12)

For the specific criterion functions suggested for dimensionality reduction in Section 2·4, a sim-

ple estimator is obtained by substituting Ŝα for Sα, i.e. M̂(α) = mFVE(Ŝα) for the fraction of

variance explained criterion or M̂(α) = mG(Ŝα) for the geodesic criterion.190

3. THEORY

In Section 2·5, the plug-in estimator in (10) was proposed to estimate Sα in (6). In this section,

we study the convergence of this estimator by examining the random quantity dF(Ŝα, Sα) for

a fixed α. The main question is to what extent the metric affects the rate of convergence. In

addition, we investigate the effect of metric selection. Specifically, we consider α∗ and α̂∗ in (7)195

and (12) for a generic criterion functionM and the convergence of Ŝα̂∗ , the estimated covariance

matrix with data-adaptive metric selection, to the target Sα∗ .

A key preliminary finding is Proposition 1 in Appendix 1. This proposition demonstrates that

dF and dα are equivalent metrics on local neighborhoods. Utilizing this relationship between the

metrics leads to the rate of convergence of our estimator Ŝα under the following assumptions.200

Assumption 1. For all t, the pointwise covariance matrices in (1) satisfy Σ(t) ∈ P and the

number of distinct eigenvalues of Σ(t) is p. Also, the function Σ : [0, 1] → P is continuous in

the metric dF.

Assumption 2. The estimators Σ̂kl(t) (k, l = 1, . . . , p) of Σkl(t) = cov{Xk(t), Xl(t)} satisfy

sup
0≤t≤1

∣

∣

∣Σ̂kl(t)− Σkl(t)
∣

∣

∣ = op(1), dL2

(

Σ̂kl,Σkl

)

= Op(rn),

where rn → 0 as n→ ∞ and dL2(f, g)2 =
∫

[0,1]{f(t)− g(t)}2 dt.205

Assumption 1 implies that the integral R =
∫ 1
0 Hα{Σ(t)} dt exists, so that (6) is the solution

of (5). It also ensures nice behavior of the eigenvalues of Σ(t) as t varies. Assumption 2 is the

key factor for the convergence rates in Theorems 1 and 2 below. The rate rn will depend on

whether the functional data are observed with or without noise and on a sparse or dense grid. For

the scenario of fully observed functional data as in Section 2·5, with cross-covariance estimator210

as in (11), Lemma 1 in Appendix 3 shows that we may take rn = n−1/2.

THEOREM 1. For a fixed value α, suppose Assumptions 1 and 2 hold. Then the functional

covariance estimator (10) satisfies dF(Ŝα, Sα) = Op(rn).

Hence, the proposed methodology preserves the L2 convergence rate of the cross-covariance

estimators.215

To provide theoretical support for data-adaptive metric selection as described in Section 2·4,

we next study the convergence of dF(Ŝα̂∗ , Sα∗). Let A = [0, T ] be as in Section 2·4, for an

arbitrary T . The main idea is to use the inequality

dF(Ŝα̂∗ , Sα∗) ≤ dF(Sα∗ , Sα̂∗) + sup
α∈A

dF(Ŝα, Sα). (13)

The first term on the right hand side can be controlled as described in Proposition 2 in Appendix

1, by examining the effects of the transformationHα as α varies, and making use of the following 220

additional assumptions.
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Assumption 3. For any α ∈ A, the matrix Sα has p distinct eigenvalues.

Assumption 4. For a sequence sn → 0, the estimator M̂ satisfies supα∈A

∣

∣

∣M(α)− M̂(α)
∣

∣

∣ =

Op(sn).

Assumption 5. The target criterion functionM has the following properties: the maximizer α∗
225

in (7) is unique and, for any openG ⊂ A containing α∗, supα∈Gc M(α) < M(α∗). Additionally

there exist η, b, β > 0 such that |α∗ − α| < η implies M(α∗)−M(α) ≥ b|α− α∗|β .

