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Abstract. Certain piecewise linear expanding maps on a finite union of polygons in R? are considered.
The Perron-Frobenius operator associated with a map is considered on a locally convex linear space which
is an extension of the space of bounded variation functions, and the spectrum of it is determined by Fredholm
matrices. New signed symbolic dynamics are defined by using screens, and the Fredholm matrices are
constructed by renewal equations on this signed symbolic dynamics.

1. Introduction.

We will consider a class of piecewise linear expanding mappings F from a subset
of R? into itself. The Perron-Frobenius operator P from L! into itself corresponding
to a mapping F is defined by

ff (g(F(x)dx = JPf (x)g(x)dx  (geL™).

We already knew in one-dimensional cases that the ergodic properties of dy-
namical systems are characterized by the spectrum of the Perron-Frobenius operators
restricted to BV, the set of functions with bounded variation, and we have proved that
the eigenvalues of the Perron-Frobenius operator P outside of some disc are determined
by the Fredholm matrix &(z), and at the same time the Ruelle-Artin-Mazur zeta function
1s expressed by the reciprocal of det(/— &(z)) ([10], [11]).

In this article, we will extend the notion of signed symbolic dynamics which we
used in [10] and [11], and as new signs we will introduce screens. On this new signed
symbolic dynamics, we will construct renewal equations, and by these renewal equations
we can define Fredholm matrices {®,(z)}.

Let

¢ =lim inf ess inf 1- log| det D(F")(x) |,

"~ a0 xel n
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where D(F") is the jacobian matrix of F". We call ¢ a lower Lyapunov number,
which is an essential infimum of the sum of Lyapunov exponents. We call that F is
expanding if

&=liminf 1 essinf log [r'nini’nlum of .I'the eigenvalue of D(F"Yx)|]>0.

- >0 M xel

Our aim in this article is to constru¢t Fredholm matrices @,(z) and prove (cf. [1],

[4]. [6]):

THEOREM A. Suppose that F is pzecewzse linear and expanding from a finite union
of bounded convex polygons I into ltself and assume that the lower Lyapunov number
>0 and satisfies E>v. Take arbitrary £>0, then there exists no>0 such that for any
n>ng in the disk |z| <e*™" %, det(I— D,(2)) is analytic, and moreover z~' belongs to the
spectrum of the Perron-Frobenius operator P restricted to A if and only if

det(I—@,(z))=0 .
We will also prove (cf. [6], [7]): |

THEOREM B. Assume that F satisfies the same conditions as in Theorem A.

Then the eigenfunctions of P on L' associated with eigenvalues of modulus 1 belong
to #.

We will define the constant v and giVe an example which satisfies £>v in §5. We
will also define the space % in §5. The space #=%(F) is a locally convex space with
norms | * ||,- (v'>v), and z~ ! belongs to the spectrum of P if there exists no continuous
(I—zP)~! with norm | * ||,- for all v’ >v.

In §2, §3 and §4, we will give formal discussions on generating functions and renewal
equations of them. In §5, we will consider a family of functions # and study the
eigenvalues of the Perron-Frobenius operator P on #.

~ We will study higher dimensional cases in [13].

2. Preliminaries.

In one-dimensional cases, we introduced the signed symbolic dynamics, which
represents the endpoints of the subintervals of monotonicity. It made us possible to
construct a renewal equation by tracing the orbits of the endpoints separately. Now in
2-dimensional cases, we will introduce the notion of screens of polygons and trace the
orbits of screens to construct renewal equations.

We denote by J® and J° the closure and the interior of a set J, and the
boundary AJ=J\ J°. Let J be a bounded convex polygon for which J is homeomorphic
to the unit disk. We denote by DJ and D{ the set of vertices (0-dimensional faces)
and the set of edges (1-dimensional faces) of J, respectively. Set D'=D3 u D{. We
call a set of lines «,, - - -, ,, lines which determine J, when J is the intersection of half
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spaces defined by =,, -, m,,. For each vertex de DJ, we call a pair of lines =, m;
(1 <i, j<m) determines 0 when their intersection equals @, and for each edge d e D{, we
call a line 7, (1 <i<m) determines § when 7, ~ 4J equals &.

~ Let o/ be a finite set of symbols, and <{a) (a€ /) be bounded convex polygons
mutually disjoint and each {a>“ is homeomorphic to the unit disk. Set 7= U pes <a>.
We consider a transformation F: I— I, for which the restriction F* of F to {a) is an
affine map, that is, there exists a vector p“ and a matrix M*“ and

Fi(x)=p"+M"x .

As we assumed that F is expandmg, it follows detM*“#0 for all ae &/. We denotc by
F' the i-th iteration of F:

Fip)= { i=0,
F(F~Y(x)) i>1.

RemMarRk 1. A transformation F need not to be continuous on A{a) (ae.¥).
However, whether the boundaries 4<{a)> of a& ./ belongs to {a) or not does not play
essential role in this article. Therefore, to avoid complicated notations, we usually i 1gnore
them.

REMARK 2. In this article, we only treat polygons which are bounded convex
and homeomorphic to the unit disk. Hence, we simply call them polygons.

As in one-dimensional cases, we use the notation such as words, shift and ex-
pansions, etc. We will summarize them here.

A finite sequence of symbols w=a; - - -a, is called a word and we set

1. |w|=n (the length of w), (for the empty word ¢, we put |e|=0),

5 _{ Nio F7D) 7 Kap) if we,
. wy= . : :
I if w=g¢ (for notational convenience),

3. wlkl=a,for 1 <k<n,

4. wlk,l]=a, - -a,for 1 <k<lI<n,

5. Bw=a,- - a, (shift),

6. F*=F°--.-F (F2=identity map).
We denote by # the set of words w with {w) # . We call a word we %" admissible.
Note that the empty word ee %",

ReEMARK 3. We assumed detM?#0 for all ae o/. Therefore for each ae «/, the
domain of the mapping F° can be extended naturally to R? and we can define (F%)~*
from I into R2. Therefore, for any xe I, we can define (F*)~!(x)=axeR?. In a same
way, for any word we #”, we can define wxeR? by wx=(F*)"!(x). If wx e {w), then,
of course, F!¥!(wx)= x. For this case, we call that wx exists. For a fixed x € I, the notation
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> 3w, Means the sum over all words w for which wx exists.

