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FREDHOLM AND INVERTIBLE «-TUPLES OF OPERATORS.
THE DEFORMATION PROBLEM

BY

RAUL E. CURTO1

Abstract. Using J. L. Taylor's definition of joint spectrum, we study Fredholm
and invertible «-tuples of operators on a Hilbert space. We give the foundations for
a "several variables" theory, including a natural generalization of Atkinson's
theorem and an index which well behaves. We obtain a characterization of joint
invertibility in terms of a single operator and study the main examples at length.
We then consider the deformation problem and solve it for the class of almost
doubly commuting Fredholm pairs with a semi-Fredholm coordinate.

1. Introduction.
1. Let T be a (bounded linear) operator on a Banach space %. T is said to be

invertible if there exists an operator S on % such that TS = ST = 1%, the identity
operator on 9C. By the Open Mapping Theorem, this is equivalent to ker T = (0)
and R(T) = range of T = %. The last formulation does not rely upon the
existence of an inverse for T, but rather on the action of the operator T. When T is
replaced by an «-tuple of commuting operators, several definitions of nonsingular-
ity exist. J. L. Taylor [19] has obtained one which reflects the actions of the
operators, by considering the Koszul complex associated with the «-tuple.

2. In this paper we develop a general "several variables" theory on the basis of
Taylor's work and study commuting and almost commuting (= commuting mod-
ulo the compacts) «-tuples of operators on a Hilbert space %. We obtain a
characterization of joint invertibility in terms of the invertibility of a single
operator, which is essential for our approach. From that we get a number of
corollaries which generalize nicely the known elementary results in "one variable".
At the same time, the referred characterization allows us to define a continuous,
invariant under compact perturbations, integer-valued index on the class of Fred-
holm «-tuples (those almost commuting «-tuples which are invertible in the Calkin
algebra). This index extends the classical one for Fredholm operators. We prove
that an almost commuting «-tuple of essentially normal operators with all commu-
tators in trace class has index zero (« > 2) and that a natural generalization of
Atkinson's theorem holds for «-tuples.
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130 R. E. CURTO

3. It is well known that the invertible operators on a Hilbert space % form a
path-connected set. The analogous question for «-tuples has been studied in [7].
Also, index is the only invariant for the arcwise components of the class of
Fredholm operators. The corresponding problem for «-tuples is called the deforma-
tion problem. Since our index is continuous, it is certainly an invariant for the
path-components of the class of Fredholm «-tuples. In [9], R. G. Douglas has
shown that indeed index is the only invariant in the class of essentially normal
«-tuples. In the second part of this paper we prove that index is the only invariant
for the path-components of the class of almost doubly commuting Fredholm pairs
with a semi-Fredholm coordinate. In particular, we show that on H2(Sl X Sx), the
pair (Wx, W^ can be path-connected with (W\*, W%) in the Fredholm class, where
W¡ is the operator of multiplication by the coordinate function z, (i = 1, 2).

4. The organization of the paper, intended to be expository on the subject, is as
follows. Part I is devoted to the study of the basic properties of Fredholm and
invertible «-tuples. It comprises §§2-10. Part II deals with the deformation prob-
lem and open questions. It includes §§11-16.

In §2 we give a brief summary of notation, the Koszul complex and Taylor's
definition and main results. We also include some additional facts on the Koszul
complex and obtain a matrix representation for an «-tuple. We devote §3 to state
and prove the said characterization of invertibility and to deduce a number of
related results. We reserve §4 to study the main examples, multiplication by the
coordinates z¡ on both H2(S2n~x) and H2(SX X • • • XS1). In §5 a couple of
propositions concerning algebraic manipulations of coordinates are obtained. In §6
we give a natural generalization of the classical theorem of Atkinson, index is
presented in §7, along with the proofs of continuity, invariance under compact
perturbations and ontoness. An alternative definition, using the Euler characteristic
for a chain complex, is also given there. In §8 we calculate indices for the «-tuples
in §4 and apply them to find their spectra. We give in §9 a number of propositions
that enable us to compute indices of «-tuples related in different ways. We
conclude Part I with the theorem on essentially normal «-tuples with all commuta-
tors in trace class, done in §10.

Part II begins with a section on general facts on path-connectedness of Fredholm
«-tuples. We then give in §12 a detailed proof for the essentially normal case,
following the outline in [9]. In §13 we show that Tz = (Tz¡, . . . , Tz) on H2(S2n~x)
can be path-connected to W = (Wx, . . . , Wn) on H2(SX X • •"• XS1) (to be
precise, to a copy of W on H2(S2n~1)). This result is central to our proof of the
deformation problem for the class of almost doubly commuting Fredholm pairs
with a semi-Fredholm coordinate, which we give in §14. In §15 we state and prove
some additional related results. Finally, §16 is devoted to the concluding remarks
and open problems.

I. Fredholm and invertible «-tuples
2. The joint spectrum.
1. Throughout this paper, % will denote a (complex) Hilbert space, £.(%) the

algebra of (bounded linear) operators on %, %(%) the ideal of compact operators
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«-tuples of operators 131

and S(9C) the Calkin algebra £(%)/%(%), with corresponding Calkin map it:
£(%) -» S(3C). We shall agree to denote the elements of £(%) by capital letters
and those of S(SC) by the corresponding small ones; for example, if A and a are in
the context, A will denote an operator, a an element of S(9C) and ir(A) = a.
r/2(52n_1) will denote the Hilbert space of square summable boundary values of
holomorphic functions on the interior of the unit ball B2" in C, while
H2(Sl X • • • XS1) will be the space of square summable boundary values of
holomorphic functions on the interior of the polydisc of multiradius 1. There are
natural bases for these spaces, namely,

ek = ckzk,       k E Z" , zk = *,*' • . . . •!>,

V2t7"   V K- ¿-i

for H2(S2n~x) andfk = zk/y¡(2ir)n , k E Z"+, for H2(SX X • • • XSX). We shall
denote by TV, W¡ (i = 1, . . . , «) the operators of multiphcation by the coordinate
z, on H2(S2"~X) and H2(SX x • • • XS1), respectively. Thus, Tzek = (ck/c^e^,
and ^/A = .&», where *« - (kx, . . . , k, + 1, . . . , kn).

2. Let E" be the exterior algebra on « generators, that is, E" is the complex
algebra with identity e generated by indeterminates ex, . . . ,en such that e, A e, =
-e, A e„ for all i, j, where A denotes multiphcation. E" is graded, E" =
© "—. 3?>   with   Ek A £," C £*%,.   The   elements   e,.  A • • ■■ A^,   1 < jx
<   ■   ■       <jk<n forrrl a basis for ^/c" (* > °). while -^O   = Ce and £'*   = (°) wnen
k > n, k < 0. Also ¿^ = C(ex A - • • A^„)- Moreover, dim Ek = (nk), so that, as a
vector space over C, Ek is isomorphic to C(*\ For 9C a Banach space and
ax, . . . , an a commuting family of (bounded linear) operators on 9C, we consider
Ek(%) = Ek 0C % (notice that, since Ek is a finite dimensional vector space, all
norms on Ek(%) are equivalent) and define d^h E¿(%) -* Ek_x(%) by

k
dkn\x 0 eh A • • • AeA) = S (-l)í+1^ ® eA A • • • A^ A » A • A«A

;=1

when A: > 0 (here * means deletion), and dk(n) = 0 when k < 0, k > n.
A straightforward computation shows that d¿n) ° d$x = 0 for all k, so that

{ü^C^C), d£n)}kez is a chain complex, called the Koszul complex for a =
(ax, . . ., a„) and denoted E(%, a) (cf. [19]).

3. We now explain a recursive method to obtain the d£nr>s. We split the basis of
Ek into

Bx = {eJt A • • • AeA: 1 < 7, < • • • <À < " - 1}

and

B2 = {% A ' • ' AeA_, A e„: 1 < jx < ■ ■ ■ <jk_x < « - 1}    for k > 1, n > 1.

We observe that Ek~x is precisely the subspace of Ek generated by Bx and that a
natural isomorphism can be established between EkZ\ and the subspace of Ek
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132 R. E. CURTO

generated by B2. Ek can then be identified in a natural way with Ek   x
(k > 1, « > 1). It is not hard to see that dj¿n) takes the matrix form:

pn-

4n) = 4-')     (-l)*+1diag(aB)

o 4"-1" («> i,k> i),

where diag(a„) is meant to be a diagonal matrix with constant diagonal entry an. It
will often happen that the a,'s belong to an algebra with involution *; in that case
we define â to be

dx

dt
E £(% 0 C2""),

where d¡ = df"', d* is the adjoint matrix of d¡ in the obvious way and all entries not
explicitly described are zeros. For instance,

(ax,a2)' =
a2\

We notice that â is invertible if and only if d^dk + dk+xdk*+x is invertible (all A:).
Furthermore, (ax, . . . , a„)" is, up to permutations of rows and columns,
((ax, . . . , an_x)~, diag(a„))". Finally, (1, 0, ..., 0)" = l^cac2""'» so that ^s "-tuple
deserves to be called the identity «-tuple. We shall often denote it by 1.

In [21], Vasilescu gives another way of assigning a matrix to a commuting «-tuple
of operators on a Hilbert space which turns out to be selfadjoint, acting on the
direct sum of 2" copies of the space. For our purposes, however, our construction
will be more advantageous, especially when studying the index of an almost
commuting «-tuple of operators, which will be defined in terms of the index of the
corresponding \

4. We can now give the basic definitions (cf. [19]).
Definition 2.1. Let a = (a,, . . . , a„) be a commuting «-tuple of operators on a

Banach space %. We define a to be invertible in case its associated Koszul
complex E(%, a) is exact, that is, ker dk(n) = ran 4+i f°r au &• The spectrum
Sp(a, %) is the set of «-tuples X of scalars such that a — X = (a, — X,, . . ., an —
\) is not an invertible «-tuple. In [19], J. L. Taylor showed that, if % ¥= (0), then
Sp(a, %) is a nonempty, compact subset of the polydisc of multiradius r(a) =
(r(ax), . . ., r(an)), where r(a¡) is the spectral norm of a¡ (see also [21] for a different
proof). Moreover, if s: {I, . . . ,j) -> [\, . . . , n) is an injection, s*a =
(ai(1), . . . , as(J) and s*z = (zi(1), . . . , z^), then Sp(s*a, %) = s* Sp(a, %). In
particular, any permutation of an invertible «-tuple is invertible.

Taylor also gave the following criterion for invertibility.

Proposition 2.2. Let a be as before and % be some complex algebra containing
the a/s in its center. If there exist bx, . . ., b„ E ® such that 2"_i a,b, = 1, then a is
invertible.
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«-tuples of operators 133

The preceding sufficient condition actually provides another way of defining
invertibility. To be precise, we say that a is invertible with respect to an algebra ©
containing the a,'s in its center if one can find bx, . . ., bn E % satisfying 2"_, a¡b¡
= 1. The spectrum so obtained is denoted by Sp$(a). Proposition 2.2 then says that
Sp(a, %) c Sp^(a).

