
Wayne State University

Mathematics Research Reports Mathematics

5-1-2005

Fréchet Subdifferential Calculus and Optimality
Conditions in Nondifferentiable Programming
Boris S. Mordukhovich
Wayne State University, boris@math.wayne.edu

Nguyen Mau Nam
Wayne State University

N. D. Yen
Institute of Mathematics, Hanoi, Vietnam

This Technical Report is brought to you for free and open access by the Mathematics at DigitalCommons@WayneState. It has been accepted for
inclusion in Mathematics Research Reports by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Mordukhovich, Boris S.; Nam, Nguyen Mau; and Yen, N. D., "Fréchet Subdifferential Calculus and Optimality Conditions in
Nondifferentiable Programming" (2005). Mathematics Research Reports. Paper 29.
http://digitalcommons.wayne.edu/math_reports/29

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/math_reports
http://digitalcommons.wayne.edu/math


. 

0 

FRECHET SUBDIFFERENTIAL CALCULUS AND 
OPTIMALITY CONDITIONS IN NONDIFFERENTIABLE 

PROGRAMMING 

B. S. MORDUKHOVICH, N. M. NAM, and N. D. YEN 

WAYNE STATE 
UNIVERSrry 

Detroit, Ml 48202 

Department of Mathematics 
Research Report 

2005 Series 
#5 

This research was partly supported by the National Science Foundation and the Australian 
Research Council 



FRECHET SUBDIFFERENTIAL CALCULUS AND OPTIMALITY 
CONDITIONS IN NONDIFFERENTIABLE PROGRAMMING 1 

B.S. MORDUKHOVICH 2 , N. M. NAM 3, N.D. YEN 4 

Dedicated to Diethard Pallaschke in honor of his 65th birthday 

We develop various (exact) calculus rules for Frechet lower and upper subgradients of extended-real­
valued functions in general Banach spaces. Then we apply this calculus to derive new necessary 
optimality conditions for some remarkable classes of problems in constrained optimization including 
minimization problems for difference-type functions under geometric and operator constraints as 
well as subdifferential optimality conditions for the so-called weak sharp minima. 
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1 Introduction 

This paper is devoted to the study of generalized differentiation and its applications to the 
first-order necessary optimality conditions for constrained optimization problems in infinite­
dimensional spaces. Let 'P: X --> IR := [-oo, oo] be an extended-real-valued function on 
a Banach space X. One of the most simple derivative-like objects, the so-called Prechet 

subdifferential of <pat a domain point x with lcp(x)l < oo, is defined by 

acp(x) := {x* E X* llimi!lf <p(x) - <p(x) - _(x*' x- x) :2: 0}. 
x~x llx- xll (1.1) 

When "lim inf" is replaced by "lim" and the inequality ":2: 0" is replaced by the equality 
"= 0" in (1.1), we have the classical definition of the Frechet derivative/gradient of <pat x; 
that is where the name of "Fnkhet subgradients" comes from. 

It follows directly from definition (1.1) of Frechet subgradients x* E acp(x) that the 
following generalized Fermat rule holds: 

(1.2) 
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whenever x is a local minimizer for <p: X ---> JR. Considering now the general constrained 

minimization problem in a Banach space: 

minimize <p(x) subject to x E !1 C X, (1.3) 

we equivalently reduce it to the unconstrained problem: 

minimize <p(x) + o(x; !1), x EX, (1.4) 

involving the indicator function o(·; !1) of the set !1 that equals 0 if X E !1 and oo otherwise. 
Applying Fermat's rule (1.2), we get 

0 E a['P + o(·; !1)) (x), 

whenever x is a local solution to the constrained problem (1.3). To proceed further in 
constrained optimization and obtain valuable optimality conditions in terms of the initial 
data, we need to have satisfactory calculus rules for Frechet subgradients, which is generally 
not the case. In particular, the desirable sum rule 

(1.5) 

does not hold even in the simplest nonsmooth settings, e.g., for the functions 'Pt(x) = ]x] 
and <p2 (x) = -]x] on the real line. On the other hand, Frecbet subgradients satisfy the so­
called "fuzzy calculus" under natural conditions involving a broad class of Banach (namely 
Asplund, particularly reflexive) spaces; see the recent books by Borwein and Zhu [1] and 
Mordukhovich [4] with the references therein. However, such fuzzy calculus rules, which 
allow us to approximately represent Frecbet subgradients of sums and other compositions 
at points of interest via Frechet subgradients of separate functions at points nearby, are 
not very useful for a number of applications including necessary optimality conditions in 
constrained optimization. "Exact" calculus rules dealing only with points of interest (e.g., 
with minimizers) are essentially more desirable for the majority of applications. Unfortu­
nately, such an exact calculus is not available for Frechet subgradients in reasonably general 
settings, which significantly restricts the scope of their applications. 

The primary goal of this paper is to develop exact calculus rules for Frechet sub gradients 
and related constructions in arbitrary Banach spaces. Surprisingly, it can be done for a 
variety of calculus rules under certain assumptions mostly related to the nonemptiness of the 
Frechet subdifferential or its upper (superdifferential) counterpart for some of the functions 
involved in compositions. The new calculus results obtained in this paper particularly 
include chain, difference, product, and quotient rules in a rather surprising generality. 

The main tool of our analysis is a smooth variational description of Frechet subgradients 
in general Banach spaces; see the next section. This description allows us to establish, 
instead of the sum rule (1.5) that is not true, the following striking difference rule 

n (1.6) 
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provided that a<p2(x) # 0. Due to the stationary principle {1.2), the difference rule {1.6) 
immediately implies that 

{1.7) 

at a local minimum point x for the difference <p = <p1 - <p2 of general extended-real-valued 
functions in Banach spaces. For the case of convex functions <p;, their difference 'Pl - <p2 is 
called a DC-function {i.e., the difference of convex functions), and the necessary optimality 
condition {1. 7) was first established probably by Hiriart-Urruty [3]. By now the class of 
DC-functions has become an attractive object useful in many aspects of optimization theory 
and applications. The reader can find more information on such functions and related topics 
in, e.g., Pallaschke and Urbansky [6], Penot [7], and the references therein. Note that the 
latter paper contains necessary and sufficient conditions of type {1.7) and their second-order 
developments in both convex and nonconvex settings. 

The difference rule and its consequence {1.7) happen to be useful to derive efficient 
necessary conditions for sharp minimizers in the sense of Polyak [9] and in some other 
settings. Further results for minimizing of difference functions subject to general geometric 
and operator /functional constraints are obtained in this paper by combining calculus rules 
for Frechet subgradients with a more developed calculus of basic/limiting subgradients by 
Mordukhovich [4] in the framework of Asplund spaces. 