We considered, for one-dimensional cases, the symbolic dynamics with the set of
signs {+, —}. Now in 2-dimensional cases, we use the set of faces to construct
renewal equations. For a vertex d € Dy, let «, o’ be the lines which satisfy AJ N (" n')=20,
and AJ N7, AJ~n’e D! (n and n’ determine ). Then R? is divided into four regions
by the lines 7 and n'. There exists a unique region which contains J°, and we call it the
interior region determined by 8. We denote its boundary by J? (a union of two half
lines which start from 8) and call it the screen of the vertex 8. Also for an edge de Dy,
let = be the line which satisfies AJ nn=4, (9 is determined by =#). Then R? is divided
into two regions by the line 7. We also call a unique region which contains J° by the
interior region determined by 4. The line n is denoted by J? and called the screen of
the edge 4. Dividing R? into two regions, inside and outside by J?, put

" +1 if x belongs to the interior region determined by @,
o(J° x)=

-1 otherwise .

Note that as we mentioned before, we ignore the case x € J°, because it is unessential.

For a word w, we can naturally define o(F*J?, x)=06(J? wx). Note that o(F*J?, x)
is defined for all xeR? and for all word w even if wx does not exist (that is, even if
{w) = or if there exists no y e (w) such that F!*!(y)=x). This is one of the advantage
to use the signed symbolic dynamics.

For readers’ convenience, we will give examples of screens (Figure 1). Let J be a
rectangle in R2. Then there exist four 1-dimensional faces (say them [ r,u,d (left,
right, and so on)) and also four O-dimensional faces (lu, ld, ru, rd, (left-upper and so
on)), that is,

Di={lu,1d, ru,rd}, Di{={lr,u,d}, D'=DjuDi.
Set
s=(—1%2 k=0,1), s5,=1.
We also use the notation
s(J%)=5(0)=s, if deDj.

oJ4 x)=-1 o x)=—1
T T

T g Jlu
] 1 1
1 | 1
1
: J i J |
| 1 1
|___________! F __________ )
o, x)=+1 G, x)=+1
s(u)=-1/2 s(hw)y=+1/2

FIGURE 1
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Even if two screens J? and K7 for polygons J and K are equal as sets, if J#K we
consider them as different screens.
For a word we %, we denote w? instead of {w)°, and we denote

s={a’: aeod,0e D™},

For a face 0, we call that a face ¢’ is contained in @ if the set of the lines which determine
0’ contains all the lines which determine 0, and we denote é’ < 0. Here we consider ¢ < 0.
Now we get a simple but key lemma.

Lemma 2.1. Let J be a polygon.
(1) Take an edge 0 and a vertex 0y<0 of J. Let U be a neighborhood of 0,
sufficiently small. Then

[
&' # 0o

Y 5(6)6(J?, x)=0. (1)

(il) Let M be a set of edges of a polygon J such that UaeMa is homeomorphic to
a closed interval. Denote by 0, 0,€ Dy the endpoints of M, that is, M\(d,v 8,) is
homeomorphic to an open interval. Then

Y s@)=—=+, )
0'=3oeM 2
0' ¥ 05,0

where the sum is over all ' € D’ for which there exists 8 € M such that 8’ <.
(iii)) Denote by 1, the indicator function of a convex polygon J. Then we get

Y S0, X)+s,=1,x) ae x. (3)
de D7

Proor. (i) Let n be a line which determine &, and d, be endpoint of & different
from d,. Let # and =’ be lines which determine ¢,. Take U sufficiently small such
that U does not cross n’. Then if xe U belongs to the interior of the screen J?, it also
belongs to the interior of the screen J%. Therefore a(J° x)=0(J%, x)=1. Since -
s(0)= —1/2 and s(0,)= +1/2, this proves (i) for this case. The proof is just the same
when x belongs to the outside of the screen J°.

(ii) Now put M={d,, - - -, 8} (6;e D{) such that 6, d;,, # (i=1, - -, k—1).
Then there exists k edges and (kK — 1) vertices except &,, 8,. This shows (ii).

(iii) In a similar arguments as in (i), fix a vertex 8, of J and take a sufficiently
small neighborhood U of é,. Let ¢, and &, be the edges of J such that ¢, nd,=27,.
Denote by M the union of all the edges d e Dy except 4, and d,. Then, M satisfies the
assumption of (i1). From (ii), for xe U

Y s(@)o(J%, x)=—1/2,

where the sum is over ¢ € D’ except the faces contained in @, and &,. The rest of faces,



482 MAKOTO MORI

FIGURE 2

0o, 04, 0, and 0,, 0, give +1/2 for a point xe Un J, and —1/2 for a point xeUnJ*
(x ¢ AJ). This proves (3) for xe U. When we move x along a curve, it will change value
when x crosses a line 7 which generates some face of J. As we assume J convex, the
equation (3) also holds for every point in J°. Let x ¢ J be a point on  which generates
some face of J, and we will consider a sufficiently small neighborhood V of x. Note
that only two screens corresponding to one vertex and one edge, give different values
to ye V depending on the side of = where y belongs. But their influence to the right
hand term of (3) cancells, because s(d)=+1/2 (or —1/2) for a vertex (an edge),
respectively. This proves (iii) (cf. Figure 2).

Now we define generating functions to construct a renewal equation. We will
discuss the radius of convergence of generating functions in §5, and in this section
we consider them as formal power series. Put for a polygon J and ge L*

S:(Z)=deg(X) 2. z™ln(w)

w:3wxeJ
we W

and for J={a) (ae <) and de D’

55 (@)= deg(x) ) z"nw)eJ®, wx) ,
Iowx, (w1 > (a)>

where for a word w=a,- - -a,
nw)= T |detm= (1.
i=1

Concerning thg notation dwx, refer Remark 3, and for a word w

<w[1]>={<“"> i w=a, -a,
I if w=¢ (empty word).

REMARK 4. (1) In the definitions of s;'a(z) we consider words w for which wx
exist but wx do not necessarily exist. This is one of the key point of this article.

(2) Noticing the fact that wx is the one of the inverse image of F~!*l(x), 57(2)
can be written as a formal expression
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53°(2)= | dxg(z) > zin(w)e(J?, wx)
o F0wx,{w[l])><a>

= | dxg(x)a(J?, x)+ i z" fdxg(x) Y n(w)a(J°, wx)

Jowx,w[l]l=a,|w|=n

= | dxg(x)o(J°, x)+ i Z"deg(X)[P"(G(Ja, o )(x)
1 n=1

= | dxg(x)zn(@)[{I—zP)™ Y(a(F*J?, - )](x) -
(3) . Since P is contracting in L!, in |z| <1 all the above series converge.
(4) Note also sg’ (z)=0 for a polygon J which is contained in the complement of I.