If we denote by &' the commutant of the algebra & and by (a) the Banach
algebra generated by the a/s, it follows that Sp(a, %) c Sp(aV(a) c Sp(o).(a) c
Sp(a)(a).

There are easy examples of proper inclusion for all but the first containment,
which can also be proper. Taylor gave in [19] an example using a 5-tuple. In a
written communication to R. G. Douglas, however, he mentioned the fact that
(Wx, Wj) on H2(D X D) (W¡ standing for multiphcation by z,. (/ = 1, 2)) is an
example where proper inclusion also holds.

We now proceed to state the functional calculus.

Proposition 2.3 (Theorem 4.8 in [20]). Let a = (ax, . . . , an) be a commuting
n-tuple in £-(%), U be a domain containing Sp(a, %) and/,, . .. ,fm be holomorphic
on U. Letf: U ̂ > Cm be defined by f(z) = (fx(z), . . . ,fm(z)) andfia) be the m-tuple
Ux(a), . . . ,fm(a)). Then Sp(f(a), %) = f(Sp(a, %)).

3. Fredholm and invertible «-tuples. An equivalence.
1. Let % be a Hilbert space, [nk}keZ be a sequence of nonnegative numbers

with nk = 0 for k < 0, %k = % 0 O and Dk E t(%k, %k_x) such that DkDk+x
is compact for all k. We consider the system

^*+i        ok ot_, £>2        D,

and the complex
dk+\ _    dk _        <4-i d2        </,

'■--  ^>%t-+%c-t^> ••■• -+%-*%-*Q, (d)
where a* = 2.(30 0 C* (nk copies of the Calkin algebra) and dk is the matrix
associated to Dk in the canonical way (i.e., the entries of dk are the projections onto
â(3C) of the entries of Dk).

If A = (Ai, . . . , A„) is an almost commuting «-tuple of operators on % (i.e.,
[A¡, Aj] = A¡Aj — AjA¡ E %(%) for all i,j), the Koszul system D(A) is the one we
get by taking nk = ("k) and

k
Dk(x 0 eJt A • • • AeÁ) = 2 (-1)'+'V ® eJt A • • • A^ At" AeA,

i = i
as in §2.2. Although DkDk+i need not be zero this time, the compactness of the
commutators forces it to be compact.

Definition 3.1. A system (D) is said to be Fredholm if the associated complex
(d) is exact (that is, ker dk = ran dk+x, for all k).

Definition 3.2. An almost commuting «-tuple A = (Ax, . . ., An) is Fredholm (in
symbols A E W) if the associated Koszul system is Fredholm, i.e., if a =
(ax, . . . , an) is invertible.
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134 R. E. CURTO

Definitions 3.3. The spectrum Sp(A) of a commuting «-tuple A is Sp(A, %).
The essential spectrum Spe(^4) of an almost commuting «-tuple A is Sp(a, â(9C)).

Remark. Although we have not made any explicit reference to dimension(9C),
we shall always understand it is infinite in case the word compact is in the context.

2. The following proposition is a key result for our work.

Proposition 3.4. Let $ be any W*-algebra or &(SC) (or %), 0 < nk E Z, nk = 0
for k < 0, %k = <& 0 C and dk E £(%k, 9>k-X) be an nk_x by nk matrix over %
(or dk E £(%k, %k_x))  with  dkdk+x = 0 for all k.   Then  the  complex  •••.-»

dk
%k -» $*_! -+ • • '   is exact (at every stage) if and only if lk = d*dk + dk+xdk+x is
invertible (all k). (Here d* is the matrix adjoint of dk.)

Corollary 3.5. An almost commuting (respectively commuting) n-tuple A =
(Ax, . . . , An) is Fredholm (respectively invertible) if and only if Lk = D*Dk +
Dk+xDk+x is Fredholm (respectively invertible) for all k, where Dk =
Dk(Ax, . . . , An).

Proof. ir(Lk) = lk.

Corollary 3.6. Let A = (Ax, . . . , An) be an almost commuting (resp. commuting)
n-tuple of operators on %. If A E £F (resp. A is invertible), so are 27—i A*A. and
2,_[ AjA¡ .

Proof. 27_j A?At = D*Dn and Lni.x AtA? = DXD*. But Ln = D*Dn and L0 =
D\D\-

The statement in parentheses in Corollary 3.6 has been proved by Vasilescu in
[21].

Proof of the proposition. (Only if) Since ^>_x = 0, we have d0 = 0. By
exactness, dx is onto. Hence dxdf is invertible, or l0 is invertible. Let us now assume
that ( is invertible for ally < k and prove that so is lk+x. We first need a direct sum
decomposition of *i8>k + x into ker dk+x + ran dk+x. Clearly ker dk+x n ran dk+x = 0.
If b E "$* + ,, then dk+xb E <$>k = ran lk, so that there exists c E %k such that
dk+ib = lkc = dtdkc + dk+xdZ+xc. Then d*+xdk+xb = d*+xdk+xd*+xc, because
dkdk+x = 0. Thus b - rf*+1c E ker dk*+xdk + x = ker dk+x, so that b E ker dk + x +
ran¿*+1.

Once we have obtained such a decomposition, we can prove that lk+x is onto
(that is, invertible, being selfadjoint). Given b E 9>k+x, there exist c EkeTdk+x
and d E ran dk+i such that b = c + d^+xd. (Notice that since lk_x is invertible,
<3ok = ker dk + ran d£ and djk*+xdk* = 0, so that d can be chosen in ker dk =
ran<4 + 1.)

Since c E ker dk+x, exactness implies there is e in ®t+2 such that c = dk+2e.
Consequently,

b = dk+2e + d*+xd. (1)
But d = <4+I/for some /in <$>k+x. Moreover, by polar decomposition, ran dk+2 E
tan(dk+2d^+2)x/2, so that

dk+1e = (dk+2d*k+2)x/2g   for some g in ^+1. (2)
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By the direct sum decomposition for %k + x, g = gx + dk+xg2 with gx E ker dk+x
and g2 E %k. But then there is « G <$>k+2'- £1 = dk+2h E ran dk+2 c
ran(dk+2dk*+2)l/2, so thatg! = (dk+2d¡^+2)x/2m for some m E ^>k+x. Thus,

S = (dk+2dt+2)l/2m + t$+lg2. (3)

Combining (1), (2) and (3) we get: b = dk+2e + d£+xd = (dk+2d^+2)x/2g +
dk+xdk+J = dk+2d^+2m + (dk+2dk*+2)x/2dk*+ig2 + dí+xdk+xf = dk+2d*+2m +
dk+A+if, since (4+2*4*+2K*+i = 0 and therefore (dk+2d^+2)x/2d^+i = 0.

To complete the proof, we observe that m can be chosen in ker dk+x and / in
ran âgV,, Thus lk+x(m + f) = d£+,</*+,/ + dk+2d^+2m = b, as desired.

(If) Assume that dkb = 0. Then lkb = dk+xd¡^+xb. Since lk is invertible, b =
¡kXdk+xdk+xb. Observe that lk and dk+xdk*+x commute. Therefore b = dk+xdk*+xlk~xb
Evandk+X. Hence ker dk Erandk+X. The other inclusion follows from dkdk+x
= 0.

Remark. Although the preceding proof made no distinction between a W*-alge-
bra or S(3C) and a Hilbert space DC, it can actually be simplified in the latter case
(for instance, the direct sum decomposition needs no proof and is orthogonal, see
[7]).

3. We now derive a few more corollaries.

Corollary 3.7. An almost doubly commuting (resp. doubly commuting) n-tuple
A = (Ax, . . ., An) (i.e., [A¡, Aj*] is also compact (resp. zero) for all i =£j) is Fredholm
(resp. invertible) if and only if 2"_] fA¡ is Fredholm (resp. invertible) for every
function f: (1, ...,«} -» (0, 1}, where

¡A* A,    /(/)=0,
A'   [a,a?,  /co-i.

Proof. A direct calculation shows that in this case lk = dk*dk + dk+xd£+x is a
block diagonal matrix of order (nk) whose diagonal entries are precisely the (K)
different combinations 2"_, fA„ for /: {1.»} -» {0, 1} with #{/: /(/") = 0}
= k.

Corollary 3.8. An almost doubly commuting (resp. doubly commuting) n-tuple
A = (Ax, . . . , An) of essentially hyponormal (resp. hyponormal) operators (i.e., a*a¡
> a¡a* (resp. A*A¡ > A¡A*)for all i = 1, . . ., «) is Fredholm (resp. invertible) if and
only l/2*»i A¡A* is Fredholm (resp. invertible).

Proof. 2?_, 'a, > 2?_, atf (resp. 2?_, fAt > 2"_, AtA*) for all/: {1, . . . , n)
-» {0, 1}. Now use Corollary 3.7.

Corollary 3.9. If the A/s are essentially normal (resp. normal) and they almost
commute (resp. commute), then A = (Ax, . . ., An) is Fredholm (resp. invertible) if
and only if 2"_x A*A¡ is Fredholm (resp. invertible).

Corollary 3.9 says that for a commuting «-tuple of elements of £(%) or 2(3C),
the Koszul complex is exact iff it is exact at any stage, a natural generalization of a
well-known "one variable" fact.
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Corollary 3.10. Let A = (Ax, . . . ,An) be an essentially normal (resp. normal)
n-tuple and 'Dit be the maximal ideal space of the C*-algebra generated by
ax, . . . ,a„ (resp. Ax, . . . , A„). Then Spe(A) = 91L (resp. Sp(A) = 911), when <D\l is
regarded as a subset of C" under the homeomorphism <f> —» (<Kai)> ■ • • > <t>(an)) (resP-

<¡>-*(^(Ax),...,<KAn))).

Proof. By the preceding corollary, A is Fredholm iff 2"_x A*A¡ is Fredholm.
Let % be the C*-algebra generated by ax, ... , a„. Then ® =* C(9!t). Therefore,

n

À E Spe(A) «=> A - X E $<=> 2 (A,i- \)*(Ai - \) e 9
i = i

«* 2 {< - \)(a, - \) is invertible
i = i

**4 2 (a,* - \)U - \)l # 0 for all <i> E 911
\/=i /

n

** 2 k< - M2 > 0 for all z G 91L «» a ? 91L.
,=i

The statement in parentheses follows in the same way.
4. The following theorem gives a precise relation between invertibility for an

«-tuple a and for its associated â (see §2.3).

Theorem 1. Let a = (ax, . . . , an) be a commuting n-tuple of elements of a
W*-algebra $ (or â(3C)) acting on % or % (or on â(DC)). Then a is invertible if
and only if â is invertible.