The rest of the paper is organized as follows. In Section 2 we present basic definitions 
and preliminaries, which are widely used in the sequel. Section 3 contains new calculus rules 
for Frechet subgradients of extended-real-valued functions and the corresponding coderiva­
tives of set-valued mappings. Section 4 is devoted to applications of these results and also 
calculus rules for limiting subgradients to deriving necessary optimality conditions in vari­
ous nonsmooth problems of constrained difference programming, i.e., optimization problems 
whose cost functions are given as a difference of some nonsmooth functions. 

Our notation is basically standard; see the books by Rockafellar and Wets [11] and by 
Mordukhovich [4]. All the spaces are supposed to be Banach unless otherwise stated. 

2 Basic Definitions and Preliminaries 

Given an extended-real-valued function <p: X --> JR., the Frechet subdifferential, i.e., the 
collection of Frechet subgradients of <pat x E dom<p, was defined in {1.1). Sometimes this 
construction is called "regular subdifferential" as in Rockafellar and Wets [11]. Furthermore, 
{1.1) agrees with the Crandall-Lions subdifferential of <p at x from the theory of viscosity 
solutions to nonlinear partial differential equations. 

A characteristic feature of Frechet subgradients is the following smooth variational de­
scription held in any Banach space; see [4, Theorem 1.88{i)]. 

Proposition 2.1 (smooth variational description of Frechet subgradients). Let 
<p: X--> lR be finite at x. Then x' E B<p(x) if and only if there are a neighborhood U of 
x and a junction s: U --> IR, which is Frechet differentiable at x with the derivative \1 s(x) 
and such that 

s(x) = <p(x), \ls(x) = x', and s(x) :s; <p(x) for all x E U. 
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On the other words, every Frechet subgradient of an arbitrary function cp at x can be 
equivalently described via the classical Frechet derivative of another function s such that 
the difference cp-s attains its local minimum at x. In [4, Theorem 1.88(ii,iii)], the reader 
can find more involved smooth variational descriptions of Frechet sub gradients of functions 

defined on "smooth" Banach spaces (i.e., those admitting an equivalent smooth renorm or 
bump function), but they are not used in this paper. 

Along with Frechet subgradients (which are sometimes called lower subgradients, while 
usually "lower" is taken for granted), we need to employ in what follows an upper counter­

part of (1.1) called the Frechet upper subdifferential (sometimes "Frechet superdifferential") 
of cp: X -> JR. at x with lcp(x) I < oo and defined by 

i)+cp(x) := -8( -cp)(x). (2.1) 

n is easy to observe from the definitions that if the sets Bcp(x) and a+cp(x) are nonempty 
simultaneously, then cp is Frechet differentiable at x with 

§+cp(x) = Bcp(x) = {'Vcp(X)}. 

Due to the symmetry in (2.1), properties of (lower) Frechet subgradients automatically 
imply those for the upper counterpart; so it is sufficient to consider only the lower version. 
Let us emphasize, however, that in some situations we need to use both constructions 
(1.1) and (2.1), although for different functions involved in calculus rules and optimality 
conditions-this is one of the strongest points made in this paper! 

Another useful (while elementary) property of Frechet subgradients is the following sum 
rule for two functions on a Banach space when one of these functions is Frechet differentiable 
at the point in question; see, e.g., [4, Proposition 1.107(i)]. 

Proposition 2.2 (sum rule with a differentiable function). Let 'PI: X-> JR. be finite 

at x, and let <p2: X --->JR. be Frechet differentiable at x. Then 

As mentioned, a desirable snm rule of the inclusion (not even talking about equal­
ity) type (1.5) does not hold for Frechet subgradients of sums involving both nonsmooth 

functions. Such a desirable/full calculus is available for the so-called basic (or limiting) sub­
gradients, which can be viewed as a sequential robust regularization of Frechet sub gradients 
and its €-enlargements. A comprehensive theory and applications of the latter subgradient 

and associated normal and coderivative constructions are developed in the books by Mor­
dukhovich [4, 5], which are widely used in what follows. We also refer the reader to the 
book by Rockafellar and Wets [11] for related developments in finite-dimensional spaces. 

To describe limiting subgradients for extended-real-valued functions on Banach spaces, 
we first need to recall an appropriate €-enlargement of the Frechet subdifferential known as 

the t:-subdifferential (or the collection of t:-subgradients) of cp: X ---> JR. at x with lcp(x) I < oo. 
It is defined by 

Bocp(x) := {x* E x*llimi!lf cp(x)- cp(x)- (x*,x- x) 2': -o:}, € 2': 0, (2.2) 
x~x llx- xll 
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where Bo<p(x) := B<p(x). Then the basic/limiting subdifferential of <pat xis defined by 

a<p(x) := LimsupBe<p(x), 
x~X 

ejO 

(2.3) 

where "Lim sup" stands for the Sflluential Painleve-Kuratowski upper/outer limit of a set­
valued mapping F: X x [O,oo) ==#X* given by F(x,e:) := Be<p(x) with respect to the norm 
topology of X and weak* topology of X*, and where x '£., x means that x -> x with 
<p(x) -+ <p(x); see [4]. Note that, by [4, Theorem 2.34], we can equivalently put e: = 0 in 
(2.3) if <pis lower semicontinuous (l.s.c.) around x and if the space X is Asplund, i.e., any 
of its separable subspaces has a separable dual; the reader can find more information on 
Asplund space in [4] andjor in the book by Phelps [8]. 

It follows from (2.3) that B<p(x) c a<p(x). A function <p: X-+ JR. is called lower regular 
at x with ]<p(x)] < oo if 

(2.4) 

Besides the classical cases of convex functions and those strictly differentiable at x (in 
particular, smooth functions), the latter class includes substantially broader collections of 
functions encountered in variational analysis and optimization; see [4, 11]. If <p is lower 
regular at x and locally Lipschitzian around this point, then B<p(x) i 0 provided that X is 
Asplund. This is due to a<p(x) i 0 under the above conditions; see [4, Corollary 2.25]. 

Given a set 0 C X and a point x E 0, we define the F'rechet normal cone (or prenormal 
cone) N(x; 0) and the basic/limiting normal cone N(x; 0) to 0 at x by, respectively, 

N(x; 0) := Bo(x; 0) and N(x; 0) := 8o(x; 0) (2.5) 

via the corresponding subdifferential of the indicator function. A set 0 is called normally 
regular at x E 0 if N(x; 0) = N(x; 0). Besides convex sets and those with smooth bound­
aries, this class includes also various sets that exhibit locally convex-like and other "nice" 
behavior; see [4, 11]. For some applications in this paper, we need the construction 

800<p(x) := {x* EX* I (x*,o) E N((x,<p(x));epi<p)} (2.6) 

of the singular subdifferential of <p: X-+ JR. at x with ]<p(x)] < oo defined via the limiting 
normal cone (2.5) to the epigraph 

epi<p := {(x,J.') EX x IRI 1-'?: <p(x)}. 