(5) LetJ?and K% be screens of polygons J < {a) and K= {b) (a, b€ /) respectively
and they are equal as sets. Then if a=b,

a a9’
sy (2)=55 (2),

that is, in Figure 3, 52(z) does not equal s2’(z) unless F*=F", but s;'(z)=s,(z). We
will use this relation in the next section to construct a renewal equation.

aa . Jﬂ b&'

(b)

{@)

FIGURE 3

LemMA 2.2. For a polygon J such that J=<{a) and ge L™,

54(2)= f g(x)dx+ zn(a)s; (z) , 4
J

A (Z)=S2j dxg(x)+s,zn(a)s)(2)+ 2 50)s](2) . &)
1 deDV

ProoF. Dividing the case |w|=0 and |w|=1, we get the proof of (4). In a
same way, dividing the case |w|=0and |w|>1,

2 s@s = 2 deg(x)S(a)d(J %, x)

de DT deDJ

+ Y fd‘x'g(x) Yo zZ®lyw)s(d)e(JC, wx) . - (6)

deDJ A0wx,wll)l=a
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Here, we again use the expression stated in Remark 3. The sum ) 5, . ...__denotes
the sum over all words w=a, - - -a, such that a, =a and fwx=a, " - -a,x exists, that is,
there exists a point yel such that ye<a,), F(y)elas), - -, F* 3(y)ela,> and
F"~1(y)=x. Note again, we need not assume that wx exists. Then by Lemma 2.1 (iii),
we get

Z dxg(x)s(@)o(J°, x)= deg(X)(lJ(X) $2)= jdxg(X)lj(X) $2 deg(X) )

Taking 0w as w, we get

the second term of rhs. of (6)

= zn(a) J dxglx) T znw) T (0ol awx)

w:Iwx de D’

=zn(a) I dxg(x) Y. z!"lpw)[1(awx)—s,]

w:dwx
ﬂ

=ldxgx) 3 zn(a)z""'n(w)—zn(a)s, fdxg(x) 2 z™in(w)

o w:dawxeJ widwx

r‘

=|dxgx) Y, z™gw)—s,zn(a) f dxg(x) 3. 2"hn(w)

o |wlz1,3wxeJ w:dwx
P

=Jdxgx) Y z¥Ipw)—sizn(a)s;(2) . (8)
N |w|z1,3wxeJ

Therefore combining (7) and (8), we get

rhs. of (6)=S;(2)—Sz|:J‘

I

dxg(x) +zn(a)s;(z):| .
This proves (5).
COROLLARY 2.1. We have a renewal equation of the form:
s;(z) =584 ~[gdx +szz( > n(a))sg’(z) +> > s(a)s;’a(z) ) )]
acsd ae.of de DD

Since sj(z)=)_ . , 5%, the proof directly follows from (5).
As a formal discussion (rigorous discussion will appear in §5), the spectral
problem of the Perron-Frobenius operator P turns into the problem of singularities of

J .
5,(2), since

5,(2)= j[(l —zP)"'1,](x)g(x)dx .

To solve this problem, we will construct renewal equations. However, as we stated in
[10] even for one-dimensional piecewise linear transformations, it is almost impossible
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to construct renewal equations for s;(z), because we must trace the orbits of A<a) at
a time. But by Lemma 2.2, it is sufficient to construct renewal equations for sf(z).

3. Renewal equations.

Renewal equations are well known notion in the theory of Markov processes (cf.
for example [37]). First, we will show how to use it to our discussion in a very simple
example.

ExaMPLE 1. Let us explain a renewal equation by a simple Markov case (cf.
Figure 4). Here (a)=AACD, {(b)>=ABCD and I=<{a) v {b) (we ignore the segments
CD, because it does not affect the result), and

F{(A)=A4, F{(D)=C, F{C)=8,
FNC)=A, FXD)y=D, FYB)=C.
If AB>AC>AD>CD and AC> BC, then this mapping is expanding.

A

(@)
D

o/ O

FIGURE 4

Now, since Fé({ad)=<{a> v {b>,

5576 = 3 2" | LaF e
=J gdx+ Y 2" | 1ea(g(F (0)dx
(ad) n=1

= J g(x)dx + zn(a)s{(2) +s57(2))
ay
and in a similar way, since F?({b>)=<ad,
s;b>(z)=f g(x)dx +zn(B)sS*(z) .
by

This is a renewal equation, and we get
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(s;“>(z) ) =( L—zn(@) —zn(a) ) *( f ay 90N )

Sg<b>(z) —Zﬂ(b) 1 f(b> g(x)dx

From this renewal equation, we can solve the problem of singularities of s{*’(z) and
532(z) by solving

\ 1—zn(a) —znla)
—zn(b) 1

But as in one-dimensional cases, for non-Markov transformations it is almost impossible
to construct a renewal equation for s{%’(z) (a € ).

NotaTioN 1. For symbols a and b (a, be /), we say that a screen J of a polygon
J crosses ab if J<{a) and F4J) n (b # & (cf. Figure 5, the definitions of 4,, 4, and

A, will be given afterwards). Set
~ : Fa F — r ¥
{ab, J >= { {xelb): a(FJ), x)=+1} if J CI:OSSCS ab,

‘otherwise .

A screen <ab, J>? with a face d e DT> such that (ab, J>? and b” are different as sets
for any 0’e D<? is called a new screen generated by FA(J) in ¢(&), and we denote by
New{ab, J> the set of new screens of {ab, J .

|
\ Aab, J) | Adab, J)
! Alab, J) !

F(J) (b) L & | FdD
..... - —— S S gyt | R
Ayab, J) Aglab, J) Aab, J)

new screens
FIGURE 5

REMARK 5. Note that if K°=5" and K<=(b), then sX(z)=s2"(2).
Before the next step to describe the notations, we will mention several lemmas.