Proof. It is well known that â is invertible iff so are â*â and M*. An easy
computation shows that â*â is a block diagonal matrix whose diagonal entries are
the lk's for odd k's (recall that lk = d£dk + dk+xdj*+x). Similarly ââ* contains those
lks with even k. The theorem now follows from Proposition 3.4.

We immediately get

Corollary 3.11. An almost commuting (resp. commuting) n-tuple A =
(A ],..., An) of operators on % is Fredholm (resp. invertible) iff so is A E
£,(% 0C2n~x).

Corollary 3.12. Let A be a commuting n-tuple of operators on DC. Then
Sp(A, X) = SpC¿, £(30).

Proof. This corollary states that these two notions of invertibility for A (when
the ^4,'s act on % and when they multiply on the left on £■(%)) are actually the
same. It follows easily from Theorem 1 and the fact that it is true for singletons.

Corollary 3.13. Let % be a C*-subalgebra of £(%) (resp. â(9C)) and a =
(ax, . . . , a„) be a commuting n-tuple of elements of &. Then Sp(a, %) c
Sp(a, £(%)) (resp. Sp(a, %) E Sp(a, S(DC))). Consequently, if % and 6 are W*-al-
gebras containing the a's, then Sp(a, 6) = Sp(a, %) (spectral permanence for W*-
algebras).
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Proof. Assume that X $ Sp(a, £(%)), i.e., a - X is invertible (acting on £(%)).
By Proposition 3.4, lk = d¿dk + dk+xd^+x is invertible (in Af"ft)(£(DC))) for all k. By
spectral permanence, lk is then invertible in Ai(n)(®) for all k. A look at the "if"
part of the proof of Proposition 3.4 shows that E(%, a — X) is exact, or X E
Sp(a, % ). The statement in parentheses follows in the same way. The rest follows
immediately from Theorem 1.

Corollary 3.14. Let A = (Ax, . . . , An) be a Fredholm (resp. invertible) n-tuple,
<¡>: {I, . . ., n) ^ {I, *} be a function and$LA¡) = Af®. Assume that W^A,), <p(Aj)] is
compact (resp. zero) for all i,j. Then <f>(A) = (<j>(Ax), . . . , 4>(An)) is Fredholm (resp.
invertible). Consequently, Spe(<f>L4), %) = {<Ka): X E Spe(A, %)} (Sp(<p(A), %) =
{<KX): X E Sp(A, %)}).

Proof. We begin with the following observation: Let a = (ax, . . ., a„) be an
«-tuple (not necessarily commuting) andp E S„ be a permutation. Letp*<z denote
the «-tuple (apW, . . ., ap^) and dk, c% be the corresponding Koszul boundary
maps. We can form

d = d* and   dp =
d\

dí d%

as in the commuting case. Then there exist unitaries U, V: % 0 C2"   -» % 0 C2"
such that d= UtPv.

For, it is known that there exist unitaries Uk E £(% 0 Ca)) such that Ukd£+X =
dk + iUk+x(see [19]). Then let

V =
Ux*

u* and    U =
Vo

U,

We also observe that â* is, up to permutations of rows and columns,
(a*, -a2, . . . , -an)~. A combination of the preceding facts gives the desired conclu-
sion.

Corollary 3.15. Let A = (Ax, A2) be a doubly commuting pair. If A is invertible,
then ker A, _L ker A 2.

Proof. Assume that Axx = 0. Then Axx + A% ■ 0 = 0, so that there exists v such
that x = -Afy and 0 = Axy. In particular, x is in ran A\* c (ker A^, as desired.

Corollary 3.16. The set of Fredholm (resp. invertible) n-tuples is an open subset
of the set of almost commuting (resp. commuting) n-tuples.

Proof. The map (Ax, . . . , An) -*(AX,..., An)~ is continuous.
The preceding corollary can be derived in a different way from the results in [19].

The continuity of the map a —» â can also be used to show that Sp(a, %) is a
compact subset of the polydisc of multiradius r(a), when % is a W*-algebra, % or
S(9C), totally independent of Taylor's paper. A straightforward calculation using â

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



138 r. e. curto

and â* shows that Sp(a, %) D o,(a, %), the left spectrum of a on 9C, which is
nonempty by the results in [4], so that Sp(a, %) ¥= 0 for % as above.

4. Examples.
1. Any almost commuting «-tuple A = (Ax, . . ., An) with one of the A¡'s Fred-

holm is Fredholm.
2. On H2(Sl X • • • X51), we consider W = (Wx, ... , Wn), where W¡ is the

operator of multiplication by the coordinate z,. Each W¡ is an isometry whose range
consists of all those/ E H2(SX x • • • XSX) such that/(z) = 2kex";kl>ifkzk-

IF is a doubly commuting «-tuple of subnormal operators so that, by Corollary
3.8, W will be Fredholm once we show that 2"_ i W¡ Wf is Fredholm. It is not hard
to see, however, that 2?_, W¡ Wf > I — Pq, where PQ is the projection onto the
constants. Thus, 2"_, W¡ Wf is Fredholm and, consequently, so is W.

3. We consider Tz = (Tz¡, . . ., Tz¡) on H2(S2n~x), where Tz¡ is the Toeplitz
operator of multiplication by z¡.

Since 2"_! TfT^ = j and each Tz¡ is essentially normal (see Coburn [5]),
Corollary 3.9 implies that Tz is Fredholm.

5. Algebraic perturbations of coordinates.
1. The following propositions will be useful in dealing with the deformation

problem.

Proposition 5.1. Let % be a Banach algebra, % be a Banach space which is a left
9>-module, ax, . . . ,an be commuting elements of *$> and v E $ be an invertible
element that commutes with a2, . . ., a„. Then the following conditions are equivalent:

(i) a = (ax, . . . , an) is invertible.
(ii) va = (vax, a2, . . . , an) is invertible.
(iii) av = (axv, a2, . . ., a„) is invertible.

Proof. We shall prove by induction that the Koszul complexes E(%, a) and
E(%, va) are isomorphic, thus establishing (i) <=> (ii). The equivalence of (i) and (iii)
follows in the same way.

Assume that « = 2 (the result being obvious when n = 1); we have

E(%, a): 0->%^>%® %Í>% -*0
and

E(%, va): 0 -h> % % % © % "X % -+ 0,
where

dx = (axa2),   d2 = y   I2),   dx = (vaxa2)   and   4 "(,»,)•

Define T0(2): % -+ %, T,(2): %©%->%©% and T2(2):  % -> % by x -+ vx,
x © v -» x © vy and x -» x, respectively. Then

d2 dx
0     —> JC —>      .A/ © Á.     —> JC —>     0

i7?> in2» 4n2)

0    -»       9C        i     9C©9C     ^.        9C       -*    0
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is a commutative diagram and T¿2) is an isomorphism (k = 0, 1, 2). Therefore,
E(%, a) and E(%, va) are isomorphic. We now define T¿m): 9CP -► %<*) by

/ Jfn-l) g        \
\ 0 T^m-l)J

with respect to the decomposition %ff) = 9C0"* '> ffi 9C("ri), as we did in §2.3.
Assume that E(%, (ax, . . . , an_x)) and E(%, (vax, a2, . . ., a„_x)) are isomor-

phic with the isomorphism given by the T£"~X)'s. Consider the following diagram:

0
rfC) 4"). </(">

JT*")
%(5) 0

+    * + I ♦    * ♦    0

0    _>    ge=)     A   • • •   »**■>     =í     %<"*>     A.   • • •   <XP    ->   0
Since the T¿(n)'s are clearly isomorphisms (by the way they were constructed), we
need only to prove that in the previous diagram all squares commute.

Now, by §2.3,

'4"-}>    (-l)k+x diag(an)

o 4"-1»
when « > I, k > 1. Therefore, for k > 0 we have

0    U-tVi»    (-l)*diag(a„)
Tjfr»)    o 4»-')

nn)4+\ =

4->-

j^n-l)

0

n""*!"    (-l)*2f-«> <Bag(«L)
o 2t"_-,l>4""!)

Since   T¿"  ° is  block  diagonal and v  commutes  with  a„,   Tj?  x) diag(a„) =
dia¡>(an)T?-x\

Furthermore,  ÏÎ"_1)4+ll) = 4t+i 1>7*+1 ° by induction  hypothesis,  and also
'*-l    «* -  ak Ik ■  lnUS

T,(")/i(«)     =^*   "*+l o if- »if-»>
rffci«    (-l)*diag(a„)  /ifcl0        0

0 if"« \     0 If"»
a k+l1 k+l-

Proposition 5.2. Let 9>, %, ax, . . ., an be as before and v be an invertible
element of % (not necessarily commuting with a2, . . ., a„). Then a = (ax, . . . , an) is
invertible iff so is a  = (vaxv~x, . . ., va v~l).

Proof. It is easy to verify that vk: 9C(î) -» 9C(î) given by vk = t> © • • • ffi« (("k)
times), k = 0, 1, . . . , «, establishes an isomorphism between £(%, a) and
E(%, av).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



140 R. E. CURTO

Corollary 5.3. Let A = (Ax, . . . , A„) E ®s and V be a Fredholm operator.
(i) If[V, Ak] E %(%), k = 2,...,n, then VA = (VAX,A2, . . . , A„) and AV =

(Ax V, A2, . . ., An) are Fredholm.
(ii) If V denotes any "almost inverse" of V, i.e., ir(V) = ir(V)~x, then Av —

(VAXV, . . ., VA„V) is Fredholm.

6. A generalized Atkinson's theorem.
1. Given a system

Dk + l Dk Dk_, D2 Dx
•••  4 %k^%k_x A • • • ^dcAdCo-í.0, (¿>)

as in §3, there is a natural way of getting a complex out of it, without leaving the
space DC on which (D) acts. In fact, if Pk is the orthogonal projection in £(%k)
onto ker Dk, and Dk = Pk_xDk (all k), then (D) is a complex. One is tempted to
believe that since DkDk+x is compact (all k), then Dk and Dk can differ by only a
compact operator. The easiest available counterexample is:

O^DCADC-^DC^O, (D)

where K is compact and ker K = (0). Of course, the (D) shown is not Fredholm, so
that one might hope that the statement holds in that case. Moreover, if nk = 0 for
k > 3, it does hold, because DXD\* is Fredholm, so that ran Dx is closed and
therefore there exists Sx E £(DCq, DC,) satisfying SXDX = Pf, so that D2 - D2 =
D2 — PXD2 = PXXD2 = SXDXD2, which is compact. Any attempt to extend this
proof to the case nk > 0 (k = 0, 1, 2, 3) will fail. Consider

O^DCADC-^DCADC^O, (D)
where K is compact and ker K = 0.