Note that 800<p(x) = {0} if <pis locally Lipschitzian around x; see [4, Corollary 1.81]. 
Given a single-valued mapping f: X -+ Y between Banach spaces with the graph 

gphf := {(x,y) EX x Yl y = f(x)}, 

and a point (x, f(x)) E gph J, we need the following two coderivative constructions 

D*f(x)(y*) := {x* EX* I (x*,-y*) E N((x,f(x));gphf)}, (2.7) 
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D' f(x)(y') := { x' EX' I (x', -y') E N((x, f(x)); gph fl} (2.8) 

called, respectively, the Frechet coderivative and the limiting coderivative of f at x. Note 
that the coderivative (2.8) is called "normal coderivative" and is denoted by DjV in [4] to 
distinguish it from the other limiting coderivatives considered in [4]. Here we do not need to 
consider any other limiting coderivative but (2.8) and also to use coderivative constructions 
for set-valued mappings comprehensively studied in [4]. Observe that 

D'f(x)(y') = {Vf(x)'y'} and resp. D*f(x)(y') = {Vf(x)'y'} 

iff is Fn\chet differentiable and strictly differentiable at x, respectively, where \7 f(x) stands 
for the corresponding derivative of a single-valued mapping. 

Finally in this section, we recall two notions of the so-called "normal compactness" 
for sets and functions, respectively, used in the paper. Both properties are automatically 
fulfilled in finite dimensions; they concern relationships between weak' and strong conver­
gences to 0 in dual spaces and hold for "reasonably good" sets and functions. Since they 
are employed in this paper only in the Asplund space setting, we present their simplified 
definitions equivalent in Asplund spaces to the general ones given in [4]. 

A set !1 is sequentially normally compact (SNC) at x if for any sequences Xk E. x and 
xi; E N(xk; !1) one has 

[xi;~ OJ => [llx/;11---> o] as k---> oo, 

where Xk E. x stands for Xk -> x with Xk E !1, and where w* signifies the weak' topology 
of X'. The SNC condition is automatic when !1 satisfies the so-called "compactly epi­
Lipschitzian" property in the sense of Borwein and Strojwas, particularly when it is convex 
and finite-codimensional with nonempty relative interior; see [1, 4] for more details. 

A function 'P: X -> JR. is sequentially normally epi-compact (SNEC) at a point x with 
lrp(x)l < oo if its epigraph is SNC at (x, rp(x)), which is equivalent (for l.s.c. functions on 
Asplund spaces) to 

[x' "": o] =>llx/;11---> 0 as k---> oo 

for any sequences (xk,xi;, Ak) EX x X' x [O,oo) with Xk E. x, Ak L 0, and x;; E Ak§rp(xk); 
see [4, Corollary 2.39]. This property always holds for locally Lipschitzian functions and 
their appropriate extensions. 

3 Calculus of Frechet Subgradients and Coderivatives 

In this section we collect new exact calculus rules for Frechet subgradients of extended-real­
valued functions on arbitrary Banach spaces. We also present some related calculus results 
for the coderivative associated with the Frechet subdifferential. 

Our first theorem provides a principal difference rule for (lower) Frechet subgradients, 
which can be equivalently formulated as a sum rule for lower subgradients with the usage of 
upper subgradients of one the functions involved. As mentioned, the proof of this result is 
based on the smooth variational description of Frechet subgradients for extended-real-valued 
functions in the general Banach space setting; see Proposition 2.1. 
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Theorem 3.1 (difference and sum rules for Frechet subgradients). Let 'Pi: X--> 1R 
be finite at x fori = 1, 2. The following assertions hold: 

(i) Assume that i'J'P2(x) of 0. Then 

i'J('{Jl- 'P2)(x) c n [i'J<p,(x)- x*] c i'J<p,(x)- i'J'P2(x). 
x•ea.,,(x) 

(ii) Assume that i'J+<p1(x) of 0. Then 

n 

(3.1) 

Proof. To prove (3.1), fix any u* E i'J(<p1 - 'P2)(x) and x* E i'J<p2(x). Using the smooth 
variational description of Proposition 2.1 for the Frechet subgradient x* E i'J<p2(x), we 
find a real-valued function s(·) defined in a neighborhood U of x such that s(·) is Frechet 
differentiable at x satisfying the relations 

s(x) = 'P2(x), 'i7s(x) = x*, and s(x)::; 'P2(x) for x E U. (3.2) 

Picking any e > 0 and applying definition (1.1) to the Frechet subgradient u• E i'J('Pl­
'P2)(x), we find 'f/ > 0 such that 

(u*,x- x)::; 'Pl(x)- 'P2(x)- (<p,(x)- 'P2(x)) + ellx- xll 

::; 'Pl (x) - s(x) - ('Pl (x) - s(x)) + ellx- xll, 

whenever llx- xll < 'fl· Using now (3.2) and Proposition 2.2, we get 

which justifies the difference rule (3.1). 
To prove the sum rule in (ii), it suffices to denote '1/J(x) := -<p1 (x) and to apply the 

difference rule (3.1) to the representation 'Pl + '{J2 = 'P2- '1/J. 6 

By Proposition 2.2 the inclusions in (i) and (ii) of Theorem 3.1 become equalities if one 
of the functions is Frechet differentiable at x. Equalities hold in other (fully nonsmooth) 
cases as well. For example, one can check that for 

'Pl(x) := lxl and '{J2(x) := vlxl. X E JR, 

we have i'J<p1(0) = [-1, 1], i'J<p2(0) = JR, and i'J('Pl- <p2)(0) = IR, i.e, the equality holds in 
(3.1). Observe also that the assumption on i'J'P2(x) of 0 is essential for the fulfillment of 
(3.1). Example: '{Jl(x) := lxl and '{J2(x) := -lxl with x = 0. 