Assumption 3 controls the spacings of the eigenvalues of Sα as α varies. Indeed, perusing

the proof of Theorem 1 and combining Assumption 3 with the results of Proposition 2 yields

supα∈A dF(Sα, Ŝα) = Op(rn). Thus, the second term on the right hand side of (13) is Op(rn), 230

while Assumptions 4 and 5 determine the rate of the second term. In the case of a general criterion

M , the parameter β is difficult to specify, but it can be estimated numerically from the data by

using the estimator M̂ as a proxy for M . However, if M is known to be twice continuously

differentiable, Taylor’s theorem implies that β = 2 is permissible. For the specific examples of

the fraction of variance explained and geodesic criteria, based on (8) and (9), Proposition 3 in 235

Appendix 1 demonstrates that we may take sn = rn in Assumption 4 and β = 2 in Assumption 5.

Our main result for metric selection is

THEOREM 2. Under Assumptions 1–5, dF(Sα∗ , Ŝα̂∗) = Op

(

rn + s
1/β
n

)

.

This result provides the rate of convergence of the estimator with adaptive metric selection.

The rate of convergence depends on the precise nature of the criterion function M , its estimator 240

M̂ and also on the L2 convergence of the plug-in estimators.

Although we have presented our results so far in the framework of the Box–Cox transforma-

tion family for symmetric positive definite matrices, these results and the underlying approach

and theory are not limited to this class of transformations. While the Box–Cox class is an im-

mediately applicable transformation family, other families of invertible transformations, indexed 245

by a single parameter α, may also be of interest, and the restriction to this class in the pre-

vious descriptions and discussions was merely due to ease of presentation. In a more general

approach, we only need to require that the transformation family under consideration satisfies

certain structural assumptions that are laid out at the beginning of Appendix 2. Specifically, un-

der these assumptions on the transformation family, Theorems 1 and 2 will remain valid. Indeed, 250

the proofs of the main results in Appendix 2 cover this more general case.

Selecting a specific transformation family leads to an associated family of metrics, similar

to (4), for which the Fréchet integral of Σ(t) can then be defined. As a general example of a

family of transformations, consider a parameterized family of monotone univariate functions

hα : R+ → R. This includes the Box–Cox family as a special case. Another special case is the 255

exponential transformation family hα(x) = eαx. Once the family hα has been specified, for a

diagonal p× p matrix D, define Hα(D) = diag{hα(D11), . . . , hα(Dpp)}. The transformation

can then be extended to any A ∈ P by writing A = UDUT , with D diagonal, and defining

Hα(A) = UHα(D)UT .

4. SIMULATIONS AND APPLICATION TO RESTING STATE BRAIN CONNECTIVITY 260

4·1. Simulations

A simulation study was conducted to demonstrate the benefits of data-adaptive metric selec-

tion, as outlined in Section 2·4. Specifically, we implemented metric selection for dimensionality

reduction by utilizing the fraction of variance explained criterion mFVE in (8) and compared the
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resulting eigenvalue decay rate with that resulting from the Frobenius metric that corresponds265

to the choice α = 1 in (3)–(6). We also based data-adaptive metric selection on the geodesic

criterion mG in (9). The results were virtually indistinguishable from those using the fraction of

variance explained criterion. Hence, for simplicity, we present results only for the latter.

Multivariate functional data of dimension p = 5 were generated from a multivariate stochastic

processX = {X1(t), . . . , X5(t) : 0 ≤ t ≤ 1}. The individual component functionsX1, . . . , X5270

were generated according to the model

Xj(t) = µj(t) +
10
∑

k=1

ξjk(t)ψk(t) (0 ≤ t ≤ 1; j = 1, . . . 5), (14)

where µj is the Gaussian density function with mean and variance j and the ψk are Fourier basis

functions ψk(t) = sin(πkt), k even, and ψk(t) = cos{π(k − 1)t}, k odd.

The random elements in the simulation are the coefficients ξjk. Each of the five component

functions of the multivariate stochastic process X has 10 such coefficients, thus requiring the275

generation of 50 random numbers for each realization of X . This was done by sampling from

a N50(0, C) distribution, with C constructed by forming a 50× 50 diagonal matrix D with

diagonal entries Djj = 1.03e−j/1.03 and computing C = V DV T , for an orthonormal matrix V .

The dependence between distinct coefficients ensures that the component functions X1, . . . , X5

are indeed correlated. For each of 1000 simulation runs, a random sample of coefficients of280

size n = 200 was generated from the N50(0, C) distribution, yielding a sample of size n of

5-dimensional functional data by inserting these coefficients into (14).