LeMMa 3.1. ForascreenJofapolygonJc {a) for someac of andge L, weget:
(1) First renewal equation:

s3(z)= deg(X)a(f » X)+ Zﬂ(a){ bzd 55 (2)oo(F(J), b)+2 bzd syt ’(Z)} , (10)

where
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+1 if o(J,ax)= +1 holds for a.e. xe<{b>,
-1 otherwise .

ao(F(J), b)= {
(ii) Second renewal equation:

57 =712+ Y 26 ®B)sk2)+ 220 (Dsk(z)
best

+2m@) Y, Y sKsKa), (11)
beof KeNew(ab,f)
where
)= Jg(x)a(f, x)dx +zs,n(a) bZﬂ o, (F(J), b) Jg(x)dx ,
¢ (B)y=s(Bm(a)o (F(]), B), () =n(a)s, bZﬂ o (F(J), byn(b)
and |

& (F(T) b)={ —1 if o(F%J), x)=—1 holds for a.e. xe<lby,
* ’ +1 otherwise ,
+1 if o(F%J), x)=+1 for all xe<{b),
or if J crosses ab and b= {ab, J)°
for some de DT>
-1 otherwise .

o (F4(J), b)=

Proor. In Figure 6, we show the values of g, and o, for simple cases. Taking
Ow as w, the left hand side of the definition of sg](z) for | w|>0 becomes:

f dxgx) Y. zInwie(T, wx)

Jowx,w[l]l=a

=zna) Y, |dxg(x) Y. z"pw)e(FYJT), wx).

be .ot Jwxe b

If <b> does not intersect F*(J), o(F%J), wx) is independent of wxe (b) and equals

- L ®
F
— F(J) x as F(J)
The values of o, (F*(J), b) for The values of & (F4(J),5?)
various rectangles (b) for each face J of (b)

FIGURE 6
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oo(F(J), b). If F*(J) intersects (b}, we take
O'(Fa(j), wx)= —14+2x 1, 5,(Wwx)= o-O(F“(j), wx)+2 % 1 15(Wx) ,

where 1, is the indicator function of a set J. This leads to the proof of (i), and the
proof of (ii) follows from (i) using (5):

slz)= deg(x)a(f, x)

+zn(a) Y. oo(F(J), b) [Sz fdxg(x) +s,zn(B)sl(2) + ), 3(3)356(2)]

best 2D

+2zn(a) > [s ,5 fdxg(x) +s,zn(B)siz}+ Y , s(é‘)sg(""'] >"(z):l X
F“(.T}fwe(d:) £0 pepen®

Decomposing the screens of {ab, J > into new and old screens, we get using Remark 5(1)

sg] (2)= fdxg(x)a(f, x)+zn(@)s; . o, (F “(J), b) jdxg(x)

be o

+22'1(a)sz( 2 o (F), b)n(b))SJ(ZHZn(a) SZ o.(F°(J), Bs(B)st(z)
€sf

be o

+2ma) Y Y sRske).

besd KENew(nb )
This proves (ii).

LemMma 3.2. Let Q be a domain in which s)(z) and sf(z) are meromorphic for all
polygons J and screens K. Then, for z,cQ, the following two conditions are equivalent:

1. Thereexistsae o and apolygon J < {a) such that s](z) has a singularity at z, € Q.

2. Thereexists be o/, a polygon K ={b) and 8 € D* such that s;‘a(z) has a singularity
at zo€Q, or s)(z) has a singularity at z4€ Q.

Proor. First note that if 5](z) has singularity at z,, then there exists ae s/ for
which 5,%(z) has singularity at z, because sX(z)=Y,__ s{(2).

Suppose now that s](z) has singularity at z,, then by Lemma 2.2 ’(z) or s, I(2)
must have a singularity at z, for some de D’. On the contrary, if s (z) has a smgulanty

at z,, then by (10) 5$2(2) or s{%(z) for some a, be .o/ must have a singularity at z,.

From this lemma, to solve the spectrum problem of the Perron-Frobenius operator,
we need to solve the problem of singularities of s;,’a(z) and s)(z). To solve this problem
of singularities, we will construct renewal equations of sf(z) applying second renewal
equation (11) to new screens repeatedly. Though the construction is simple, however,
to get renewal equations which have sufficiently large radius of convergence, we need
technical and tedious calculations, therefore it is not at all easy to understand. To make



FREDHOLM DETERMINANT 489

the discussion a little bit clear, we will divide the construction of renewal equations
into several steps.
First, we will begin with the second step of the inductive definition.

NotAaTION 2. Let w=a, " -a, be a word of length n>2 and be.o/. We call a
screen J of a polygon J crosses wb if

J=layy,
FiAgw[1, i1, I ndayy D#F  (I<i<n—1),
FrRyn<by#D,

for some Ke New<w, J>, where we define inductively the sets 4,{wb, J>, (wb, J> and
the new screens New{wb, J) generated by F*(J) in (b} as follows:

(wb, T _{ () Renewcw. 75 <asbs K> if J crosses wb,
i & otherwise ,

{wb, T2 (wb, TY2#b¥, Y5 € D} if Jcrosses wh,

Newlwb, J>=
< ? { otherwise .

Note that the set {wb, J> for |w|=1 is already defined in Notation 1. Set
Aowb, Ty =(F*(J) 0 4{wb, TH\ A<b) ,

A4,¢wh, J> is the union of {wb, JY\(F*(J) ~ <b>) such that (wb, J)? is a new screen
generated by F¥(J) in <b)> and & is an edge on F*(J), and 4,(wb, J) is the union of
<wh, TYN\(dodwh, J> L A,{wb, J>) such that {wh, J)? is a new screen generated by
F*(J) in <b)> and & is a vertex on F*(J). This definition is the same as we stated in
Notation 1 for the case w=a (cf. also Figure 5 again). We also put 4,{a, J>=J.

Assume that J crosses wh. We say a screen K°e New{bc, L% generated by F¥(L%)
with L% € New{wb, J> for some ce .o/ is

1. of type 0, if 8 < F¥(d,{wb, T D),

2. of type 1, if 0= F¥(4,{wb, J>) and it is not of type 0,

3. of type 2, otherwise.

DEeFINITION. We denote by F.f the set of new screens generated by F*(a®) in some
(b (a,be o, e D), that is, Fod =, | scpw» Newlab, a®>. For n>2, let

Frsf= ) | U  Newdwb, w11\ (il Fksd).
|w|=n best deDWUID
Note that the screen K which is of type 1 belongs to | J,, , F¥<?.
REMARK 6. (1) F"of is not the set {F(d): de /).
(2) In Figure 7, ) is mapped to @) and 3 by F¢ (2) is mapped to @) by F*,
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(b @ @ @
@ | @ © ®
| © ®| @ U Febe(f)
FIGURE 7

and it is mapped to @ by F°, and ® (@) is mapped to &) (@) by F®, respectively.

1. If a face belongs to (O, @ or @), a screen determined by the face is of

type O.
2. If aface belongs to @), @) or @), a screen determined by the face is of type 1.
3. If a face belongs to @ or (), a screen determined by the face is of type 2.
4. If a face belongs to @) or @), a screen determined by the face belongs to F.o/.
5. 1If a face belongs to @, a screen determined by the face belongs to F2./.