Let us present two consequences of Theorem 3.1. The first one concerns the so-called De­
functions, i.e., differences of convex functions, whose importance has been well recognized 
in optimization theory and applications; see, e.g., [3, 6, 7]. We keep the notation 8 for 
the subdifferential of convex analysis with which both Frechet and limiting subdifferentials 
agree in the case of convex functions. 
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Corollary 3.2 (subgradients of DC-functions). Let <p := 'PI - 'P2 be a DO-function, 

where 'P2 is continuous at x. Then 

B<p(x) = B(<pl- 'P2)(x) c n [B<pl(x)- x*]. 
x'"E0!;'2(X} 

Proof. It is well known from convex analysis that the subdifferential of every convex 
function is nonempty at a point of continuity; see, e.g., [8, Proposition 1.11]. 1::!, 

Observe that the continuity requirement on 'P2 in Corollary 3.2 can be relaxed to the 
significantly weaker one x E ri ( dom 'P2) if X = lRn. This follows from the classical sub dif­
ferentiability result of finite-dimensional convex analysis; see [10, Theorem 23.4]. 

The second corollary of Theorem 3.1 gives a new and useful difference rule for the 
limiting subgradients (2.3) in the the framework of Asplund spaces. 

Corollary 3.3 (difference rule for limiting subgradients). Let X be Asplund, let 'PI 
be l.s.c. around x, and let 'P2 be continuous at x and such that B<p2(x) is nonempty and 

uniformly bounded around this point; all the assumptions on 'P2 are automatic when 'P2 is 
convex and continuous around X. Then 

(3.3) 

Proof. Pick any x* E 8(<p1 - <p2)(x) and, by the representation of basic/limiting subgra­
dients of l.s.c. functions on Asplund spaces from [4, Theorem 2.34], find sequences Xk ---> x 
and xk ,_; x* satisfying <p1(xk)- <p2(xk)---> <p1(x)- <p2(x) and 

(3.4) 

Applying Theorem 3.1(i) in (3.4), we select sequences xik E B<pi(xk) as i = 1, 2 such that 

xk = xjk - x2k for all k E JN. (3.5) 

Since the sets B<p2(x) are uniformly bounded in the dual space to an Asplund space, we 
assume without loss of generality that the sequence { x2k} weak* converges to some x2 E X*. 
The continuity of 'P2 gives <p2(xk) ---> <p2(x), and hence <p1(xk) ---> <p1(x) ask---> oo by the 
above choice of {xk}. By definition of the limiting subdifferential, this immediately implies 
that x2 E 8<p2(x). 

Furthermore, it follows from (3.5) that the sequence { xjk} weak* converges to some 
xj E X*, which must belong to 8<p1 (x) by the discussions above. Passing to the limit in 
(3.5), we conclude that x* E 8<p1(x)- 8<p2(x) and complete the proof. 1::!, 

Remark 3.4 (difference rule for proximal subgradients). Similar considerations al­
low us to establish analogs of Theorem 3.1 and related results presented below for the 
so-called proximal subgradients of <p: X---> lR defined on Banach spaces by: x* E 8p<p(x) if 
only if there are positive numbers u and 1J such that 

(x*, x- x) :::; <p(x)- <p(x) + ullx- xll 2 whenever llx- xll :::; '1· 
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The proximal counterpart of the difference rule (3.1) is formulated as: 

provided that ap<p2(x) # 0. 

Given a single-valued mapping f: X --> Y between Banach spaces, we consider its 
scalarization defined by 

(y',j)(x) := (y',J(x)), X EX, 

for any y' E Y'. The next proposition gives a useful relationship between the Frechet 
coderivative (2.7) of Lipschitzian mappings and Frechet subgradients of their scalarization. 

Proposition 3.5 (scalarization formula). Let f be Lipschitz continuous around x. 

Then one has the equality 

IJ' f(x)(y') = a(y', f)(x) for all y' E Y'. 

Proof. Pick any x' E a(y',f)(x) and employ definition (1.1) of Frechet subgradients. 
Given c: > 0, find 1J > 0 such that 

(x', x- x) :'0 (y', f(x)) - (y', f(x)) + c:llx - xll whenever llx- xll :'0 '1· 

Furthermore, for all x E X we obviously have 

(x',x- x)- (y',f(x) ~ f(x)) :'0 cllx- xll :'0 c:(llx- xll + llf(x)- f(x)ll), 

which implies (x',-y') E N((x,j(x));gphf) and hence x* E D'f(x)(y'). 

To justify the opposite inclusion in the proposition, we assume that f is locally Lips­
chitzian around x with modulus l ::::: 0. Taking arbitrary x* E .8• f(x)(y*) and c: > 0, we 
find 1') > 0 such that 

(x*, x- x)- (y*, f(x)- f(x)) :'0 c:(llx- xll + llf(x)- f(x)ll) :'0 (£ + 1)c:llx- xll 

whenever llx- xll :'0 1). Thus one has for such x that 

(y*, f)(x)- (y*, f)(x)- (x*, x- x)::::: ~(£ + 1)c:llx- xll, 

which yields x' E a(y*, f)(x) and ends the proof of the scalarization formula. 6 

Combining now the results of Theorem 3.1 and Proposition 3.5, we arrive at the differ­
ence rule for Frechet coderivatives of Lipschitzian mappings between Banach spaces. 

Corollary 3.6 (difference rule for Frechet coderivatives). Let fi: X-> Y, i = 1,2, 
be Lipschitz continuous around x. Then 

D*(h- h)(x)(y*) c n [.8* h(x)(y')- x*] for all y' E Y' (3.6) 

provided that .8• h(x)(y') # 0. Furthermore, inclusion (3.6) holds as equality if f2 is Frechet 

differentiable at x. 
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Proof. Since 8(y',/2)(x) = D'h(x)(y') # 0 by the scalarization formula, we have from 
Theorem 3.1 and Proposition 3.5 that 

D*(h- h)(x)(y*) = B(y*, h- h)(x) c n [B(y*, J,)(x)(y*)- x*] 
x•Eii(y• ,h)(x)(y') 

= n [fi* h(x)(y*)- x'], 

which implies (3.6). The equality in (3.6) when h is Frechet differentiable at x follows 
immediately from Propositions 2.2 and 3.5. 6 

Next we establish an exa.ct chain ru.le for Frechet subgradients of generalized composi­
tions given by 

(<p o f)(x) := <p(x, f(x)) (3.7) 

that involve extended-real-valued functions <p: X x Y -> 1R and single-valued mappings 
f: X -> Y between arbitrary Banach spaces. Note that the following theorem and its 
consequences express Frechet (lower) sub gradients of compositions via Frechet upper sub­
gradients of the outer function <pas in (3.7). The proof of this theorem is based, similarly 
to Theorem 3.1, on the smooth variational description of Frechet subgradients from Propo­
sition 2.1. 