For A = [0, 4] and α ∈ A, denote by Ŝαl the estimated functional covariance matrix of X
using the data from the lth simulation run. The data-adaptive metric selection was then performed

by utilizing the criterion function mFVE in (8) and computing285

α̂∗
l = argmax

α∈A
mFVE

(

Ŝαl

)

, (15)

as outlined in Section 2·4. The functional covariance that resulted from Fréchet integration using

α = α̂∗
l was then compared with the covariance generated by the default Frobenius metric, for

whichα = 1, by examining the decay of their respective eigenvalues, as quantified by the fraction

of variance explained by the first k eigenvalues, k = 1, . . . , 5; see (8).

Figure 1 gives the cumulative scree plots obtained by averaging over all simulations. It indi-290

cates that the data-adaptive metric selection technique produces a functional covariance matrix

with eigenvalues that decay more rapidly than that produced by the Frobenius metric, so co-

variance matrices produced by data-adaptive metric selection can be approximated with greater

accuracy by a small number of eigenvalues/eigenvectors.

To compare the chosen values α̂∗
l in (15) with the theoretical maximizer α∗ =295

argmax α∈A mFVE(Sα), we computed the latter numerically. On a grid of 401 equally spaced

points on [0, 4] the theoretical maximizer was found to be α∗ = 0.04. This compares well with

the simulation results where, for 1000 simulations, the estimates α̂∗
l had a mean of 0.042 and a

variance of 1.69× 10−4, with estimates ranging between 0.01 and 0.09.

4·2. Functional Connectivity in the Resting State Brain300

In recent years, the problem of identifying functional connectivity between brain voxels or

regions has received a great deal of attention, especially for resting state fMRI (Allen et al., 2014;

Ferraty et al., 2013; Sheline & Raichle, 2013). Subjects are asked to relax while undergoing a

fMRI brain scan, where blood-oxygen-level dependent signals are recorded and then processed

to yield voxel-specific time courses of signal strength. The connectivity between brain regions 305
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is usually quantified by a measure of correlation between the corresponding time courses of

an fMRI scan. Then the primary source for the analysis of functional connectivity in the brain

is a covariance matrix. Each time course of a subject’s scan provides a functional datum and

the multivariate aspect arises as multiple voxels or regions are considered. The estimation of

covariances of these multivariate data for groups of subjects that are characterized by covariates 310

such as disease status is of great interest.
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Fig. 1: Average cumulative scree plots for estimated functional covariance matrices of 5-dimensional functional data

generated by the model in (14), for 1000 simulation runs. The solid line corresponds to the default choice α = 1 while

the dashed line corresponds to the data-adaptive metric selection using the criterion in (8). Vertical bars indicate the

range of the cumulative scree plots across all simulations.

The data to be analyzed come from a study of 239 elderly individuals, each of whom under-

went an fMRI scan at the UC Davis Imaging Research Center. Each subject received a clinical

evaluation which resulted in a diagnosis of cognitive state. Of the 239 patients, 173 were clin-

ically diagnosed as normal and 66 as Alzheimer’s. Summary statistics of age within the two 315

groups are in Table 1, indicating only minor differences in age distribution between normal and

Alzheimer’s subjects. This is an important consideration, as connectivity is known to decline

naturally with age.

Table 1: Summary statistics of distribution of age within normal and Alzheimer’s groups

Group Mean SD Minimum Maximum

Normal 77.01 6.62 64 94

Alzheimer’s 78.74 9.04 51 93

SD, standard deviation.

Preprocessing of the recorded blood oxygenation-level-dependent signals was implemented by

adopting the standard procedures of slice-timing correction, head motion correction and coreg-320

istration to the subject’s MRI scan. Multiple linear regression was applied to the signal at each

voxel to remove global linear trends and signal drift, along with two other global signals corre-

sponding to cerebral spinal fluid and white matter. Finally, each signal was band-pass filtered to

preserve frequency components between 0.01 and 0.08 Hz.
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0 100 200 300 400

Seconds

(a) Normal Subject

0 100 200 300 400

Seconds

(b) Alzheimer’s Subject

Fig. 2: Time courses of fMRI signals, standardized to have the same vertical range, for 27 spatial locations within the

posterior cingulate/precuneus region, where the courses are offset vertically. The left panel displays the signals of a

cognitively normal subject and the right panel those of a subject diagnosed with Alzheimer’s disease.