Now we will explain the steps of constructing renewal equations.

1. Construct a renewal equation on { ) F".s/. In this case, the corresponding
Fredholm matrix becomes an infinite dimensional matrix.

2. Construct finite dimensional Fredholm matrices on | JY_ F".o/ renewing re-

peatedly U:’:N a F "o terms appeared in the renewal equation which we got above.

In this section, we will construct a formal renewal equation of the first step,
which depends all the elements which belong to ] , F*./. From this formal equation,
we can construct an infinite dimensional Fredholm matrix &(z) and an infinite di-
mensional vector x,(z) such that

5,(2)= x4(2) + P(2)s,(2) ,

where s,(2)=(s7(2))7. Ue oFrd ol -

LeMMA 3.3. Let we# be a word and J be a screen of a polygon J={a) (ae o).
For a screen L which is generated by some F(K) (Ke New{w,J> in (b> (be ), we
denote by G(L) the set of Ke New{w, J> such that F(K) generates L. Then we get

{+1/2 if Lisoftype0oritypel,
0 if Lisoftype?2.

We illustrate the simplest case in Figure 8. Let (D, @, ® be the images of K,
K,, K;e New{w, J>, respectively. Then

1. b is like (1), then G(L)={K,, kK,, K;},
2. <b) is like (2), then G(£)={K,},
3. <b)is like (3), then G(£)={K,, K,}.

Y s(K)=

ReG(D)

PrOOF. As we show in Figure 9, note that
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N @
- . (1) 3)
K, K, ] ©)
R, @
FIGURE §
|, (wb, J) L A(wh, J) Awbe, Iy b A (whe, J)
3 &) J
F"(J) (b Fb 1Awbe, J)
_________________ kN S
Axwb, J) Agwb, Ty | Afwb, J) Awbe, J) Awbe, J)
{F)
EAZ(wb, J )i
i i A1<Wba )
Awh, J) A(wb, J) F*(H
(b

FIGURE 9

1. Ay wb,J) is a union of segments (or a segment). Therefore for £ of type 0,
G(L)is a set of one screen determined by one edge and two screens determined by vertices.

2. A{whb,J> is a union of half lines which is generated by vertices. Therefore
for L of type 1, G(L) is a set of one screen determined by a vertex.

3. A,{wh, J) is a union of half lines and 4,{wb, J> U 4,{wb, J> is a line or a
union of half lines. Therefore for L of type 2, G(L) is a set of one screen determined
by an edge and one screen determined by a vertex.

Taking into account the signs of edges and vertices, this completes the proof of
Lemma 3.3.

Set fdr a screen J of a polygon J,
7 if Jel )=, Fsf,
@)= o+ Y Y 22 Rnwll, |w|— 17Xz otherwise

weW I?eNew(w..T)
fwl=2 type O

and for a screen Jel ) F*sf (J=<a) for some ac.of) and Le| )7 F*of
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z¢ (D) if Led,
2zn(a)s(C)  if there exist we # and be .o such that J
o(J, L)z)= crosses whb and I el oo, F *of is a new screen
generated by F¥(J) in (b),
0 otherwise ,

and for a screen J¢| ), F¥o/, J={a) for some acZ and Le| ),  F*sf

(207D + Y Y 28Rl iw|—1)¢RE) if Ledd,
i KR

(T, L)z)= . . "
Y 2s(D)z!Ipw[l, |w|—1]) if LelJX, Fod,
jw]=
New(wif)?f
type 1 .
[ 2247(1) if Jel )=, Ftef,

¥ el _ N
o(J, I)z) | 22670+ T T 2R igwll, |wl—1)¢R(I)  otherwise .
57 R

LEMMA 3.4. For all ae of, polygons J=<{a) and ge L™, the following equation (12)
Sormally holds.

> Fk;rﬁ(.f, D)) Hz) + (T, IN2)s)(2) . (12)

k=0

sle)=x])+
L

€

ProoF. Recall the second renewal equation (11):

552 =72)+ Y 28’ (B)slz)+22¢TD)s)(2)

bess

+2zm@) Y, Y s(Rsf@). (13)

best KeNewlab,J>

Hence if Jel| );° , F*</, then New{ab, Jy<| )., F*a/. Therefore it becomes

SEO=H@+ T 60 D@+ ¢ Dsya).
e gl

€U rk=0oF

This proves (12) for Je | ), F*</. For other cases, we will renew s5(z) in the last term
of (13) repeatedly.

7@ =7+ Y. 2¢"B)sj(2)+22¢7(I)s,(2)

best

+ Y Y 2zmas(B)ske)

be o KeNewlab,T>
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=77+ X z¢7B)s(2)+27¢ (Ds)(2)

be.d

+ 2 2z11(cz)s(l'<")[;zf(z)+~ _ 265@sla)

be ot I?eNew(ab,])

+22¢R(Dskz)+ Y > 2zn(b)s(1i)s§(z)]

cedl feNew(bc,K)

=i+ Y Y 2mas®ike)

be of ieNew(ab,f)

~

+ 2 [Z¢7(5)+ )ID) 222n(a)5(1?)¢>'?(5)}5(2)

Fesd best ReNewcab J>

+[z2¢>’(1)+ )N 2z3n(a)s(ff)¢f(1)]s;(z)

be o KeNewlab,I>

+2 X X % 4s(K)s(D)znlab)s(2) - (14)
best KeNewlabJ) cet LeNewlbe, K>
Hence, by Lemma 3.3, we can divide the last sum of right hand term of (14) into the
sums over screens of type 0 and type 1. Note that a screen L e New(bc, K> for
Ke New{ab, J» which does not belong to New<{abc, J > is of type 2 (cf. Figure 9 again).
Hence

) > Y as(B)s(D)z3nlab)sk(z)

bet ReNew<ab,Jy ceal LeNewlbe K>

=Y Y 2s(D)nlabysie) .
b.ceod feNew(abc,]}
typeQor 1

Therefore we get

ths. of 19)=7]2)+ Y. Y  2m@s(B)ike)

besof KeNew(ab, >

+ Z~[2¢7(5)+ Y Y 2 Zn(a)s(l?wf(a]s:(z)

e.od be s KeNewlad, >

+[22¢;(,)+ Y ¥y 2 3n(a)s(1?)¢f(1)]s;(z)

beo KeNewlab,J>

+ ) Y 28(L)zn(ab)skz)
bce st EeNtew(aIbc,f) )
ype

+ Y > 2(D)zlab)sk(z) . (15)
bceod feNtew(ngc,f) ‘
ype
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As we remarked before, K of type 1 belongs to | ., F*.o/. Therefore we need only
renew the type O screens. Repeating this procedure, we get as a formal power series:

ths. of 15)=7l2)+ ¥ ¥ 2zn@s(®Ek)

beod KeNewlab,J>

+ Y Y Y 2(R)mwiNz)
|wi=2 best Ke)\’é;ze(gb.f)

+ Z~[z¢’(a)+ Y T 25(R)n@)ef@)

Ceof beo KeNewlab, >

+(22¢‘7(I)+ Z Z : zlw'+128(K)ﬂ(W[1, ]W|_1)¢E(I))S;(Z)

|wi=2 feNew(w.])