Theorem 3.7 (chain rule with generalized compositions). Given (3.7), suppose that 
f is Lipschitz continuous around x and <p is finite at (x, y), where y := f(x). Furthermore, 
we assume that §+<p(x, y) # 0. Then 

n [x*+B(y',f)(x)]. (3.8) 
(x* ,y")E8+~(X,y) 

If in addition <p is F'rechet differentiable at (x, y), then 

8('1' o f)(x) = x' + B(y', f)(x) with (x*, y*) := 'V<p(x, y). (3.9) 

Proof. Take arbitrary subgradients u* E 8('1' o f)(x) and (x*, y*) E §+<p(x, y). Since 
( -x*, -y*) E 8( -<p)(x, y) by definition (2.1), we employ Proposition 2.1 and find a function 
s: U -> JR, which is Frechet differentiable at (x, y) satisfying 

<p(x,y) = s(x,y), 'Vs(x,y) = (x*,y*), <p(x,y) :o; s(x,y) for all (x,y) E U, (3.10) 

where U is a neighborhood of (x, y) in X x Y. Now employing definition (1.1) for the 
Frechet subgradient u* E 8(<po f)(x) and then its smooth variational description in (3.10), 
for any c > 0 find '7 > 0 such that 

(u*, x- x) :'0 <p(x, f(x))- <p(x, f(x)) + c:llx- xll 
:'0 s(x, f(x))- s(x, f(x)) + c:llx- xll 
= (x*, x- x) + (y*, f(x)- f(x)) + o(llx- xlll + llf(x)- f(x)lll + c11x- xll 
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for all llx- xll < 'I· This implies 

(u'- x', x- x)- (y*, f(x)- f(x)) :::; o(llx- xll + llf(x)- /(x)ll) + ellx- xll 

whenever llx- xll <'I· Hence 

. (u*- x', x- x)- (y*, f(x)- f(x)) 
h',!'~~P llx- xll + llf(x)- f(x)ll :::; e whenever e ;:=: 0. 

Since e > is arbitrary, we arrive at the inclusion 

(u'- x*, -y*) E N((x, f(x));gphf), 

which yields, by definition (2.7) and Proposition 3.5, that 

u'- x* ED' f(x)(y') = fi(y', f)(x), 

i.e., u* Ex'+ B(y', f)(x). This justifies the inclusion chain rule (3.8). 
Let us prove the equality chain rule (3.9) provided that <p is Fn§chet differentiable at 

(x, fi). Observe that (3.9) readily implies the inclusion 

fi(<pof)(x) c x'+B(y',f)(x). 

Thus it remains to justify the opposite inclusion in (3.9). We proceed as follows: suppose 
that u' ¢ fi(<p o f)(x) and then show that u' ¢ x' + fi(y', f)(x), which is equivalent to 

u* ¢ x' + D' f(x)(y') (3.11) 

by the scalarization formula of Proposition 3.5. Since u' ¢ fi(<p o f)(x), we have 

I
. . f (<p o f)(x)- (<p o f)(x)- (u', x- x) 

0 lml!l II -11 < . x-x X- X 

This means that there are f' > 0 and a sequence Xk --> x such that Xk of x for all k and that 

<p(xk> f(xk))- <p(x, f(x))- (u', xk- x) <-e. 
· llxk -xll -

(3.12) 

Putting Yk := f(xk), we conclude from (3.12) that 

(u', xk - x) ::=: <p(xk> Yk) - <p(x, fi) + ellxk - xll 

= (V<p(x, Y), (xk- x, Yk- fi)) + o(llxk- xll + IIYk- fill)+ ellxk- xll 

= (x', xk- x) + (y*, Yk- fi) + o(llxk- xll + IIYk- fill)+ ellxk- xll. 

Taking into account that 

llxk- xll ;:>: (1/ £)11Yk- fill for large k E IN 

by the Lipschitz continuity off around x with modulus £, we get 

E £ 
(u' - x', Xk - x) - (y', Yk - fi) ::=: 2llxk - xll + 

2
£ IIYk -fill + o(llxk - xll + IIYk -fill) 

::=: f(llxk- xll + IIYk- fill)+ o(llxk- xll + IIYk- fill), 
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where f:= min {e/2, €/(2£)}. This implies 

( * * -) ( * -) 
I
. U - X , X - X - y , y - y > ~ 
lffiSUp _ £, 

( ) 
gphf c- -) llx- xll + IIY- Yll 

x,y --+ x,y 

which shows that (u* - x*, -y*) ~ N((x, y); gph f) and thus justifies (3.9). 

When 'P = <p(y) in (3.7), we immediately get from Theorem 3.7 the following chain rule 
for usual compositions (<p a f)(x) := <p(f(x)). 

Corollary 3.8 (chain rules with usual compositions). Let f: X --> Y be Lipschitz 
continuous around x, and let 'P: Y --> lR be finite at il := f(x). Then 

a('P 0 f)(x) c n a(y*, f)(x) (3.13) 

y'EB+<p(i}) 

if &+'P(il) # 0. Moreover, (3.13) holds as equality when <p is Frechet differentiable at y. 

Based on the major calculus results of Theorems 3.1 and 3.7, we derive now some other 
useful calculus rules for Frechet subgradients in arbitrary Banach spaces. The next theorem 
gives a general product rule involving Lipschitzian functions. 

Theorem 3.9 (product rule for F'r<khet subgradients). Let the functions 'Pi' X--> 
IR, i = 1,2, be Lipschitz continuous around x. Assume that a(- <p,(x)<pz)(x) # 0. Then 
one has the product rule inclusion 

n (3.14) 

x• EB( -<pt (x)<p2 )(x) 

which holds as equality provided that 'P2 is Frechet differentiable at x. 

Proof. Define f : X --> JR2 and ..P : JR2 --> lR by setting 

f(x) := ('Pl(x),<pz(x)) and ,P(y,,y,) :=y,·yz. 

Then <p1 ·<p2 = ,Pof, and we use the chain rule from Corollary 3.8, which is more convenient to 
write via the coderivative by taking into account the scalarization formula of Proposition 3.5: 

&('1', · 'P2)(x) = fj* f(x)('V..P(f(x)) = D* f(x)('Pz(x), 'PI(x)). (3.15) 

Since f(x) = j,(x)- fz(x) with /J(x) := (<p1(x),O) and fz(x) := (0,-<pz(x)), we derive 
from the difference rule of Corollary 3.6 that 

n (3.16) 

Since gph/J = gph<p1 x {0}, we conclude from the elementary product formula for Frechet 
normals that 

N((x;/J(x));gph/J) = N((x,<p,(x));gph'f',) x IR 
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and similarly for h Therefore 

f5• h(x) ('P2(x), 'Pl (x)) = D*<pl(x) ( 'P2(x)) = a( 'P2(x)<p,) (x), 

fj• h(x)('P2(x), 'Pl(x)) = D*(- 'P2(x))(<p,(x)) =a(- 'I'!(X)'P2)(x), 

and thus the inclusion (3.14) follows from (3.15) and (3.16). 
The equality in (3.14) under .the Fh\chet differentiability of cp2 at x follows from the 

equality in (3.16) under the equivalent Fn\chet differentiability of h at this point due to 
the equality case of Corollary 3.6. 6 

Before proceeding with the quotient rule for Frechet sub gradients, let us present a simple 
reciprocal rule, which always holds as equality being thus of independent interest. 