For the connectivity analysis, we compared normal and Alzheimer’s subjects and restricted325

our attention to the posterior cingulate/precuneus region of the brain, which has been shown to

be highly affected by Alzheimer’s disease (Grady et al., 2001; Wang et al., 2006, 2007; Zhou

et al., 2008b; Zhang et al., 2009; Bai et al., 2009). In particular, functional connectivity between

voxels located in this region has been shown to be weaker for subjects with amnestic mild cogni-

tive impairment, a common stage of transition between normal aging and Alzheimer’s (Bai et al.,330

2008). For each subject, a common 3× 3× 3 cube of voxels was identified and the correspond-

ing fMRI signals extracted, thus giving multivariate functional data with p = 27. The coordinates

of the center of this cube were taken from Table 3 of Buckner et al. (2009). Each of the 27 sig-

nals is a time course taken over the interval [0, 470] seconds, with 236 measurements available at

2-second intervals. The fMRI time courses of a normal subject and one with Alzheimer’s disease335

are shown in Figure 2.

Denoting by ŜN
α and ŜA

α , as in (10), the estimated functional covariance matrices for the nor-

mal and Alzheimer’s groups, respectively, one would expect a comparison of the corresponding

correlation matrices, ĈN
α and ĈA

α , to reflect differences between normal and Alzheimer’s sub-

jects. The estimated correlations for the default choice α = 1 are shown in Figure 3. Both groups 340

demonstrate strong functional connectivity within this region, as there are many large positive

correlations. However, there is no visually observable difference between the two groups.
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We find that by adaptively choosing the metric parameter α to maximize the distance,

α̂∗ = argmax
α∈[0,4]

dF

(

ĈN
α , Ĉ

A
α

)

= 2.8,

one obtains a more informative comparison between the groups. Specifically, using this value

for α in (10), the correlations are seen to be sparser for the Alzheimer’s group, in comparison to 345

the normal subjects in the correlation plots in Figure 4. In order to visualize the distinction more

clearly, the differences ĈN
α − ĈA

α are depicted in Figure 5. The default value α = 1 leads to

the conclusion that, on average, functional connectivity within the posterior cingulate/precuneus

region is similar between normal and Alzheimer’s subjects, while the data-adaptive choice α̂∗ =
2.8 reveals that Alzheimer’s disease is associated with weaker connectivity in this brain region. 350

5. DISCUSSION

The proposed Fréchet integration of covariance matrices can also be applied in non-stationary

multivariate time series analysis, when one aims at summary dependency measures. A main

difference in the case of functional data is that, for each fixed time, the cross-sectional covariance

matrix can be easily estimated from the data with n1/2 convergence rate, while strong model 355

assumptions are needed for consistency in nonlinear time series analysis.

For multivariate functional data, the transformation-based dependence measures are attractive

because they are easy to compute, do not involve inverse operators as does canonical functional

correlation, and can be interpreted as extensions of pointwise covariance measures, while other

covariance measures such as dynamic correlation only focus on the functional aspects. For this 360

reason, the proposed approach is expected to be useful for sparsely and densely sampled func-

tional data, where consistent pointwise covariances can be obtained between all component pairs

of the multivariate process.

−1

0

1

(a) Normal Group

−1

0

1

(b) Alzheimer’s Group

Fig. 3: Estimated functional correlation matrices ĈN
α and Ĉ

A
α for α = 1. Positive (negative) correlations are shown

in black (white), with larger (smaller) squares corresponding to correlations closer to ±1 (0).
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−1

0

1

(a) Normal Group

−1

0

1

(b) Alzheimer’s Group

Fig. 4: Estimated functional correlation matrices ĈN
α and Ĉ

A
α for the adaptive choice α = α̂

∗

= 2.8. Positive (nega-

tive) correlations are shown in black (white), with larger (smaller) squares corresponding to correlations closer to ±1

(0).

−0.15

0

0.15

(a) α = 1

−0.15

0

0.15

(b) α = α̂
∗

= 2.8

Fig. 5: Differences between correlation matrices, ĈN
α − Ĉ

A
α , for default (left) and adaptive (right) metric choices.

Positive (negative differences) are indicated by black (white). Larger (smaller) squares correspond to values closer to

0.15 (−0.15).