In the general case, a sufficient condition is that all ran Dks be closed.
DkProposition 6.1. Let (D): ■ • • -> DQ -»DC*_i -> • • • be a system and (D) be

its associated complex. Assume that ran Dk is closed for all k. Then Dk — Dk is
compact (all k). In particular, (D) is Fredholm iff (D) is Fredholm.

Proof. By the Open Mapping Theorem, there exists Sk: %k-X —* %k such that
»kSk = Pr**Dk and SkDk = 1- PkeiDt. Then Dk + X - Dk+X = Dk+X - PkDk+x =
pk±Dk+i = skDkDk+\ G 9C(%t+i> 3C*)-

2. The next result resembles Atkinson's theorem.
Dk

Theorem 2. Let (D): ■ ■ ■ -> %k -» %k_, -» • • • be a system such that Dk — Dk
is compact, all k. The following conditions are equivalent:

(i) (D) is Fredholm.
(ii) (D) is Fredholm.
(hi) ran Dk is closed and ker Dk/xan Dk+, is finite dimensional (all k).
(iv) ran Dk is closed and ker Dk n (ran Dk+X)± is finite dimensional (all k).
(v) There exists Sk G ñ(%k_x, %k) (k E Z) such that SkDk + Dk+xSk+x - I is

compact (all k).
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Remarks. In case (D) = (D(A)) for a commuting «-tuple A = (Ax, . . . , A„),
(i) => (iv) appears stated (without proof) in a letter of J. L. Taylor to R. G. Douglas.
Condition (v) is given as a definition of a Fredholm system in [18].

Proof of the theorem, (i) =* (ii). Obvious, (ii) => (iii). By Proposition 3.4,
Lk = DfDk + Dk + xDf+x is Fredholm (all k). Since ran Dk+X c ker Dk, it follows
that ran Lk = ran DfDk © ran Dk+xDf+x. Since ran Lk is closed, so is ran D%Dk.
Therefore, ran Dk is closed. Furthermore, ker Lk = ker Dk n ker Df+X. Since Lk is
Fredholm, we obtain that dim(ker Dk/ran Dk+X) = dim(ker Dk n ker TJ£+1) =
dim ker Lk is finite.

(iii)=>(iv). We observe that Dk\(nD¿k+ù±: (ran Dk+X)± -» DC¿_, is left semi-
Fredholm (closed range and finite dimensional kernel). Since Dk — Dk is compact,
we conclude that Afcl(ranz\+,)x: (ran Ät+i)X ~* ^;t-i is aiso leIt semi-Fredholm.
Then ran Dk = Dk(ran Dk+X)± is closed (here, we use the fact that ran Dk+X c
ker Dk) and ker Dk n (ran Dk+X)-L is finite dimensional. Finally, ker Dk n
(ran Dk+X)"- = ker Dk n ran(Z)t+J)-L.

(iv) =» (iii). Afcl(ran¿ )x: (ran At+i)~L ~* ^*-i *s leit semi-Fredholm. Therefore,
Dft|(ran¿ *±: (ran ¿t+1)x -* DC¿_, has closed range and finite dimensional kernel.
But ¿¿(ran Dk+X)± = ran Dk and ker ^|(ran¿t+l)x = ker Dk n (ran DkJ,x)^.

(iii) => (v). We know that Dk has closed range, so that by the Open Mapping
Theorem, we can find Sk E £(DQ_,, DC¿) such that SkDk = ^>(ker¿)i and DkSk =
Pr*n5k and ker Sk = (ran D^. Thus:

-
S* At + Dk+\$k+\ =

5*4 on(ranT5t+1)A
Ät+A+i    onran^+1.

Since ker Dk/xan Dk+X is finite dimensional, we see that SkDk + Dk+xSk+x — I is
compact. But Dk - Dk E %(%k, %k_x) (all k), so that SkDk + Dk+xSk+x - I is
compact (all &).

(v)=^(i). Passing to the Calkin algebra, we have skdk + dk+xsk+x — 1 G
AL,t(â(DC)), where sk = Tr(Sk) and dk is the &th boundary map of the complex (d).

If dka = 0, then dk + xsk + xa = a, so that a E ran </fc+I, showing that (d) is exact,
that is, (D) is Fredholm.

Remark. (i)<=>(v) can be extended to: Let ®, nk, dk be as in Proposition 3.4.
dk

Then the complex • • • -» »ft —»$£_] -» • • • is exact iff there exists [sk: %k^x
-* ®^}ÄSZ satisfying í^í/^ + dk+xsk+x = 1. Moreover, J¿+1Jfc = 0 for all k.

The "if part is trivial. For the "only if', use the decomposition %k = ker dk +
ran <£„.,.

Ok
Corollary 6.2. Let (D): ■ ■ • -> %k -» DCfc_, -+ ■ • ■ be a complex. Then (D) is

Fredholm iff ker Dk/xan Dk+X is finite dimensional (all k).

d2      o,
Corollary 6.3.  Let (D):  O^DCj-^DC^DCq^O be a system (nk = 0 for

k > 3). Then (D) is Fredholm iff ran Dx, ran D2 are closed and ker D2, ker Dx n
(ran D^ and (ran Dx)x are finite dimensional.
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Proof. If (D) is Fedholm, then D2 — D2 is compact and (i) => (iv) can be used.
Conversely, if ran Dx is closed, then D2 — D2 is compact, and (iv) =» (i) applies.

7. Index of Fredholm «-tuples.
1. We are now ready to introduce the index for a Fredholm «-tuple of almost

commuting operators on an infinite dimensional Hubert space DC. As is probably
expected, we shall do that by using Corollary 3.11. Naturally, index will be
continuous, invariant under compact perturbations and onto Z. We also present in
this section an alternative definition, similar to the Euler characteristic of a chain
complex.

2. Definition 7.1. Let A = (Ax, . . . ,An) be an almost commuting Fredholm
«-tuple of operators on DC and A E £(DC 0 C2" ) be as in §2.3. Then inde\(A) =
index(^4).

Theorem 3. index: ¥ —» Z is continuous, invariant under compact perturbations
and onto Z. Consequently, index is constant on arcwise components of 5'.

Proof. Since A i-> A is continuous, it follows easily that index is continuous. For
K E DC(DC) ® C, we have Á^+~K - Â E %(% 0 C2""), so that index is in-
variant under compact perturbations. We shall see in §8 that

index( W\k\ W2, . . . , Wn) = -k   for all A: G Z,
where (Wx, ..., Wn) is the «-tuple of multiplications by the coordinate functions
on H2(S ' X • • • X S '), so that index is onto Z.

3. Suppose now that (D) is a Fredholm Koszul system such that Dk — Dk is
compact (all k). According to Theorem 2 of §6, (D) is Fredholm. We define
index(r)) to be index(T3)~.

Theorem 4. Let (D), (D) be as above. Then

index(Z)) = 2 (-l)* + 1dim(ker Dk/xan Dk+X)
k

= 2 (-l)*+1{dim(ker Dk n (ran Dk+X)±) - dim(ran Dk+X n (ker Dk)x)}.
k

Proof. Since index(Z)) = index(¿5)"= dim ker(.D)*-dim ker[(Z))"]*, we shall
compute both kernels.

Since DkDk+x = 0 (all k), we get
ker(Z>)-= ker[(z5)-]*(z5)*

=    ©   keT(DfDk + Dk+xD*+x)
odd *'s

and

Now

ker[(T>)-]* = ker(z5)A[(r))A]*

=    0   keT(DfDk + Dk+xDk\x).
even k's

ker(DfDk + Dk+xDf+x) = ker Dk n (ran Dk+X)^, (1)
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for all k. Furthermore, ker Dk d ker Dk d ran Dk+X, so that

dim(ker Dk/ran Dk+X) = dim(ker Dk/ker Dk) + dim(ker Dk/xan Dk+X).   (2)

We now observe that

ker Dk n (ran Dk+ ,)X = ker Dk n (ran Dk+ ,)\ (3)

because Dk+X = PkDk+x with Pk the projection onto ker Dk.
Finally,   ker Dk  = ker Pk_xDk  = ZV'iker Ft_,) =  ZV'fker Z\_,)x   =

Z^'ifker Z)^)-1 n ran Dk), so that:

0 -^ ker Z\ —»• ker Dk -» ker Dk/ker Dk—*Q
and

0 -► ker Z\ -► ZY'((ker £>*_,)x n ran Dk) 4 (ker £>*_ ,)x n ran Dk -^ 0
are both exact, from which it is clear that

dim(ker z\/ker Dk) = dim(ran Dk n (ker Dk_x)x). (4)
Combining all four equations, the theorem follows.

Corollary 7.2. If (D) is a Fredholm Koszul complex, then index(D) = ~x(D)
where x denotes Euler characteristic.

Corollary 7.3. Let A = (Ax, . . . , An) be a doubly commuting Fredholm n-tuple
of operators on DC. Then Hk = ker Dk/ran Dk + X is exactly ®feI (í"\«| ker fA¡),
where the sum is orthogonal, Ik = {/: (1, ...,«} -» {0, \)/f(i) = 0 exactly k
times) and fA¡, as in Corollary 3.7, is meant to be AfA¡ or A¡Af according tof(i) = 0
or 1. Therefore

I   " \
indexa) = 2(-l)*+1 2 dim   R ker^,. .

k felk        \ , = l /

Proof. We already know thatxrep Hk = ker(DfDk + Dk+xDk*+x). Since A is
doubly commuting, DfDk + Dk+xDf+x is a block diagonal matrix whose entries
are precisely the ("k) different combinations 2"_! fA¡ for/ G Ik. Since all fA¡ are
positive operators, we know that ker(2"_, fA¡) = f*\" , ker fA¡, which completes the
proof.

4. We shall now illustrate Theorem 4 in the case « = 2. Here (Z>) is

o^dc^dc©dc^'dc-*o,
so that

index(Z)) = -dim(ran Z>,)x + dim(ker Dx n (ran Z)2)x)

-dim(ran D2 n (ker Dx)*~) - dim ker D2

= -dim ker D* + dim(ker Z), n ker Df)
-dim(ran D* n ran D2) — dim ker D2.

The term dim(ran Z>2 n (ker Z>,)x) measures the "lack of complexity" at the
middle stage, that is, since DXD2 need not be zero, but only a compact operator,
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there is in general an adjustment in what would be the natural way of computing
the index, as negative the Euler characteristic of the complex. The negative sign is
required to: (a) fit the unidimensional theory and (b) produce a uniform -1 as
index( Wx, ..., Wn) on H2(Sx X • • • X Sx) (see §8).

Observe that

is a 2 X 2 matrix with ker D = ker Dx n ker D* and ker £>,, ker D2 c ker D*.
The term ran Of n ran D2 does not directly appear in D, but an isomorphic image
is the piece which ker Df and ker D2 need to fill ker D*.