Proposition 3.10 (reciprocal rule for Frechet subgradients). Let cp: X -> IR be 

locally Lipschitzian around x with <p(x) # 0. Then 

~ - a( -<p)(x) 
8(1/<p) (x) = (cp(x))2 . (3.17) 

Proof. Putting '1/J(x) := 1/x for all x # 0, we have 1/'P = '1{! o cp. Thus Corollary 3.8 and 
Proposition 3.5 ensure the equalities 

a(1/cp)(x) = a(..p o 'P)(x) = a(\7'1/J(<p(x)),<p)(x) = .B*cp(x)(\7'1/J(<p(x)). 

Since \7'1/J(<p(x)) = -1/[(cp(x))2], we have 

~ ~ ( 1 ) ~( 1 ) 1 ~ 
D*<p(x)(\7'1/J(cp(x)) = D*<p(x) - (<p(x))2 = 8 - (<p(x))2<p (x) = (<p(x))28(-<p)(x), 

which justifies the reciprocal rule (3.17). 

Next we derive the quotient rule for Frechet subgradients of locally Lipschitzian functions 
on arbitrary Banach spaces. 

Theorem 3.11 (quotient rule for Frechet subgradients). Let <p;: X-> IR, i = 1,2, 
be Lipschitz continuous around x with cp2(x) # 0. Assume that a('Pl(x)<p2)(x) # 0. Then 
one has the inclusion 

a('Pd'P2) (x) c n 
x• Eii( "'' (x)<p,) (x) 

[a('P2(x)<p,)(x)- x*] 

(<p2(x))2 

which holds as equality if '1'2 is Frechet differentiable at x. 

(3.18) 

Proof. We obviously have the composite representation <pJ/ '1'2 = '1{! o f with f: X -> IR2 

and '1{! : JR2 -> IR defined by 

f(x) := ('Pl(x),<p2(x)) and '1/J(y!,Y2) := YJ/Y2· 

Classical calculus gives us the equality 

_ ( 1 'Pl (x) ) 
\7'1/J(f(x)) = <p2(x)'- (<p2(x))2 · 
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Observe that f = h- h with h(x) := ('Pl(x),O) and fz(x) := (0, -<p2(x)). The assump­
tions made ensure, by the scalarization formula of Proposition 3.5, that 

~. (-l( 1 'Pl(x) ) ~( '1'1 )(-
D h x 'P2(x)' ('!'2(x))2 = 8 'P2(x) x). 

Employing therefore the difference rule from Corollary 3.6 and then the chain rule from 

Corollary 3.8, we get 

where the inclusion holds as equality if <p2 is Frechet differentiable at x. This completes the 
proof of the theorem. 6 

Note that the reciprocal rule of Proposition 3.10 is generally independent from the 
quotient rule of Theorem 3.11, since (3.18) is proved to hold as equality if '1'2 is Frechet 
differentiable at x, while there is no such a restriction in the reciprocal rule (3.17). 

To conclude this section, we derive a useful rule for evaluating Frechet subgradients of 
the minimum function 

(i\<p;)(x):=min{<p;(x)li=1, ... ,n} with <p;:X->IR and n;:o:2 

important in many applications. Denote I(x) := {j E {1, ... ,n}l <pj(x) = (i\<p;)(x)}. 

Proposition 3.12 (Frechet subgradients of minimum functions). We always have 
the incl1tsion 

B(t\<p;)(x) c n B<p1(x). 
jEI(x) 

Proof. Take x* E B(t\<p;)(x) and for any e: > 0 find 'I]> 0 such that 

(x*, x- x) :::; (t\<p;)(x) - (t\'Pi)(x) + e:llx- xll 

whenever llx- xll < 'IJ· For such x and for any j E I(x) we have 

(x*, x- x) :::; (x*, x- x) :::; (t\<pi)(x)- (t\<p;)(x) + e:llx- xll 

= (t\<pi)(x)- 'Pi(x) + e:llx- xll 

:::; 'Pi(x)- 'PJ(x) + e:llx- xll, 

which justifies x* E B<p1(x) and completes the proof of the theorem. 
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4 Necessary Conditions in Nondifferentiable Difference Pro­
gramming 

In this section we apply the calculus results for Fn\chet subgradients established in the pre­
vious section and also known calculus rules for basic subgradients to derive new necessary 
optimality conditions for some classes of problems in nondifferentiable programming. The 
main attention is paid to problems of the so-called difference programming, i.e., to opti­
mization problems whose cost functions are given in the difference form; see the discussions 
and references in Section 1. 

Let us first present simple conditions for unconstrained problems of minimizing difference 
functions cp = cp1 - 'P2 on arbitrary Banach spaces. 

Proposition 4.1 (necessary conditions for minimizing difference functions). Let 

x be a local minimizer of the difference function <p = 'Pl - <p2, where both 'Pi: X -> JR. are 
finite at x. Then one has the inclusion 

(4.1) 

If in addition 'P2 is lower regular at x, then 

(4.2) 

Proof. Inclusion (4.1) immediately follows from the difference rule of Theorem 3.1 by the 
Fermat stationary principle (1.1). The second one (4.2) follows from (4.1) due to the lower 
regularity definition (2.4) and the inclusion Dcp1(x) c acp1(x). .0. 

Note that inclusion (4.2) does not hold as a necessary optimality condition with no 
lower regularity assumption. Indeed, minimizing the difference cp1 - 'P2 with cp,(x);:; 1 and 
<p2(x) = -lxl, we have x = 0 as its global minimizer. In the case Dcp1(0) = 8cp1(0) = {0}, 
Dcp2(0) = 0, and 8cp2(0) = { -1, 1}. Thus (4.1) holds, while (4.2) is not satisfied. 