Families of transformations other than the Box–Cox family that we have used in our simu-

lations and the application could be of interest in some scenarios, and are also covered by our 365

approach, as long as they form a family that is indexed by a single parameter α and satisfies
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some basic regularity conditions. Our theory covers these more general families, which generate

associated families of metrics.

The basic Fréchet integration approach can be applied to general metric spaces under regular-

ity conditions, and is not limited to the space of covariance matrices. An example is time-indexed 370

daily air pollution profiles where the time of peak pollution varies from day to day. If one is in-

terested in a typical profile, then averaging the profiles over a range of calendar days, which is

akin to construction a Riemann integral, will usually be inferior to a Fréchet integral or average

when using a suitable metric. In this example, it might be sensible to adopt a Wasserstein-type

distance (Villani, 2003) that takes into account time warping between profiles. 375
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APPENDIX 1

Notation 380

Recall that dF denotes the Frobenius metric, dα is defined in (4), dL2 denotes the standard L2 metric for

functions and ‖·‖E denotes the Euclidean norm for vectors. Let hα denote the Box–Cox transformations

as in (3) for the univariate case p = 1. Then dhα/dx = xα−1 and dh−1
α /dx = {h−1

α (x)}1−α.

Propositions

PROPOSITION 1. Let Aj ∈ P , with eigenvalues λj1 ≥ · · · ≥ λjp > 0 (j = 1, 2), and α ≥ 0. Suppose 385

A1 has k (k = 2, . . . , p) distinct eigenvalues d1 > · · · > dk > 0, and set δ = minl=1,...,k−1(dl − dl+1)
and πα = minl=1,...,k−1{hα(dl)− hα(dl+1)}. Set C > 1 such that C−1 ≤ dk/2 ≤ 2d1 ≤ C and define

L1 = p1/2
[

Cmax(α,1) + 23/2pδ−1 max{−hα(C
−1), hα(C)}

]

, L2 = p1/2
{

Cmax(α,1) + 23/2Cpπ−1
α

}

.

Then dF(A1, A2) < dk/2 implies

dα(A1, A2) ≤ L1dF(A1, A2)

and dα(A1, A2) < min{hα(dk)− hα(dk/2), hα(2d1)− hα(d1)} implies

dF(A1, A2) ≤ L2dα(A1, A2).

Proof. Take the eigendecompositions Ai = UiΛiU
T
i , with the diagonal elements of Λi being in de-390

creasing order, and set Jl = {j : λ1j = dl} (l = 1, . . . , k). Let ui,j denote the jth column of Ui. Then

dα(A1, A2) ≤ dF{Hα(Λ1), Hα(Λ2)}+ dF{U1Hα(Λ1)U
T
1 , U2Hα(Λ1)U

T
2 }

≤





p
∑

j=1

{hα(λ1j)− hα(λ2j)}
2





1/2

+

k
∑

l=1







|hα(dl)| dF





∑

j∈Jl

u1,ju
T
1,j ,

∑

j∈Jl

u2ju
T
2,j











.

(A1)

Lemma 4.3 of Bosq (2000) implies that maxj=1,...,p |λ1j − λ2j | ≤ dF(A1, A2). By the mean value theo-

rem, the summands of the first term in the last line of (A1) can be bounded by τ
2(α−1)
j dF(A1, A2)

2, where395

τj lies between λ1j and λ2j . Define Πl(v) =
∑

j∈Jl
〈u1,j , v〉u1,j . Lemma 4.3 of Bosq (2000) implies that,

for j ∈ Jl,

‖u2,j −Πl(u2,j)‖
2
E = 1−

∑

j′∈Jl

〈u1,j′ , u2,j〉
2 ≤ 4δ−2dF(A1, A2)

2.
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It follows that

dF





∑

j∈Jl

u1,ju
T
1,j ,

∑

j∈Jl

u2,ju
T
2,j





2

= 2
∑

j∈Jl

‖u2,j −Πl(u2,j)‖
2
E ≤ 8pδ−2dF(A1, A2)

2.

Combining these bounds leads to

dα(A1, A2) ≤













p
∑

j=1

τ
2(α−1)
j







1/2

+ 23/2p1/2δ−1
k
∑

l=1

|hα(dl)|






dF(A1, A2).