+ 2 | ) 28(1?)2'“’"1(W[1,in—l])¢’z(5)}f(Z)

|wl=3 ﬁeNew(w.])
type O

+ ¥ Y 2Bz tywlt, | w—1]sE(z)
|w|=3 fe)f;:e(;v,])

=fla+ ¥ Y 2R nwlL, |wl—1Dike)
|wl=2 Kelf;l;t;(‘;v.])

+ z~[z¢f(e>+ »

Cesl

X 2Bz gwln, | w - 1])¢f(6)]s5(z)
[w|=2 Kei}f;;(:- >

+|:22¢f(1)+ Z Z z'“’|+123(1‘(~')71(W[1, |W|_1])¢£(I):|J;(Z)

|w|x=2 KeNeww,J>

+ ¥ Y 2Dy w1, fw = 1])sEz) .
Eelyr_ Fxd  |w|z3

New(w,]’)af

type 1

This proves Lemma 3.3.
Using (12) for d e <7 and (9), we can construct a formal renewal equation of the form
54(2) = x4(2) + D(2)s54(2) ,
where s,(z), x,(z) are | )2, F"o/ U I vector and &(2) is | )%, F"o/ I matrix and
s)(2) it Jel X Fo,
55(2) if J=I,
ng(z) if JeZ Fod,
s, %ol [ gdx if J=1I,

s(2)y= {

X(2)y= {
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o(J, KXz) if Jel > Fsf,
P2y s(K) if .Z=1~and Ked
’ 5223 e @) if J=K=1,
0 otherwise .

4. Reduction to finite dimension.

In §3, we constructed a formal renewal equation which leads to an infinite
dimensional Fredholm matrix @(z). Now in this section, we will reduce it to finite
dimensional matrices @,(z) for n=0,1, ---.

The idea is only to renew all the terms sg’:(z) (Lel ., F*s) in the right hand
term in (12) repeatedly. Then we will get a renewal equation with only the elements
sH(z) (Le| )} _, F“.of). Since screens of type 0 and 1 generate new branches, we need to
estimate their numbers. We will prepare several notations. o

Set B,{wb, J> be the set of K°e F¥o such that J crosses w, and K? is of type 1
generated by some F*I* (L) (£ e New{w, J>), that is, the face which corresponds to L.
lies on F*UwI=kiwilbq w1, |w|~k], J). Note that if |w|<k, then B,{wb,J)> =¥, and
Bo{wb, J>= (& for any we #" and be.«/. Let

k>n

C, \wb,Jy= ) B<wb,J>, D, {wh,J>=|] B<wb,J).
k=1 .

Then using these notations, (12) becomes:

5@=xl@+ Y $T DEsHD+ T, Ds)2)
£

Lel )7 F*

=x§(2)+52~2$(1 B)sS(2)+ #(J, DN2)s k(=)
-4 ;

+ Y 28Dl [wl—Dsf(e)

weW,|w|=23 I:'EU;"D:oBk(w,f>

~ ~.

=2@)+ X 28T, B)siz)+ $(J, 1Nz)s)(2)

besd

+ VZ 2 2(D)2™in(wl 1 fw] 1)35(2)

weW |w|z3 EECH,1<W, >

+ Y Y 2sAD)"™igwll, |w]—1]s,z) - (16)
weW,|w|=3 LeDn,{w,J> :
When we renew D, ,{wb, J», from these screens there appear the screens in | J ., F*.o7,
which we will denote by C, ,{wh, J> and D, ,{wb, J> contained in | J;_, F*o/ and
{J», F*<7, respectively. Then we again renew D, ,{wb, J), there appear C, ;{wh, J)
and D, ;{wb, J ) contained in | J}_, F*s/ and |}, , F*.o/ respectively, and so on. More
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precisely, for I>1 set

Cn,H— 1<Wb1 '7> = U Cn,l<w[ms | w l]ba ‘7’> b)

F eDn 1<wl1.mLT>
mz=2

D, . {wh, T>= U D, {wlm, |w|}b, T,

Y €Dy, 1¢wl1.m).T>
m>2

C,iwh, J>=1) C, Kwb, J>= ) Fkof ,
k=1

1z1

D, {wh, J>= 1) D, Kwb, Ty | | F*of .
i=z1 k>n
REMARK 7. (i) D (wb, I>=G if |w|<n.
(i) Colwb, J>=.
(iii) New screens generated by screens in D,{wb, J> belong to | ., F*s/.

Now we will fix n>0 and construct the Fredholm matrices which have indices
\Jr_, F*of. We need not renew screens which belong to C,{wb, J). Let

New, {w, J>=New{w, J>u D (w,J>,

and we call a screen of type (n, 0) if it is of type 0 of New,{w,J> or it belongs to
D, {w, J>, and of type (n, 1) if it belongs to C,{w, J>.

We will explain these notions in Figure 10.

1. Let F%(J) be as in Figure 10(a). Screens with faces @ (8 # F(4)) on (@), which
is the image of the half line () by F?, belong to B,<{ab¢, J) for ¢e .o/ which intersect
(@, that is, in Figure 10(b} the screen of the vertex C is an example.

2. Screens with faces 8 (8 # F*(A4)) on (®, which is the image of &) by F, belong
to B,{abcd, J) for de o/ which intersect (5, that is, in Figure 10(c) the screen of the
vertex E is an example.

3. Screens with faces 9 (0 # F°(D)) on (3, which is the image of (3 by F*, belong
to B,{abcd) for de of which intersect (3.

4. To construct ®,(z), we will renew the elements of F.o/. Therefore screens of
faces 0 (0 # F(C)) on (®, which is the image of (3 by F*, belong to D, ,{abcd"), because
they belong to Fsf. The vertices F, G and the edge FG are examples.