5. Remarks. Although we have studied only the Fredholm case, Proposition 3.4
makes possible a reasonable definition of a semi-Fredholm «-tuple, i.e., an almost
commuting «-tuple A is semi-Fredholm iff A is semi-Fredholm. Consequently,
either all even dimensional homology modules are finite dimensional or so are the
odd dimensional ones, index is then well defined and Theorems 3 and 4 clearly
extend to this case if we restrict attention to the case Dk — DkE %(%k, %k_x) (all
k) (observe that then ran Dk+X n (ker Dk)x is finite dimensional, because ran Dk is
closed and Dk(ran Dk+X n (ker Dk)x), which is a closed subspace of ran DkDk+x,
is finite dimensional). Using Definition 7.1, we can define the index of a nonsingu-
lar «-tuple of elements of the Calkin algebra S(DC) by lifting it to an almost
commuting Fredholm «-tuple of operators on DC. A classical result of Bartle-
Graves (cf. [16], [17]) on cross sections induces immediately a bijection of path-
components between 'S and á (â(DC)) = commuting invertible «-tuples on 2-(DC).

The above definition of index was given only for «-tuples of operators (that is,
Fredholm Koszul systems), while we could have extended it to more general
systems. One approach is to consider the same definition for systems with
Seven *'s "* = ^oAd **« "* in order to get a square matrix D. Another viewpoint would
be to take the content of Theorem 4 as the starting point. We have not pursued this
further since our main interest is in Koszul systems.

8. Calculation of indices and applications.
1. In this section we compute the indices of the «-tuples in §4 and then apply

them to find their spectra.
(i) Let A = (Ax, . . . , A„) E 9 and (A,t, ... ,A0 6 9 (k < n), where /':

{1, . .., k) —> {1, . . . , «} is injective and ij = i(J). Then inde\(A) = 0. For, we
can assume that 1 G /({l, . . . , k)) and define y: [0, 1]—*•? by sending t to
(r + (1 — t)Ax, (1 - i)A2, . . . , (1 - t)An). Since y and index are continuous,
index(^) = index y(0) = index y(l) = index(Z, 0, . . . , 0) = index(Z, 0, . . ., 0)' =
indexiZçx^c*-') = 0.

(ii) Let W = (Wx, . . . , Wn) be the «-tuple of multiplications by the coordinate
functions on H2(SX X • • • XS1). Then index(W0 = -1. More generally, if k =
(*„ . . . , k„) G Z", W^ is Wf< or (Wf)-^ whenever k¡ > 0 or k, < 0, respectively
(/=!,...,«) and W(k> - (Wxik>\ ..., W«<>), then mdex(W«>) = -kx- ... -k„.
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We shall now give a proof of the first statement. Since the Wfs doubly commute,
we can apply Corollary 7.3 to compute index( W), as

2 (-1)*+1 2   dimj H   ker'»A
* = 0 felk \ /-I /

It is clear that the only nonzero terms occur when /(/) = 1 for all i, so that
index( W) = -1. The general statement follows in the same way.

(iii) Let Tz = (Tz¡, . . . , Tz) be the «-tuple of multiplications by the coordinates
on 772(S2',-1). Then index(Yz) = -1. More generally, if k = (kx, . . . , k„) G Z",
then index(Tz(*>) --*,-... -k„.

One way of proving this is by using a result of Venugopalkrisna [22] on the index
of a Toeplitz matrix. We shall see in §13, however, that Tz can be connected to a
copy of If by a path of Fredholm «-tuples, so that index(Tz) = index(W) = -1. A
trivial modification of that path will give one from Tzw to a copy of Wik) and so
index(Tzw) = -kx- ...  kn.

2. We are now ready to calculate the spectra of W and Tz.

Theorem 5. Let W and Tz be the n-tuples of multiplications by the coordinate
functions in H2(SX X • •• XSl) and H2(S2"~X), respectively. Let D, be the closed
unit disc in the ith coordinate space and B2n the closed unit ball in C. Then

(a)Sp(W) = IlUlDi,
(b) Sp(Tz) = B2",
(c) Spe(W) = FrflTJ., D,) = (3D, X D2 X • • •   XD„) u • • •  U(D, X D2

X • • • xmn),
(d)Spe(Tz)=S2"-x.

Proof, (d) Since 27— i TfTz= I and the Tz's are essentially normal, we con-
clude that Sp£(Tz) c S2n~x (by Corollary 3.10). But index(Tz) = -1 and index is
continuous, so that Spe(Tz) = S2n~x.

(b) Since index is constant on path-components of 9, we conclude that B2" c
Sp(Tz). Moreover, Sp(Tz) c Sp^(Tz), where 'S is the Banach subalgebra of
£(H2(S2"~X)) generated by Tz¡, . . . , Tz, by a result of Taylor's that we stated in
Proposition 2.2. Since $ can be identified with Z^B2"), the uniform closure on
C(B2") of the algebra of polynomials in z,,..., z„ and B2" is polynomially convex,
then the maximal ideal space of ©, when seen as a subset of C, is B2" and
consequently, Sps(Tz) = B2", as needed (see [11] for the pertinent results).

(c) Assume that X G Fr(II"_, D(). If |X,| > 1, Wx - Xx is invertible and so is
W — X which implies that X & Spe(W). If |A]| = 1, then at least one of X2, . . . , \,
must have modulus greater than one, showing again that W — X is invertible and
X E Spe(W). If |X,| < 1, then three possibilities occur: |À2| > 1, |X2| = 1 and
|A2| < 1. It is again clear that only the case |X2| < 1 deserves further consideration.
Continuing this reasoning for the remaining A,'s, we conclude that only the
situation |\| < 1 (/' = 1, . . . , «) presents some difficulty. So assume |a,| < 1 for all
i. Now W — X is a doubly commuting «-tuple of subnormal operators and by
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Corollary 3.8, it will be enough to show that 2"_, (W¡ - \)(W¡ - \)* is Fred-
holm, or that Z), has closed range and finite dimensional cokernel. But ran Dx =
ran(Wx - Xx) + ■ ■ ■ +ran(W„ - a„) = {/ G H2(SX X • • • XS1): f(Xx, ...,\)
= 0}, where / is the natural extension of / to the interior. Therefore, ran Dx is
closed and dim(ker D*) = 1.

We have thus proved that Spe( W) c Fr(II"_ x D(). Since index is continuous and
index(W) = -1, we must have Spe(W) = Fr(LT"_i D,).

(a) From (c) we obtain: fJJ_, D, c Sp(W). Moreover if X G W¡„i D,, then for at
least one i, |\| > 1. Then W¡ — X¡ is invertible and so is W — X. Thus Sp(W) =
ITÏ-.D,..

Remarks. In case « = 2, (b) can be derived from index considerations alone.
For, it is clear that ker(TZi — Xx) = 0 when |A| > 1. If we can show that
ran(TZ) - Xx) + ran(TZ2 - XJ = H2(S3) for |X| > 1 then, since index(Tz - X) = 0
outside B4, we must have exactness at the middle stage as well. So let us assume
that / G H2(S3) and T*f =\f (i = 1, 2). Recall that Tzek = (cjc^e^ (k' = (kx
+ 1, kj) and Tz ek = (ck/ck*)ek* (k+ = (kx, k2 + 1)), where

Then
~V2it\       k\

U,ek)=Cf(TfJ,ek) = XxCf(f,ek)ck ck

and

U,ek,)=C-f-(TtJ,ek) = X2C-f-(f,ek).
Ck Ck

Then (/, ek) = (ck/c^Xk^(f, e^). Therefore
„2

im2 - 2 tu ek)\2 = 2 4- M2*'N"ia ejf
k *   coo

= 2 2 ^N2Y2riu*oo)i2

■i(H.)txfl(/,gf,
so that, by virtue of the condition |X| > 1, (/, e^,) = 0, or/ = 0.

We   also   want   to   mention    that   Coburn   has   shown   in   [5]   that
C*(TZ¡, ..., TZ)/%(H\S2"-X)) at C(S2"~X), from which (d) follows at once.

9. Indices of related Fredholm «-tuples.
1. The following propositions are rather elementary, though useful to find indices

of several related Fredholm «-tuples.

Proposition 9.1. Let A = (Ax, ,..,^)ef,f ft, ...,*)-+ {1, *) be a func-
tion   and  define   ^A,) = Af®,   as   in   Corollary   3.14.   Assume   that   $(A) =
(<KAX), ■ ■ ■ , <KA„))   is   an   almost   commuting   n-tuple.   Then   <¡>(A) G 9   and
index <f>(A) = (-1)1*1 index(A), where \<f>\ = #{/: <K0 = *}•
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Proof. Straightforward from the proof of Corollary 3.14.

Corollary 9.2. If A = (Ax, . . . , An) E <$ and one of the A/s is essentially
self adjoint, then index(A) = 0.

Proof. By the results of [1], an essentially selfadjoint operator is a compact
perturbation of a selfadjoint one. We then apply Theorem 3 of §7 and the
preceding proposition.

Corollary 9.3. Let Ax and A2 almost doubly commute. If (Ax, A^ E <$, then so
are (A\, A^, (Ax, A\) and (A\, A^) and index(.4,, A^ = index(y4f, A%) =
-index(Ax, AJ = -indexa„ A*).

Proposition 9.4. Let A = (Ax, .. ., A„) E <3, Vbe a Fredholm operator such that
there exists a path y: [0, 1] -h> f with y(0) = V, y(\) = Z and [y(t), Ak] G %(%)for
all t E [0, 1], k > 2. Then index(A) = index(VA) = index(AV), where A V and VA
are as in Corollary 5.3.

Proof. Use continuity of index along with Corollary 5.3.

Corollary 9.5. If A = (Ax, . . . , An) E f and X G C \ {0}, then
(XAX, A2, . . . , A„) G % and index(A) = index(Ay4j, A2, . . . , An).

Proposition 9.6. Let A = (Ax, . . . , An) G ÍF andp E S„ be a permutation. Then
p*A = (Apm, ..., ApM) E<3 and index(pM) = index(A).

Proof. By the first observation in the proof of Corollary 3.14, À andp*A are
unitarily related, so that index(pM) = index(p*4) = index(yi) = index(yi).

10. Index of an essentially normal «-tuple with trace class commutators.
1. Although it is easy to see that a normal «-tuple ./V = (Nx,. . . , N„) (i.e.,

N¡Nj = NjN¡ and NtNf = NfN¡ for all i, j = 1, . . . , «) which is Fredholm will
have necessarily index zero (because its asssociated N is normal), it is not trivial
that the same will hold for essentially normal «-tuples (n > 2) with all commuta-
tors in trace class (and in fact it is false when n = 1).

Theorem 6. Let A = (Ax, . . . , An) (n > 2) be an essentially normal n-tuple (that
is, [A¡, Aj], [Af, Aj] E %(%)for all i,j) with all commutators in trace class. Assume
that A is Fredholm. Then index(^4) = 0.