When dF(A1, A2) < dk/2, Lemma 4.3 of Bosq (2000) implies C−1
1 ≤ τj ≤ C (j = 1, . . . , p).400

Hence, τα−1
j ≤ Cmax(α,1). Furthermore, hα is monotone for all α ≥ 0, so that |hα(dl)| ≤

max{−hα(C
−1), hα(C)}. This gives the first inequality in the proposition, and the second can be ob-

tained similarly. �

PROPOSITION 2. Let A1, A2, πα and C be as in Proposition 1 and let 0 ≤ α, β ≤ T , α 6= β and

T > 0 arbitrary. There exists L3 = L3(C) such that405

dF{Hα(A1), Hβ(A1)} ≤ L3|α− β|.

Additionally, there exist L4 = L4(C) and L5 = L5(C,α) such that, for dF{Hα(A1), Hβ(A2)} small,

dF(A1, A2) ≤ L4|α− β|+ L5dF{Hα(A1), Hβ(A2)}.

Proof. For κ, x ≥ 0, define f(x, κ) = hκ(x). Observe that ∂f/∂κ = κ−2 {(log xκ − 1)xκ + 1} and

set

f̃(x, κ) =

{

∂f
∂κ , κ > 0,
1
2 (log x)

2, κ = 0.

Then f̃ is continuous. Lemma 4.3 of Bosq (2000) implies that

dF{Hα(A1), Hβ(A1)}
2 =

p
∑

j=1

{hα(λ1j)− hβ(λ1j)}
2 ≤





p
∑

j=1

{

f̃(λ1j , γj)
}2





1/2

|α− β|,

for some values γj between α and β, so we may take 410

L3 = p1/2 sup
C−1≤x≤C

sup
0≤κ≤T

|f̃(x, κ)| <∞.

Hence, the first inequality of the proposition holds since C−1 ≤ λ1j ≤ C (j = 1, . . . , p).
For the second inequality, take the eigendecompositions Aj = UjΛjU

T
j and set g(x, κ) = h−1

κ (x), for

κ ≥ 0. Then, by similar arguments as those in the proof of proposition 1,

dF(A1, A2) ≤





p
∑

j=1

[g{hα(λ1j), α} − g{hβ(λ2j), β}]
2





1/2

+ (2p)3/2π−1
α CdF{Hα(A1), Hβ(A2)}.

The mean value theorem yields

|g{hα(λ1j), α} − g{hβ(λ2j), β}| ≤ ‖∇g(τj , γj)‖E {|hα(λ1j)− hβ(λ2j)|+ |α− β|}

for some γj between α and β and τj between hα(λ1j) and hβ(λ2j). For κ > 0 and x > −κ−1, 415

∂g

∂x
= g(x, κ)1−κ,

∂g

∂κ
= κ−1g(x, κ)

{

x

κx+ 1
− log g(x, κ)

}

,
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so we can define

g̃(x, κ) =

{

∇g(x, κ), κ > 0, x > −κ−1,

−x2ex

2 , κ = 0, x ∈ R,

which is continuous on its domain. Hence

L4 = p1/2 sup
C−1≤y≤C

sup
0≤κ≤T

‖g̃{hκ(y), κ}‖E, L5 = L4 + (2p)3/2π−1
α C

are both finite. So, if dF{Hα(A1), Hβ(A2)} < λ1p/2, the second inequality of the proposition holds. �

PROPOSITION 3. Let m be either of the functions mFVE or mG in (8) and (9), set A = [0, T ] for

arbitrary T > 0 and suppose Assumptions 1–3 hold, as well as Assumptions 6–8 from Appendix 2. For 420

M(α) = m(Sα), we may take β = 2 in Assumption 5. Furthermore, with M̂(α) = m(Ŝα), we may take

sn = rn in Assumption 4, where rn is the rate in Assumption 2.

Proof. Let λα,j and λ̂α,j be the jth largest eigenvalues of Sα and Ŝα, respectively, for α ∈ A. Using

Assumption 1 along with the fact that eigenvalues and eigenvectors are infinitely differentiable with re-

spect to the matrix elements (Magnus, 1985), one finds that d2λα,j/(dα)
2 exists and is continuous on 425

the interior of A. Using the chain rule, one then finds that mFVE and mG are both twice continuously

differentiable. By Assumption 5, d2M/(dα)2 is negative at α = α∗, so that β = 2 follows from Taylor’s

theorem.