5. To construct ®,(z), we will renew the clements of F2.o/. Therefore screens of
faces 9 (8 # FUE)) on the image of @ belong to C, ,<abcd, J), because they belong to
Ff.

6. The Screens of the vertices 4, B and the edge 4B belong to New{ab, J ).

7. The screens of vertices C, F®(A), D and the edges CF(4), F*(A)D belong to
New<{abe, J>.

8. The screens of the vertices F*(4), E, H and the edge EF>(A), F*(4)H belong
to New{abcd, J>.
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Q@ @
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A B FYJ) c ®
{©)
FA)| D F(B)
(a) (b)
o) (@)
F9(C) F G
£ @
(d) H
A Fe(D)
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FIGURre 10

9. The screens of the vertices F, G and the edge FG belong to Newy{abed’, J>.
10. New, {abed, J>=Newlabcd, J>. There appear screens which belong to
D, ,{abcde, J) for the first time by faces on the image of by F for some e€ o/
which intersect the image of by F4, and New,{abcde, T 2 New{abcde, I>.
Set for a screen J of a polygon J,

#](2) | if JelrlFsZul,
Xngl2)= o+ X Y 2By gl w|—1FKz)  otherwise,
wew IfeNew,&w,f)
Iwlz2  type(n,0)
and for a screen Je| )!_} F*o/ (J<=<{a) for some ac =)

z¢ (L) if Fesd,

¢(J, D)X2)=< 2z5(Jmla) if Lel)i_, F*</ is a new screen generated by F°J,
0 otherwise ,

and for a screen J¢ | JI_} Frof
weW IZeNewn(wJ)

type(n,0}
lwlz2

2070+ S Y 2Rl lwl~ D)D) if Led,

ou( 7, ENe) = ) )
Y 2Bzl |wi—1) if LelJr., Frsf,
lw|=3

New,<w,J53E
L type(n,1)
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&7, I)(z) if Jelj_oF*dul,
olT, D=3 T, DD+ Y Y 2(K)"In(wll, |w|—1)$%(I) otherwise .

wewW KeNew,.(w,.T)
1ype(n,0)
wi=>2

We will discuss the radii of convergences in §5.

LEMMA 4.1. Forascreen JofapolygonJsuchthatJc {a) (ac f)andge L™, we get

o=@+ Y o DXaxsk). (17)

Le g oFreful

Proor. We now renew the last term of the right hand term of (16) again, then

25(2)z" w1, w| = 1]s(2)

weW,|w|z3 LeDn, (<w, T

= 2 Y 2s(Dyz"ipwll, [w]—1])

weW,|w|=23 EeDn,l(w,.T)

<[+ 3 =B Bufir+ oL 1l

best
+ ¥ Y 2R InwL, |w' | — sk(z)
w'ew,|w’|23 ReCp,1{w',L)
+ Y 2 2s(ﬁ)z"""n(w'[1,|w'|—1])sf(z)]. (18)
weW, w23 ReDn 1 (w.L>

By Lemma 3.4, new screens which are not of type (n, 0) or (n, 1) will vanish, and in a
similar way to prove Lemma 3.3 we get

rhs. of (18)= ) Y o 2s(D)z'™Ipw[l, |w|—11)

we# Jwl=3 I:'ED,.,I(W,.T>
x [xf(z) + X 2L Bsfia)+ oL, I)(z)s;(z)]
e

+ X > 2s(D)ipwll, jw|—1)skz)

weW,|w|z6 LeCp 2(w,T>

+ ) Y 28Dz, | wi—1]skz) .

weW,|w|=6 LeD, 2(w.L>

Therefore we can prove this lemma by renewing repeatedly all the terms which belong
to |, o Dulw, T ).

Now we get a formal renewal equation.
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THEOREM 4.1. Fix any n=0. For ge L™, we get

([_ Qn(z))sn,g(z) = XH,g(Z) s
where
Sn.g(z) = (S;(Z))EE UZ=OF"&1~U I
Xn,g(z) = (erg(z))fe Us =0F".d~u I
D,(z)= (¢n(k’ E))I?,fe Urn_oFkd ol -
Therefore, in the domain where the coefficients of &,(z) and Xn.g(Z) are analytic,
the singularities of s;(z) (Ke | J;_, F*</) are determined by det(/— @,(z))=0.
In §5, we will show the zeros of the Fredholm determinant det(/ — ®,(z)) correspond

to the reciprocals of the eigenvalues of the Perron-Frobenius operator P restricted to
a family of functions %.

5. Spectrum of Perron-Frobenius operator.

5.1. KEstimate of radii of convergences. We will discuss first the radii of con-
vergences of the renewal equations constructed in §4. Afterwards, we will show an ex-

ample for which the renewal equations has sufficiently large radii of convergences.
Recall

& =lim inf ess inf Llogl det D(F"Xx)| ,
n

n—w xel

and we define

v=lim sup sup—ll;log#{w: |w|=n, {wd>nI£Z},
-+ o0 I

where D(F") is the jacobian matrix of F", and sup, is the supremum over all segments

I. We call that F is expanding, if

E=liminf 1 essinf log [minimum of | the eigenvalue of D(F")(x)|{]1>0.

- n—w R xel

As we assumed that F is expanding, F is expanding for all the directions. Therefore the
set of polygons {<a):ae/} is a generator, that is, {F*{a):aeal, k=0,1,2, - -}
generates the g-algebra.

LEMMA 5.1. Assume that F is expanding and £>v. Then, there exist 6,>0 such
that 8, tend to 0 as n— oo, and for any e>0, in the domain |z|<e®~>~%~¢ ¢.(J, [)z)
and XZ, A2V gl are uniformly bounded in screens J of a polygon J={a)> (ae ) and
Lel)i_, o, where ge L™ and | * ||, is the L™ norm.
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ProoF. For any &£>0, the number of words with length m which intersect J
is at most Ce”*?™ with some constant C>0 which is independent of screen J.
First note that the number of (J,,_,, New{w, J) is at most 5Ce®**>™ because one
screen can generate at most 5 new screens (3 vertices and 2 edges) in some <{b) (b€ ).
For a screen Le F*of (k>1) of type 1 for which ¢(J, L)(z)50, there exists a word w
(Iw{>2) such that the face which corresponds to L lies on F*(4,{w, J>). Therefore [
is generated by F°(K) where xe! is one of two endpoints of Adw, I >, afai - is
its expansion, and the face which corresponds to K is a vertex F¥(x), that is,
Ke New{waj- - -af, J». Therefore the number of screens belonging to F¥(o/) of type 1
(k=1) generated by F(K) for Kel), -, New{w,J> in some bes/ is at most
Coet He2m=8 if m>k>1 for some constant C,, and it equals 0 if k> m.