Simple necessary optimality conditions of Proposition 4.1 have useful consequences for 
the study of the so-called "weak sharp minima," for which necessary optimality condi­
tions were previously obtained via Clarke generalized gradients under restrictive regularity 
assumptions; see, e.g., Burke and Ferris [2] with the references therein. Now we can sig­
nificantly improve previously known results. Given a proper function cp: X -> JR. and a 
nonempty subset fl c X of a Banach space, recall that S c fl is a set of weak sharp minima 

for cp relative to fl c X with modulus a > 0 if 

cp(x) ;:o: cp(y) + adist(x; S) for all x E fl and yES, 

where dist(x; S) stands for the distance function of the set S. 

Corollary 4.2 (necessary conditions for unconstrained weak sharp minima). Let 

S be the set of weak sharp minima for the function <p relative to the whole space X with 
modulus a. Then for every x E S we have 

alB* n N(x; S) c Dcp(x), (4.3) 

15 



where JB* C X' stands for the unit dual ball. If in addition S is normally regular at x, then 

alB* n N(x; S) c 8cp(x). (4.4) 

Proof. By definition we have 

cp(x) ~ cp(y) + adist(x; S) for all x EX and yES. 

Thus every y E S is an optimal solution to the unconstrained problem of minimizing the 
difference function 'lj;(x) := cp(x)- adist(x; S). Employing Theorem 4.1, we get 

aBdist(y; S) c Bcp(y). (4.5) 

It is well known (see, e.g., [4, Corollary 1.96]) that 

Bdist(x; S) = N(x; S) n JB'. 

Substituting it into (4.5), we arrive at (4.3). Inclusion (4.4) in the regularity case follows 
from ( 4.2) in Proposition 4.1 and the fact that the normal regularity of a set agrees with 
the lower regularity of its distance function at any in-set point; see [4, Corollary 1.98]. 6 

Next we consider some constrained problems of nondifferentiable difference program­
ming. To derive necessary conditions for constrained problems, we mainly combine the 
unconstrained results with more developed calculus rules available for basic/limiting nor­
mals and subgradients. 

Let us start with difference problems under general geometric constraints given by 

minimize cp(x) subject to x E fl, (4.6) 

where the cost function cp is represented as cp = 'Pl - 'P2. For convenience we say that cp is 
Frechet decomposable on fl at x E fl if 

B(cp + 6(·; fl))(x) c Bcp(x) + N(x; fl). 

It happens, e.g., when cp is Frechet differentiable at x E fl, while fl is an arbitrary nonempty 
subset of a Banach space. In the first parts of the following theorem and· its corollary we 
impose the decomposition assumption in the general setting of Banach spaces, while the 
second parts are justified without this assumption via limiting normals and subgradients in 
the framework of Asplund spaces. 

Theorem 4.3 (necessary conditions for difference problems with geometric con­
straints). Let x be a local solution of problem (4.6) in a Banach space X, where <p is 

represented as 'Pl - 'P2 with 'Pi : X -> IR finite at x. The following assertions hold: 

(i) Assume that 'Pl is Frechet decomposable on fl. Then one has 

(4.7) 
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(ii) Suppose that X is Asplund, that \01 is l.s.c. around x, and that !1 is locally closed 
around this point. Assume in addition that either \OI is SNEC at x or !1 is SNC at x, and 
that the qualification condition 

800\0t(x) n (- N(x; !1)) = {0}. (4.8) 

is satisfied; all the assumptions o.n \01 hold automatically when 1"1 is Lipschitz continuous 
around x. Then one ha.s 

(4.9) 

Proof. The problem ( 4.6) under consideration can obviously be reformulated in the un­
constrained difference form: 

minimize [1"1(x)+o(x;!1)] -102(x) subject to xE!1. (4.10) 

By Proposition 4.1 we have 

for a given local minimizer x to (4.6). This directly implies the necessary condition (4.7) 
provided that \01 is decomposable on n. 

To justify ( 4.9), observe that 

8(10t + o(·; !1))(x) c 8(101 + o(·; n))(x) c 8101(x) + N(x; !1), 

where the latter inclusion holds due to the sum rule for basic subgradients from [4, Theo­
rem 3.36] under the assumptions made in (ii). If l"l is locally Lipschitzian around x, then 
it is SNEC by [4, Corollary 1.69] and the qua.iification condition ( 4.8) is satisfied due to 
800101(x) = {0} by [4, Corollary 1.81]. This ends the proof of the theorem. 6 

As a useful corollary of Theorem 4.3, we get the following necessary conditions for weak 
sharp minima under general geometric constraints. 

Corollary 4.4 (necessary conditions for weak sharp minima under geometric 
constraints). Let S be the set of weak sharp minima for I": X -> IR relative to !1 c X 
with modulus a > 0. Then one has: 

(i) Given x E S, assume that I" is Frechet decomposable on !1. Then 

alB* n N(x; S) c B10(x) + N(x; !1). 

(ii) Assume that X is Asplund, that I" is l.s.c. around x, and that !1 is locally closed 

around this point. Then 

alB* n N(x; S) c 8\0(X) + N(x; !1) 

provided that the qualification condition 

80010(x) n (- N(x;!1)) = {0} 
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holds and that either <p is SNEC at x or !1 is SNC at this point; all the assumptions on 'P 

are automatic if <p is locally Lipschitzian around x. Furthermore, we have 

cv.IB* n N(x; S) c D<p(x) + N(x; !1) 

if in addition S is normally regular at x. 

Proof. This follows from Theorem 4.3 by reducing weak sharp minima to constrained 
minimization of difference functions; cf. the proof of Corollary 4.2. 6 

Finally in this section, we consider constrained problems of difference programming, 
where constraints are given in some general operator form via single-valued mappings be­
tween infinite-dimensional spaces. They particularly include problems with standard func­
tional constraints defined by equalities and inequalities with (generally nonsmooth) real­
valued functions. Note that the problems under consideration may also include geometric 
constraints as in Theorem 4.3, while the results obtained therein and in what follows are 
generally independent for common classes of constrained problems. 

The class of difference programming problems with operator constraints considered be­
low is given by: 

minimize 'Pl(X)- 'P2(x) subject to X E r 1(e) n fl, (4.11) 

where f: X ---> Y, !1 c X, e c Y, and the inverse imagefpreimage of e under f is 

r 1(e) := {x EX[ f(x) E e}. 

Note that the classical case of operator constraints corresponds to the case of e = {0} in 
(4.11) with a mapping/operator f having infinite-dimensional values. 

We present two independent theorems concerning necessary optimality conditions for 
problems ( 4.11). The first one requires the existence of a surjective derivative of f at the 
point in question, while involves general spaces in model (4.11). The second theorem deals 
with mappings between Asplund spaces with no differentiability assumptions on f. 