To show that we may take sn = rn, consider first the fraction of variance explained criterion. Set

cα =
∑p

j=1 λα,j and ĉα =
∑p

j=1 λ̂α,j . Using Lemma 4.3 of Bosq (2000), we have supα∈A |cα − ĉα| ≤ 430

p supα∈A dF(Sα, Ŝα), hence

|M(α)− M̂(α)| ≤
p(p+ 1)

2cαĉα
(pλα,1 + cα)dF(Sα, Ŝα).

As in the proof of Theorem 2 in Appendix 2, the assumptions imply that supα∈A dF(Sα, Ŝα) =
Op(rn). Since infα∈A cα > 0 and supα∈A cα <∞ are guaranteed by Assumptions 1 and 3, we have

supα∈A |M(α)− M̂(α)| = Op(rn). Similar arguments can be used to obtain the result for m = mG, the

geodesic criterion. � 435

APPENDIX 2

General Assumptions

We consider here general classes of transformations Hα of covariance matrices that are indexed by

a parameter α, of which the Box–Cox transformation class is just one example. In addition to Assump-

tions 1–5, we require three assumptions regarding structural properties of the general transformation class 440

Hα under which the theory of adaptive metric selection can be developed.

Assumption 6. The matrix R =
∫ 1

0
Hα{Σ(t)} dt exists and H−1

α (R) is well-defined. In other words,

Sα = H−1
α (R), where Sα is defined in (5).

Assumption 7. For A1, A2 ∈ P and fixed α, there exist positive constants εj = εj(A1, α) and

Lj = Lj(A1, α) (j = 1, 2) such that dF(A1, A2) < ε1 implies dα(A1, A2) ≤ L1dF(A1, A2) and445

dα(A1, A2) < ε2 implies dF(A1, A2) ≤ L2dα(A1, A2). The constants εj and Lj vary continuously in

the first argument with respect to dF and can be taken uniformly in the second argument over α ∈ A.

Assumption 8. For A1, A2 ∈ P and α, β ∈ A, α 6= β, there exists L3 = L3(A1, α) such

that dF{Hα(A1), Hβ(A1)} ≤ L3|α− β|. Furthermore, there exists ε = ε(A1, α) > 0 and Lj =
Lj(A1, α) > 0 (j = 4, 5) such that dF{Hα(A1), Hβ(A2)} < ε implies dF(A1, A2) ≤ L4|α− β|+450

L5dF{Hα(A1), Hβ(A2)}. The constants Lj (j = 3, 4, 5) are continuous in the first argument.



16 A. PETERSEN AND HANS-GEORG MÜLLER

The Box–Cox class utilized throughout the main portion of this paper satisfies Assumption 6 provided

Assumption 1 holds, while Assumptions 7 and 8 are shown to be satisfied by Propositions 1 and 2 in

Appendix 1, for any interval A = [0, T ], with T > 0 arbitrary, and α, β ∈ A.

Proof of Theorem 1455

Proof. Define Γ(t) = Hα{Σ(t)} and Γ̂(t) = Hα{Σ̂(t)} and let

Rα =

∫ 1

0

Γ(t) dt, R̂α =

∫ 1

0

Γ̂(t) dt.

By Jensen’s inequality,

dF(Rα, R̂α)
2 =

p
∑

k,l=1

[∫ 1

0

{Γkl(t)− Γ̂kl(t)} dt

]2

≤

∫ 1

0

p
∑

k,l=1

{

Γkl(t)− Γ̂kl(t)
}2

dt =

∫ 1

0

dα{Σ(t), Σ̂(t)}
2 dt.

Assumptions 1 and 7 imply that there exist ε1, L1 > 0, both independent of t, such that, on the event

G1 = [sup0≤t≤1 dF{Σ(t), Σ̂(t)} < ε1],

dα{Σ(t), Σ̂(t)} ≤ L1dF{Σ(t), Σ̂(t)}.