We shall need the following lemma, which appears in [15].

Lemma 10.1. Let T = (T&) E L(%N) be a Fredholm operator and [Tik, Tlm] G ß,
(all i, k, l, m = 1, . . ., N), i.e., all commutators are in trace class. Then detiT) is
well defined, det(T) is Fredholm and index(det(T)) - index(T).

Proof of the theorem. We apply the preceding lemma to A and thus conclude
that index(v4) = index(det(^4)). An easy calculation shows that det(A) —
(2?_, AfA¡f~x is compact. Therefore, index(det(i)) = (« - 1) index(27_, AfA,)
= 0, since the last operator is positive.

2. Remarks. We wish to point out that a doubly commuting Fredholm «-tuple
with a normal coordinate has also index 0, which follows from the fact that for a
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doubly commuting «-tuple A, A is normal iif Ax is normal. When « < 3, the same
holds without assuming double commutativity.

The preceding theorem has certain points of contact with a result of Helton and
Howe [13, Part II, Theorem 2].

II. The deformation problem
11. Preliminaries.
1. Let DC be a separable infinite dimensional Hilbert space and A =

(Ax, . . . , An) be an almost commuting «-tuple of operators on DC. If A is Fred-
holm, index(yl) is a well-defined integer; by Theorem 3 of §7, index is an invariant
for the path-components of S\ In [9], R. G. Douglas raised the following question:
is it the only invariant? In other words, given two «-tuples A = (Ax, . . . , An)
and B = (Bx, . . . , Bn) in S with the same index, is it always possible to find a
continuous path y: [0, 1] -» S such that y(0) = A and y(l) = Bl This is the
deformation problem. For « = 1 the answer is known to be yes (cf. [8]) and for the
case A, B essentially normal, Douglas himself gave a proof in [9], using techniques
from extension theory ([1], [2] and [3]). We shall give a detailed exposition of this
fact in §12. We then consider again (Wx, . . ., Wn) and (71, . . . , Tz) and show
that they lie in the same path-connected component. As a consequence, we obtain
the nonobvious fact that (Wx, ..., Wn) can be connected to (WJ, . . . , Wf) for «
even. This is done in §13. We present in §14 the affirmative answer to the
deformation problem for the class of almost doubly commuting Fredholm pairs
with a semi-Fredholm coordinate. In §15 we give a number of additional facts on
Fredholm and invertible «-tuples. Finally, §16 is devoted to the concluding remarks
and open problems. The rest of § 11 deals with a basic result on connectedness of
Fredholm «-tuples.

2. Notation. If s c £(DC) 0 C, A = (Ax, ..., A„), B = (Bx, . . ., B„) G r. and
there exists a continuous y: [0, 1] -» £ such that y(0) = A and y(1) = B, we write
A ~ B. Also, we denote by I the «-tuple (1,0, ..., 0).

Proposition 11.1. Let A = (Ax, . . ., An) E S (n > 2) and assume that A¡ is
Fredholm for some i. Then A — I. In particular, index(v4) = 0. More generally, if
(A¡, . . . , Aj) E S (k < «), where i: [\, . . ., k) -* {I, . . . , n) is an injection, thenx *
A — I and index(A) = 0.

Proof. See §8.1(i).

12. The essentially normal case.
1. In this section we give a detailed exposition of Douglas' affirmative answer to

the deformation problem for essentially normal Fredholm «-tuples, following the
outline in [9].

Lemma 12.1. Let a = (ax, . . . , an) be a doubly commuting n-tuple on a C*-algebra
%. Then â E M2n-¡(%) is normal iff ax is normal.

Proof. A straightforward computation shows that â*â — ââ* is a block diagonal
matrix whose diagonal entries are either a*ax — axa* or a,af — of*}.
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Remark. The assertion: (ax, aj is invertible iff so is (a2, ax) was proved establish-
ing an isomorphism between the Koszul complexes. Since we have an associated
matrix

one might expect that for some unitary U,
(   a2     ax\I   a2     a\\
\-a*     a*)'

UâU* -

The preceding lemma says, however, that this is not always possible.
2.

Lemma 12.2. Let a = (ax, . . . , a„) be an invertible normal n-tuple on 2.(DC) and â
be its associated 2"~x by 2"~x matrix over S (DC). Then, if â = vp is the polar
decomposition of à, there exist ux, . . ., un, q E S(DC) such that q > 0, u =
(ux, . . . , un) is a commuting normal n-tuple and (q,0,..., 0)"= p, û = v.

Proof. We first notice that since â is invertible, it has a polar decomposition
â = vp with v unitary andp > 0 (v,p E M2.-,($,(%))). Let q = (2?_, afa/)x'2. It
is almost obvious that â*â = [(q, 0, . . ., 0)"]2 = p2. Since p is invertible, v = âp~x
= â(q~x, 0,. . . , 0)". Observe that (q~x, 0, . . ., 0)" is diagonal, so that

a(q-x,0,...,0y=(axq-x,...,anq-xy.

Let u¡ = a¡q~x. Then u = («„ . . . , «„) is a commuting normal «-tuple and û = v.
Definitions 12.3. We shall denote by S 91 the class of essentially normal

«-tuples on DC. Also, & 91 "íF = S 91 n 9. An «-tuple A = (Ax, . . . , An) is essen-
tially unitary (in symbols, y<GS%)iffy4GS9land 2"_xAfAi -IE %(%)
(i.e., a = (ax, . . . , a„) is normal and 2"_! afa¡ = 1). Notice that if A E & sll, then
SpJA) c S2n~x.

The following fact is an easy consequence of Lemma 12.2.

Lemma 12.4. Let A = (Ax, . . ., A„) E & 91. 77je« there exist Ux, . . ., U„ G
£(DC) such that U = (Ux, . . . , U„) E &% and A   ~    U.

Proof. By Lemma 12.2, â = (uxq, . . . , unq)~, where q = (21-x a*at)l/2 and
u = (ux, . . ., u„) is a normal «-tuple with 2"_t ufu¡ = 1. Let q, = (1 — t)q + t,
t G [0, 1], and let y(t) = (UXQ„ . . . , U„Q,). Then y is continuous, y(i) G S 91 f,
y(0) = A and y(l) = U.

Lemma 12.5. Let A = (Ax, . . ., AJ G S <$L and assume that Spe(A) £ S2"~x.
Then index(A) = 0 and in fact A   ~    I.

Proof. Since index is continuous and C \ Spe(A) is connected, we see that
index(^) = 0. Let z = (z„ . . . , z„) G S2"-1 \ Spe(A). Let i be such that z, *= 0 and
C > Kll / |zf|. We define y: [0, 1] -> £(DC) 0 C by y(t) = (Ax - Ctzx, ...,A„
- Ctzn). Clearly y(t) G S 91ÍF and j(0) = A. Now, y(l), = A¡ - Cz¡ is invertible,
so that, by Proposition 11.1, y(l)   ~    I.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



150 r. e. CURTO

3.

Theorem 7. Let A = (Ax, . . . , AX B = (Bx, . . . , B„) G S 91 f and assume that
6 91 %

index(^) = index(fi). Then A   ~    B.

Proof. By Lemma 12.4, we can assume that A, B E S 6ll. Suppose now that
Spe(A) = Sp^Zi) = S2n~x. Since C*(ax, . . . , an) at C(S2n~x) (Corollary 3.10), we
see that A induces an element rA of Ext(52"-1) (for a complete exposition on Ext
see [1], [2] and [3]). It is known that Ext(52n_1) » Z, so that ta is equivalent to rk
for some k G Z, where, for k =£ 0, rk is the extension generated by
(T}^, Tz, . . ., Tz ), conveniently normalized so as to have essential spectrum
S2"-1, and t0 is the extension generated by any commuting «-tuple of normal
operators whose essential spectrum is S2"-1 (take for instance a sequence {Xw}
dense in S2n~x and define N¡ as X}1) ■ I% © A/2) • I% © • • • ). Since rA and rk are
equivalent, there exist an isometric isomorphism U G £(DC, H2(S2n~x)) and com-
pact operators Kx, . . ., K„ such that (AX,...,A„) = (U*T};k)U + Kx, U*TZU +
K2,..., U*TZU+ Kn) (or (Ax,...,An) = (U*NXU + Kx, . . . , U*NnU +Vn)).
Therefore, indexa ) = index( Tz(~k\ Tzi>. . ., Tz) = k (or index(/l) = 0). Similarly,
B induces an extension rB which is equivalent to t, for some / G Z, so that
index(Z?) = /. Thus, k = I, which implies that ta and iB are equivalent. Conse-
quently, there exist a unitary V E £(DC) and compact operators Lx,. . ., Ln such
that

Ai=V*BiV+Li       (/=1, ...,«).
Since the set of unitaries is arcwise connected, there is a path unitaries Vt
(0 < t < 1) such that VQ = V and Vx = I. Then

y(t) = (VfBxV, + (1 - t)Lx, ..., VfBnV, + (1 - t)Ln)
defines a path of essentially unitary «-tuples from A to B.

Suppose now that Spe(A) = S2n~x and Sp.(B) Q S2"~x. By Lemma  12.5,
S915F

index(Z?) = 0 and B ~ I. Therefore iA is equivalent to Tq, so that A can be
connected to a commuting «-tuple of normal operators N = (Nx, . . ., A^n) by a
path of essentially unitary «-tuples. But N can be joined to I by a path of
commuting «-tuples of normal operators (see for instance [7, Theorem 31), so that
A S~® B. Finally, if Spe(A) £  s2"-1 and Spe(B) S S2"-1 we have .4 S~^ I and
„6919-      „ S919-B  ~    I (by Lemma 12.5). Thus A   ~   B.

13. A path from Tz to W.
1. We consider W = (Wx, . . . , Wn) on H2(SX X • • • XS1) and Tz =

(TZ|, . . ., Tz) on Z/2(5,2n-'). We already know that index(W0 = index(Tz) = -1.
In this section we show that a copy of W on H2(S2n~x) and Tz can be joined by a
path of almost doubly commuting Fredholm «-tuples.

Let us define 5, on H2(S2"~ ') (i = 1, . . ., ri) by S¡ek = t>>, /fcw = (/t„ ..., k,
+ 1, . . . , k„), where {ek)kEZ^ is the standard basis for ZZ2(S2"-1). It is obvious
that S¡ is unitarily equivalent to W¡ (i = \, . . ., ri), so that by Corollary 5.3,
S = (Sx, . . ., Sn) E ty <?, the class of almost doubly commuting Fredholm «-
tuples.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



«-TUPLES OF OPERATORS 151

«DC
Theorem 8. r ~ S.

Proof. We first notice that 5, is the partial isometry in the polar decomposition
for Tz = S/Pj, where P¡ek = (ck/cl¿¡))ek (recall that ek = ckzk).