Theorem 4.5 (necessary conditions for difference programming with surjective 
operator constraints). Let x be a local solution to problem ( 4.11) in the Banach space 

setting, where 'Pi: X ---> JR., i = 1, 2, are finite at x, and where f: X ---> Y is Frechet 
differentiable at x with the surjective derivative V' f(x). The following assertions hold: 

(i) Assume that 'Pl is Frechet differentiable at x, that !1 = X, and that either f is 
strictly differentiable at x or dim Y < oo. Then 

8'P2(x) c V'<p1(x) + V' f(x)* N(f(x); e). (4.12) 

(ii) Assume that X is Asplund, that 'Pl is l.s.c. around x, that !1 and e are locally closed 

around x and f(x), respectively, and that f is strictly differentiable at x. Furthermore, we 
suppose the the qualification condition 

{ 
[~i E ~00 <p1~x), x2 E N;x~ !1)~ x3 *E V' f(x)* N(f(x); e), 
x1 + X2 + x3 = 0] ==? X1 - X2 = X3 = 0 

(4.13) 
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is satisfied and that either both !1 and 8 are SNC at x and f(x), respectively, or one of 

these sets has the SNC property while 'P1 is SNEC at x; the latter assumption on 'P1 is 

automatic when 'P1 is locally Lipschitzian around x in which case the qualification condition 

( 4.13) reduces to 

'l f(x)* N(f(x); 8) n (- N(x; !1)) = {O}. (4.14) 

Then one has the inclusion 

8'P2(x) c IJ<p1(x) + 'l f(x)* N(f(x); 8) + N(x; !1). (4.15) 

Proof. To justify (i), we employ assertion (i) of Theorem 4.3 with the geometric constraint 
given by x E f-1(8). Using then the calculus rule for computing Fn\chet normals to inverse 
images from [4, Corollary 1.15], we get 

under the assumptions made in (i). Thus (4.12) follows from (4.7) in this setting. 
To justify (ii) with !1 f X, we assume that X is Asplund (Y may be an arbitrary Banach 

space) and use further calculus for basic normals and for the sequential normal compactness 
property available in the Asplund space framework. In this case the geometric constraint in 
(4.6) is written in the intersection form: x E f-1(8) n !1. By assertion (ii) of Theorem 4.3 
one has the necessary optimality condition in (4.11) given by 

when the qualification condition 

is satisfied and when either 'P1 is SNEC at x or r 1(8) n!1 is SNC at this point. Employing 
the intersection rule from [4, Corollary 3.5], we get 

provided the local closedness of f-1 ( 8) and !1 around x, the qualification condition 

N(x;r1(8))n ( -N(x;!1)) = {O}, ( 4.16) 

and that either j-1(8) or !1 is SNC at x. Moreover, the intersection r 1(8) n !1 is SNC 

at x if both of these sets are SNC at this point under the fulfillment of the qualification 
condition (4.16); see [4, Corollary 3.81]. 

Furthermore, by [4, Theorem 1.17] we have the equality representation of basic normals 

N(x; r 1(8)) = 'J f(x)* N(f(x); 8) (4.17) 

to inverse images of arbitrary sets in Banach spaces under strictly differentiable mappings 
with surjective derivatives. Observe also that the SNC property of f-1(8) at xis equivalent, 
under the surjectivity of 'J f(x), to the SNC property of 8 at f(x); see [4, Theorem 1.22]. 
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Combining the above calculus results, we arrive at the necessary optimality condition 
(4.15) under the assumptions made in (ii). If 'PI is Lipschitz continuous around x, then 
it is SNEC at this point with o""<p1(x) = {0} due to the facts mentioned in the proof of 
Theorem 4.3(ii). Thus the qualification condition (4.13) reduces to (4.14) in this case, which 
completes the proof of the theorem. 6. 

The last result of this paper 'establishes a general necessary optimality condition for 
problem ( 4.11) with operator and geometric constraints without any differentiability (and 
even more-surjective derivative) assumptions on f. This is done in the setting when both 
spaces X and Y are Asplund allowing us to employ comprehensive generalized differential 
and SNC calculi from [4, Chapter 3]. In what follow we use the basic/limiting coderivative 
(2.8) as a proper extension of the adjoint derivative V' f(x)'y' for nonsmooth operators. 
Note the composite notation 

D' f(x) o A:= { D' f(x)(y')l y' E A}. 

Theorem 4.6 (necessary conditions for difference programming with nondiffer­
entiable operator constraints). Let x be a local solution to problem (4.11), where both 
spaces X andY are Asplund, where 'PI: X --> lR is l.s.c. around x while '1'2: X --> lR is 
finite at this point, where f: X __, Y is Lipschitz continuous around x, and where n and e 
is locally closed at x and f(x), respectively. Then one has 

B<p2(x) c o<p1(x) + D' f(x) o N(f(x); e)+ N(x; n) 

provided the fulfillment of the qualification conditions 

{ 
[xi E 8""<p1(x), x2 E N(x; D), Xg ED' f(x) o N(f(x); e), 
xi+ x2 + xj = 0] ==> xi= x2 = xj = 0, 

N(f(x); e) n ker D* f(x) = {0}, (4.18) 

and that either both n and e are SNC at x and f(x), respectively, or one of these sets has 
the SNC property while 'PI is SNEC at x. 

Proof. It follows the same pattern as the above proof of Theorem 4.5(ii) with the replace­
ment of the equality ( 4.17) by the inclusion 

N(x; r 1(e)) c D* f(x) o N(f(x); e), 

which holds under the fulfillment of the qualification condition (4.18); see [4, Corollary 3.9]. 
Furthermore, [4, Theorem 3.84] ensures the SNC property of the inverse image f-1(e) at 
x provided that f is locally Lipschitzian around x, e is SNC at f(x), and the qualification 
condition (4.18) holds. This completes the proof of the theorem. 6. 

Remark 4.7 (necessary conditions for difference programming with equilibrium 
constraints). Employing generalized differential and SNC calculi developed in [4, Chap­
ter 3], we can derive necessary optimality conditions for problems of difference programming 
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with other types of constraints similarly to optimization problems with standard cost func­
tions considered by Mordukhovich [5, Chapter 5]. In particular, we can incorporate more 
general operator constrained of the type 

x E r'(e) := {x EXI F(x)ne,< 0} 

described by set-valued mappings F: X =I Y. More interesting, the so-called equilibrium 
constraints given by solution maps to "generalized equations" 

S(x):={yEYiOEg(x,y)+Q(x,y)} with g:X->Y and Q:X=IY 

can be taken into account. The latter includes parametric sets of solutions to variational 
and hemivariational inequalities, complementarity problems, KKT systems, etc.; see [5] for 
more details, references, and applications. 
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