Hence, on G1, dF(Rα, R̂α) ≤ L1

[

∫ 1

0
dF{Σ(t), Σ̂(t)}

2 dt
]1/2

= L1Op(rn) by Assumption 2. This as-460

sumption also implies pr(G1) → 1, so that dα(Sα, Ŝα) = dF(Rα, R̂α) = Op(rn).
Let s1 ≥ · · · ≥ sp be the eigenvalues of Sα. Assumption 7 yields ε2, L2 > 0 such that, on the event

G2 = {dα(Sα, Ŝα) < ε2}, dF(Sα, Ŝα) ≤ L2dα(Sα, Ŝα). Then pr(G1 ∩G2) → 1 and, on G1 ∩G2,

dF(Sα, Ŝα) ≤ L1L2Op(rn), implying the result. �

Proof of Theorem 2 465

Proof. Following the logic of the proof of Theorem 1 and using Assumptions 3 and 7, we find that

supα∈A dF(Sα, Ŝα) = Op(rn). Next, Assumptions 4 and 5 together imply that, for large n and with high

probability, |α∗ − α̂∗| < η. In this case, it is easy to show that

|α∗ − α̂∗| ≤ b−1{M(α∗)−M(α̂∗)}1/β ≤ b−1{2 sup
α∈A

|M(α)− M̂(α)|}1/β = Op(s
1/β
n ).

Now, using Assumptions 1 and 8, one obtains L3 > 0, independent of t such that

dF [Hα∗{Σ(t)}, Hα̂∗{Σ(t)}] ≤ L3|α
∗ − α̂∗|, hence dF{Hα∗(Sα∗), Hα̂∗(Sα̂∗)} = Op(|α

∗ − α̂∗|). 470

Lastly, Assumption 8 also yields constants L4, L5 > 0 such that

dF(Sα∗ , Sα̂∗) ≤ L4|α
∗ − α̂∗|+ L5dF{Hα∗(Sα∗), Hα̂∗(Sα̂∗)}

on an event G3 for which pr(G3) → 1. Hence, dF(Sα∗ , Sα̂∗) = Op(|α
∗ − α̂∗|) = Op(s

1/β
n ), so that

dF(Sα∗ , Ŝα̂∗) ≤ sup
α∈A

dF(Sα, Ŝα) + dF(Sα∗ , Sα̂∗) = Op(rn + s1/βn ).

APPENDIX 3

Auxiliary Lemma

LEMMA 1. Let X = {X1(t), . . . , Xp(t); 0 ≤ t ≤ 1}, set Yjk(t) = Xj(t)Xk(t) and let X(i) (i =
1, . . . , n) be independent and identically distributed asX . Suppose |dXj/dt| <∞ (j = 1, . . . , p) almost

surely and that the moments E
(

dlXj/dt
)

(l = 1, . . . 4), are continuous in t, E {supt |dXj/dt|} <∞
and E {supt |dYjk/dt|} <∞ (j, k = 1, . . . , p). Then the estimator

Σ̂jk(t) =
1

n

n
∑

i=1

Y
(i)
jk (t)−

{

1

n

n
∑

i=1

X
(i)
j (t)

}{

1

n

n
∑

i=1

X
(i)
k (t)

}
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satisfies Assumption 2 with rn = n−1/2. 475

Proof. First, we consider the convergence of µ̂j(t) = n−1
∑n

i=1Xj(t) to the target µj(t) =
E {Xj(t)}. By Fubini’s theorem and the assumption that E

{

X2
j (t)

}

is continuous,

E
(

‖µ̂j − µj‖
2
L2

)

=

∫ 1

0

E{µ̂j(t)− µj(t)}
2 dt = O(n−1).

Hence, ‖µ̂j − µj‖L2 = Op(n
−1/2). For the uniform convergence, we have µ̂j(t)− µj(t) = op(1) for all

t. Furthermore, Theorem 1.5.7 of Van der Vaart & Wellner (1996) shows that the process is tight since,

for δ > 0, 480

sup
|s−t|<δ

|µ̂j(s)− µ̂j(t)| ≤
δ

n

n
∑

i=1

sup
t

|dXj/dt|

and n−1
∑n

i=1 supt |dXj/dt| = Op(1). Thus, Theorems 1.5.4 and 1.3.6 of Van der Vaart & Wellner

(1996) imply that supt |µ̂j(t)− µj(t)| = op(1). The result for the covariance estimator Σ̂(t) follows by

applying a similar argument to the processes Yjk. �
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