We now define y: [0, 1] -> t(H2(S2"-x)) 0 C" by y(0, = SJR1 - /)Z>, + t] (i =
1, . . ., «). y is certainly continuous, so we need to prove that y(t) G <>D ff (all
t G [0, 1]).

First of all, we have to verify almost double commutativity. This amounts to
showing that [S¡, Tz], \S„ Tf] G %(H2(S2n'x)) (i f*Jf). Now

[S„ TZj] = SfiPj - SjPjSt = Sj(SiPj - PjSt),

and

.       1      ^/(n + \k\-l)\
' VW   V k\

c2 A«
\?jek - ~T~ek<ih       FjS¡ek = ——eko)<%» um)

where

Thus
2 2 /  kJ:+ l kJ + l       \ _ kJ+ l

{SiPj - PjSt)*k = \-n~T\k\ ~ « + |*| + 1 Y«* - (» + |*|X» + \k\ + 1)'**

so that [5,, Z>/] G DC(ZZ2(5,2n"1)). Then [5„ Py] is compact and so is [S¡, TZj], for all
hj-

Similarly, [S,, 7£] = S,PjS? - PjS/S, = (S,Z>, - Z>,S,.)S/, so that [S,, Tj] G
DC(ZÍ2(5,2',_ ')) (all i +j). We now show that y(/) G ff. Since S G ff and [Px, S,] G
DC(ZZ2(5'2"-1)) O' > 2), Corollary 5.3 implies that (Sx[(l - t)Px + t], S2, . . . , S„)
G ff when / > 0, or (y(i)p 52, . . ., 5„) G ff (î > 0). By the same argument (and
the fact that [Px, P2] is compact) we get: (y(r)i, y(/)2, S3, . . . , Sn) G ff (t > 0), and
finally y(t) E ff. This completes the proof.

öftöT-
Corollary 13.1. Tz(*> ~ S(*>, k G Z".

Proof. By the spectral mapping theorem for «-tuples (Proposition 2.3) and
Corollary 3.14, we conclude that y(r)(*) = (y(t)f'\ . . . , yOffi) G ^ff, where y is
the path in the preceding theorem. Thus y( ': TZ(A:) — 5W.

14. The deformation problem in °D ff.
1. Throughout this section, we shall restrict attention to a separable infinite

dimensional Hubert space DC and almost doubly commuting Fredholm pairs. Our
goal is to prove that in ^D = almost doubly commuting Fredholm pairs on DC with
a semi-Fredholm coordinate, the deformation problem has an affirmative answer.
Our proof is built on a series of results that reduce the situation to W(A:) on
H\SX X Sx).
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Proposition 14.1. Let A = (Ax, ...,A„)E$, [Ax,Af] G DC(DC) (k > 2) and
assume that ranAx is closed. Let Ax = VP be the polar decomposition for Ax. Then
[V, Af] E %(%), (V,A2,...,A„)E<»andA~ (V, A2, . . . ,A„) by a path y(t)
satisfying [y(t)x, Af] E %(%) (k > 2).

We shall need the following

Lemma 14.2. Let S, T G £(DC), [S, T] E %(%), [S, T*] G DC(DC) and T = VP
be the polar decomposition for T. Assume that ran T is closed. Then [V, S], [V, S*]
G DC(DC).

Proof. We know that ker T = ker V = ker P. Consider DC = ker T © ran T*.
Then

H: r) Hi 3 '•{' a - HS a
Since ran T is closed, an application of the Open Mapping Theorem shows that Kx
and K2 are compact. Moreover, P2 is invertible, T, = VXP2, T2 = V2P2, TXS2 —
SXTX E DC(ran T*, ker T) and T2S2 - S2T2 G DC(ran T*), or F,P2S2 - S,^,^,
V2P2S2 — S2V2P2 compact. But P E C*(T), and T almost doubly commutes with
5, so that [P, S] E %(%), or [P2, S2) G DC(ran T*). Thus,

(VXS2 - SXVX)P2 E DC(ran T*, ker T).

and
(V2S2 - S2V2)P2 E DC(ran T*).

Since Z>2 is invertible, we conclude that VXS2 - SXVX and V2S2 — S2V2 are com-
pact, which implies that [V, S] E %(%). Similarly, [V, S*] G DC(DC) (this time
using the fact that [P, S*] G DC (DC)).

Proof of the proposition. By the lemma, we know that (V, A2, . . . , A„) is an
almost commuting «-tuple with [ V, Af] E DC(DC) (k > 2). Since ff is an open
subset of the set of almost commuting «-tuples (Corollary 3.16), there exists e > 0
such that (Ax + XV, A2, . . . , A„) E ff whenever |X| < e. Now Ax + eV = VP +
eV = V(P + e). By Corollary 5.3, (V,A2, . . . , An) G ff. It is now clear that
y(t) = (V[(\ - t)P + t], A2, . . . , An) defines a path in ff from A to
(V, A2, . . . , An) satisfying the condition [y(/)„ Af] E %(%) (k > 2).

Remark. The preceding proposition is not obvious, since in general the partial
isometry lies only in the von Neumann algebra generated by T.

3. We now turn to study those A = (V, AJ G ff, where F is a partial isometry
with finite dimensional kernel or cokernel and [V, A%\ G DC(DC). By Proposition
11.1, we can restrict attention to the case V $. ff.

Proposition 14.3. Let A be as above and dim(ker V) be finite. Then A <— (S, T),
where S is a unilateral shift of infinite multiplicity.

Proof. By taking a compact perturbation, if necessary, we can assume that V is
an isometry. By the Wold decomposition, V = U © S, where U is unitary and S is
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a shift of multiplicity equal to dim ker V*. Now S can be written as a direct sum of
shifts of multiplicity 1. By Corollary 2.3 of [1], the first summand "absorbs" U up
to unitary equivalence modulo the compacts, so that U © S1 is unitarily equivalent
to a compact perturbation of S. Corollary 5.3 and the connectedness of the unitary
group complete the proof.

4. We shall need the following lemma in dealing with the (S, T) situation.

Lemma 14.4. Let % be a C*-algebra, s E % be an isometry and a2 G ÍB be such
that sa2 = a2s and sa* = a* s. Then (s, aj is invertible if and only if ker s* n ker a2
= 0 and ran s + ran a2 = 'S (ker and ran understood to be the kernel and range of
the left multiplications induced by s and a2).

Proof. The "only if part is trivial. For the "if' part we need to prove exactness
of the Koszul complex for (s, a2) at stages 2 and 1. Since s is an isometry, ker s = 0
and stage 2 is done. Assume that sa + a2b = 0. Then a = -s*a2b = -a2s*b. Let
c = s*b. Then s*(b — sc) = s*b — s*sc = c — c = 0 and a2(b - sc) = a2b — a2sc
= -(sa + sa2c) = -(sa + s(a2s*b)) = -(sa — sa) = 0. Thus b — se G ker s* n
ker a2 — 0, or b = sc, as desired.

Let 9H be a Hubert space and 91 = 9H © 9H © • • • = /2(9lt). For T E
£(911) define f E £(9l) by f = T © T © • • • =T0 1,,.

Proposition 14.5. Let (S, T) E ^ ff, where S is a unilateral shift of infinite
multiplicity acting on 91 = /2(91L). Let T«, be the (0,0)-entry of T. Then

(S, T) ~ (S, T«,).

Proof. Since SS* + T*T and SS* + TT* are both Fredholm (Corollary 3.7),
ker S* = 9H © 0 © 0 © • • • and (T01To2T03 • • • ), (Tf0T5,TJ, • • • ) are com-
pact, we conclude that T^ is Fredholm. Consequently,

ran j + ran tx = â(9l), (1)

where, as usual, small letters are used for the projections in the Calkin algebra and
tx = (1 - X)t + XQ, X E C. Suppose that s*a = tka = 0. Then

is compact, so that A can be chosen as

A io    Axx     AX2
•^20      -^21       /*22

^30     am     Ayi

^oo    -^oi     Aoa
0        0        0
0        0        0
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Since txa = 0,

is compact. But then

^oo^oo ^or/^oi ^ocAoi
0              0 0
0 0 0

I. • J

M»        M)l        M)2

^10        Ml        M2
T2§     T2X      T22

Aqo     Aox     Aqq
0        0        0
0        0        0

is compact, or ta = 0. Since (s, t) is invertible and s*a = ta = 0, we have a = 0.
We have thus proved:

ker s* n ker /x = 0. (2)
Combining (1), (2) and Lemma 14.4, we obtain that (s, tx) is invertible for every X.
Taking X E [0, 1], we have a path from (s, t) to (s, Q).

The next proposition gives a characterization of the pairs (S, C), where S is a
unilateral shift and C = C © C © • • • .

Proposition 14.6. Let S be a unilateral shift on 91 = 91L © 91L © • • • and
C E £(911). Then (S, C) E ¿Dff iff C is Fredholm. In that case, index(S, C) =
index(C).

Proof. "If. Clearly [S, C] = [S*, C] = 0. If s*a = ca = 0, the argument in the
preceding lemma again shows that a = 0. Similarly, ran s + ran c = S(9l). By
Lemma 14.4, (s, c) is invertible.

"Only if. ran C*C + SS* closed =» ran C closed. Furthermore ker C = ker C
© ker C © •• • and ker C* n ker S*, ker C n ker S* are both finite dimensional
(Corollary 7.3). Thus ker C © 0 © 0 © • ■ • and ker C* © 0 © 0 © • • • are finite
dimensional, which completes the proof of the Fredholmness of C.

Now, by Corollary 7.3, we know that: index(5, C) = dim(ker S* n ker C) —
dim(ker S* n ker C*) = dim ker C - dim ker C* = index(C).

5. We need one more result before we can prove our theorem on the deformation
problem.

,      , , si's
Proposition 14.7. On H2(SX X Sx), (Wx, WJ ~ (W\*, W%). More generally, for

k = (kx, kjEZxZ, (W\k'\ W^)6^ (W¡-"<\ W¡-k¿).
6¡)(¡fProof. By Theorem 8 of §13, (Sx, SJ ~ (TZ,T) and by Corollary 13.1,

(S?, S2*) ~ (7^, T*). Since (Tz¡, Tz) and (Tz¡, T¡) produce equivalent extensions
of S3, we know that there exists a unitary U E £(ZZ2(53)) such that Tz¡ = U*TfU

67) <%

+ K, Kt E %(H2(S3)) (i = 1, 2).  It is now clear that (Tz, TJ ~ (7?, Tf).
«D? <%<S <î)ï ' '

Therefore, (5„ 5^ ~ (Tz¡, Tz) ~ (7^, Tf) ~ (Sf, SJ). The general statement
follows in the same way.
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Remarks.   An   obvious   extension   of   the   preceding   proof   shows   that
(Sx, S2,..., S,,)®— (St, SJ,. .., Sf) iff « is even (recall that index(5,f, . . . , Sf)
= (-l)"+1)- ^

A combination of all the stated facts shows that Sw = (S¡k'\ . . ., S^) ~ S(m)
= (S¡m>\ . . . , 5„(^>) iff kx • . . . -k„ = mx • . . . -m„.

6.

Theorem 9. Let A = (AX,A2), B = (Bx, B2) G <%, the class of almost doubly
commuting Fredholm pairs with a semi-Fredholm coordinate. Assume that index(yl)
= index(Zi). Then A~B.

Proof. By Proposition 14.1, we can assume that Ax= V, Bx = W are semi-
Fredholm partial isometries. Also, by Proposition 11.1, we need only to consider
the case V, W G ff. If dim ker V is finite then, by Proposition 14.3, A ~ (S, T).
If dim ker V* is finite, then (V*, AJ — (S, T), so that (V, AJ ~ (S*, T). Simi-

ûDSF "iff
larly, B ~ (Sx, Tx) or B ~ (St, Tx). (Here S, Sx are unilateral shifts of infinite
multiplicity.) Since DC is separable, any two unilateral shifts of infinite multiplicity
are unitarily equivalent. By Corollary 5.3 and the connectedness of the unitary
group, we can assume S = Sx.

Thus, without loss of generality, our situation is DC = H2(SX x Sx) = H2(SX)
0 H2(SX), 5 = Wx, A = (Wx, f) or A = (Iff, f) and B = (Wx, R) or B =
(Iff, ZÎ). Four possibilities arise:

(i)A = (Wx, f) and B = (WX,R),
(ii)A =(WX, f) and B=(Wt,R),
(«0 ̂  =(1*7, T) and 5 = (W„ Ä),
(iv)^ = (Iff, T) and B = (Wt, R).
Case   (i).   index(T) = index(A) = index(Z?) = index(Ä),   by   Proposition   14.6.

Consequently, there is a path of Fredholm operators joining T and R. Using the<¡¡<§
"if" part of Proposition 14.6, A ~ B.

Case (iii). Let m = index(v4) = -index(T). Then T~ Uji®, where U+ is the

unilateral  shift of multiplicity  one  on H2(SX). Thus, A — (Wt, U^),  since
(Wx, T*)*0— (Wx, £/V"m))- Similarly, index(Ä) = index(5) = m implies R~ £/£*•>,
so that B ~ (Wx, U^m'). It is easy to see that U+ = W2, so that we actually have

aV! (Wt, W{m))    and   B*0-  (Wx, W^).

By Proposition 14.7, (Iff, W¡my) ~ (W„ H^""0), so thaM ~ B, as desired.
Case (ii) is completely analogous to (iii).
Case (iv). Consider (Wx, f), (Wx, R), use (i) to find a path in 3D ff and then use

Corollary 3.14 to take adjoints in the first coordinate.
Remarks. The separability of DC was only used in the proof of Theorem 9. The

condition n = 2 was needed to invoke the one dimensional situation (see the
treatment of cases (i) and (hi)).
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15. Some additional results.
1. The following is a characterization of invertibility when DC is finite dimen-

sional.

Proposition 15.1. Let A = (Ax, AJ be a commuting pair on a finite dimensional
Hubert space DC. Then the following conditions are equivalent,

(i) A is invertible.
(ii) ker Ax n ker A2 = (0).
(iii) ker Dx = ran D2, where D is the Koszul complex for A.
(iv) ker At n ker AJ = (0).

We shall need the following lemma, whose proof can be found in [12, Problem
56].

Lemma 15.2 (J. Schur). Let (J %) be a matrix on a finite dimensional vector space,
with CD = DC. Then

IA      R\det(c    £)-4etUZ>-^C).

Proof of the proposition. (iv)=> (i). We are assuming that Z), is onto, so that
AxAt + A2A* is invertible. By the lemma, so is

In particular, (£ *) is invertible iff AD — BC is invertible.

2        |   Al A2\
\-A*2     At)'

that is, A is invertible (Corollary 3.11).
(ii)=> (i). ker Ax n ker A2 = (0) implies that AtAx + A*A2 is invertible. There-

fore, so is

-. _ / At    a;\
'   "\-A3    AJ

that is, A* = (At, A*) is invertible. By Corollary 3.14, A is invertible.
(iii) => (i). Since ker A = ker Dx n (ran DJX = (0), we see that A is one-to-one.

Since dim(DC) is finite, we conclude that A is invertible, so that A is invertible.
(i) => (ii), (i) => (iii) and (i) => (iv) follow trivially.

Corollary 15.3. Let A = (Ax, AJ be a commuting pair on % and dim DC < go.
Assume that ker^l, n ker A2 = (0). Then there exist polynomials p, q G C[z„ zj
such that Axp(Ax, AJ + A2q(Ax, AJ = I.

Proof. By Proposition 15.1, A is invertible. Since Sp(A) is finite, we have
Sp(A) = Sp(A)(A), where (/I) is the algebra of polynomials in Ax, A2, by Theorem
5.5 of [20]. The conclusion then follows.

2. We now consider the pairs (T^,0 I, 10 T+) on H2(SX X Sx), where <f>,
\f/ G C(S ') and T^, T^ are their associated Toeplitz operators.
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Proposition 15.4. Let <j>, \f/ E C(SX) and assume that neither T^ nor T^ is
invertible. Then (T+ 0 I, I 0 TJ G ff iff T+ and T4 are Fredholm, so that
Spe(T+ 0I,I0T¿ = Spe(T¿ X Sp(T^) u Sp(TJ X Spe(T^). If <*>„ *„ ^ *2
G C(SX) and index(T^ 0 I, I 0 T+) = index(T^ 0 I, I 0 T+), there is a path of
Fredholm  pairs joining (T^ 0 I, I 0 T^) and (T^ 0 I, I 0 V^); also,

index(T<, 0 1,1 0 T¿~ -index( T+) .   index(T\

Proof. Let $(z„ z2) = <Kz,) and *(z„ zj = ^(zj. Then (T+ 0 I, I 0 T+) is
(T*, Ty). By the Corollary to Theorem 4 in [10], we know that (T9, T^) G ff iff
(*•(•„■> r*v*„)) and (^V,^ ^W^ are invertible for all (zx,zj E Sx X Sx. A
moment's thought shows that this is equivalent to <j> ¥= 0, \p =£ 0, which in turn is
equivalent to T^, T^ both Fredholm. The rest follows easily from this.

3.
Proposition 15.5. Let A = (Ax, . . . , An) G ^ff (« > 2), where Ax is an essen-

tially normal operator with closed range. Then index(A) = 0 and indeed A — I,
while keeping the first coordinate essentially normal with closed range.

Proof.Consider DC = ker Ax © ran At■ Then

(0     Bx\ _(D2     B2\ (Dn     Bn\
Ax-\0     Cxj'   Ä2-\e2     C2f-'A"-\En     Cj

Since A E ^ff, a direct calculation using the Open Mapping Theorem for Ax
shows that B2, . . . , Bn, E2, . . . ,En are compact. By Corollary 3.7, it follows at
once that (D2, . . . , Dn) is a Fredholm (« — l)-tuple. (We should notice at this
point that, in case ker A, or ran A f is finite dimensional, the conclusion follows
immediately, because A, is either Fredholm or finite rank (forcing (A2, . . . , An) G
ff).) We now claim that Bx is compact, C, is essentially normal and Cx is Fredholm.

From AtAx- AxAt E %(%) we get BxBt E DC(ker Ax) and Ziffi, + CtCx-
CxCt G DC(rany4f). Therefore, Bx is compact and [Cf, C,] G %(ran At). Finally,
since ker Ax = ker AtAx and ran Ax is closed, we see that Z?f Bx + CtCx is invert-
ible. Then C* C, is Fredholm and, since C, is essentially normal, C, is Fredholm.

We now connect A to

((o   c}  (o*   cJ'-'W   cj)
(by the line segment) and then use the proof of Proposition 11.1 to obtain the
desired conclusion.

Remark. We have seen in Proposition 14.1 that if A = (A,, . . ., An) G ff,
[Ax, Af] G DC(DC) (k > 2) and ran Ax is closed, then A ~ (V, A2, . . . , A„), where
V is the partial isometry in the polar decomposition A x = VP. One might expect
that a slight perturbation of an «-tuple A E ff would provide one with first (or any
other) coordinate having closed range. It is clear that a compact perturbation will
not do it. Proposition 15.5 tells us that, unless index(^4) = 0 or we can afford to
lose important algebraic properties (like A x being essentially normal), we shall not
succeed.
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16. Concluding remarks and open problems.
1. We have seen in Corollary 3.13 that spectral permanence for «-tuples holds

when we consider W*-algebras; in other words, if % is a IP*-subalgebra of the
W""-algebra Q and a = (ax, . . . , a„) is a commuting «-tuple of elements of %, then
Sp(a, <$) = Sp(a, Q). The author does not know whether this is true for general
C*-algebras. It holds for « = 2, as a slight variant of the proof of Proposition 3.4
shows.

2. The extra condition in Theorem 9 (that at least one coordinate must be
semi-Fredholm) might involve a second invariant, needed for a complete descrip-
tion of the path-components of ff(DC).

3. For the classes studied in §§12, 13 and 14, the formula

index Aw = index(^,*'), . . . , /!<*»>) = kx ■ . . .   kn index(yi)

for an «-tuple A such that both A and Aw belong to ff, where k = (kx, . . ., k„) G
Z", holds. Whether it holds in general is unknown to us. An affirmative answer to
the deformation problem will immediately settle this issue, so that it can be used as
a test for that problem.

4. We define an «-tuple S = (Sx, . . . , S„) to be subnormal in case there exists a
commuting family of normal operators on DC D DC such that N¡% c DC and
Nj\% = 5,(1, • • • , «). There is then a minimal normal extension, which is unique up
to isometric isomorphism. For « = 1, it is known that, if TV is minimal, then
Sp(S) D Sp(iV) and Sp(S) can be obtained from Sp(N) by "filling in holes".

For « > 1, J. Janas [14] has shown that Sp^S) D Sp(N), when 62 is a maximal
abelian algebra containing the 5,'s. (We recall that Sp^S) D Sp(S, DC).)

It would be interesting to know if a spectral inclusion exists for Taylor spectrum
and, if so, how Spí-S) can be obtained from Sp(N).

Added in proof. We have recently shown that the answer to question 1 is
affirmative (R. E. Curto, Spectral permanence for joint spectra, Proc. Sympos. Pure
Math, (to appear)). Also, we have a proof of the spectral inclusion (question 4
above) when S is doubly commuting (R. E. Curto, Spectral inclusion for doubly
commuting subnormal n-tuples, preprint).
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