Set

fim)=sup 3 New,(w,J),
J iwj=m
where sup is taken over all screens generated by faces of convex polygons in I. Then
S (m) equals the sum of the number of sup, |-, New(w, J> and the sum of the number
of screens generated by FYJ) (J €|, mon_i Newlw, J>) over k=1 to m—n,
Therefore summing all these numbers, we get

f(m)SSCe‘”+‘/2""+ CO Z e(v+£/2)(m—n—k)f(k)
k=1

for m>n. Then multiplying both sides by ¢™, taking the sum over m=1 to oo, and with
a reduction, we have

SCev+SIZt
_ev+s/2t_ Coev+£/2tn

Y flrk< :
k=1 1

if the denominator is positive. Since the denominator is positive for sufficiently small
t, taking J,>0 such that e”¥~%?7% is the minimal root of 1 —e"**%1— Cye”*¥21" =0,
we get

f(m)S Cze(v+e+6,‘)m (19)
with some constant C’, and 6, =0 as n— co. On the other hand,
FH sLebes(I)(l +zl % n(a)) gl , (20)

where Lebes(J) is the Lebesgue measure of a set J. Using (19) and (20), we find that
there exists a constant C” such that the m-th coefficient of xg(z) satisfies

> Y nawll,|w|—1]Fk

|w]=m KeNew,{w,J>
type(n,0)

<Cue(_é+v+e+6n)m(l+|zl 2 n(a))”g”m .

acd
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This proves the uniform boundedness of g, g/ igll .. To estimate q.’),,, we only need
to estimate the radius of convergence of ¢,(J, K) for Je F'e/ and Le /. Since qbK(L)
is bounded, we also only need to calculate the number of elements | J,,, ,, New,{w, I>.
Thus there exists some constant C”’ such that

S 2T, |wl— DKL) | < Crrelmeryretam,
fwli=m IEENEwn<w, >
type(n,0)

This proves the lemma.

LEMMA S5.2. Assume that F is expanding and & >v. Then in the domain | z|<e® ™",
det(I — @,(2)) is analytic.

5.2. Anexample. Roughly speaking, as F" expands all the directions at most in
the order ¢~ 9" the length of an edge of a polygon {(w) with {w|=n must be longer
than e ¢~ 2" Therefore, for any segment of unit length, the number of words with
length »n which intersect this segment is at most e©~2". Hence v may equal {—¢.
Namely, as shown in the former subsection, the radii of convergences of the Fredholm
matrices etc. may be larger than or equal to e° ~%. This is true for Markov transformations,
but for non-Markov transformations, there may appear small polygons {(w) comparing
its length |w|. Thus, it may happen v become very large. We will give a non-Markov
example for which £>v.

ExampLE 2. Consider a triangle ABC. On the segment AB take points D, P, Q.
Assume that AD<AC<AP and BD<BC<BQ (cf. Fig. 11). Let &/ ={a, b}, (a)>=
AACD and <b)> = ABCD. A transformation F® maps 4, C and D to 4, P and C, respec-
tively. A4 transformation F* maps B, C and D to B, Q and C, respectively. Indeed, take

a1} =0} (1) 2=(2) £=(; s 0=( ;) o
()= G- 0)-():

Ma=( p—1 l—p), Mb:(q l/d—q)’
1/1—d)+p—1 1—p g —9q

FiGure 11
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and the eigenvalues of M“ and M® are +./1—p)/1—d) and +./q/d, respectively.
Therefore, F is expanding for O0<p<d<gq.

LemMa 5.3.  For the mapping F of the example, there exists a constant C>0 such
that a segment shorter than C can be divided at most 4 segments by 3 iterations of F.

A

FIGURE 12

Proor. From Figure 12, at most 4 polygons corresponding to words with length
3 have same vertex. To be divided into more than 4 segments by 3 iterations of F, a
segment must cross more than 4 polygons corresponding to words with length 3. Hence
it must be longer than some constant C>0. This proves the lemma.

LEMMA 5.4. Let F be a mapping with o/ ={a, b} for which there exists a constant
C>0 such that a segment shorter than C can be divided at most 4 segments by 3
iterations of F. Then the maximal number of words with length n which intersect a
screen is at most the order max{22"3 ¢~ &},

PrOOF. Let a, be the number of words with length »n which intersect a screen
J. Then each pieces of J N {w> (|w|=n) can be divided into three types.

1. Jn{w) is divided into two pieces contained in words wa and wb (a, be ),
but both of them are contained in some words with length n+2, that is, for example,
J n {wa) ={waa) or J n {wad = {wab) ({wa)={waa) or {wab>). We denote the number
of such Jn {w) by b,.

2. J¢w) is divided into two pieces contained in words wa, wb, and at least one
of them again divided into two pieces contained in words waa, wab, wba or wbb. We
denote the number of such Jn {w) by c,.

3. Jn (w)is contained in {wa) or {wh>, that is, <w)=<{wa) or {wh). We denote
the number of such Jn {(w) by d,.

Of course, a,=b,+c,+d, From the notation, we get

ay 1 =2b,+2¢c,+d,, a,,,<2b,+4c,+2d,.

Now, some of the segments J ~ {w) corresponding to c, are divided into segments by
words with length 7+ 3, but the length of such F*(J n {w>) must be longer than C. On
the other hand, the total length of F"(J) is at most constant times e~ 9" Therefore,
there exists a constant C’' >0 such that
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Ay 3<4b,+4dc,+4d,+ C'e“ 9" =4a,+ C'e™9",
Therefore a, is less than or equal to the order
Cee (1 4+2%e C ... (2% E723)M3N
This shows
1. ifde”€"93<1, then a, is of the order ™",

2. if 4e7¢93>1, then a, is of the order 22"/,
This proves the lemma.

Summarizing the results, we get:
PROPOSITION 5.1. The above example satisfies E>v if ¢>45log2.

REMARK 8. We can prove the following in a same way as above: For a mapping
F, there exists n such that there exists a constant C>0 such that a segment shorter
than C can be divided into at most N segments by # iterations of F. Then F satisfies
E>vif E>Llogh. o

5.3. Space #. We will study the sapce % which is an extension of BV in
one-dimensional case. When we restrict the domain of the Perron-Frobenius operator
P to this #, we can prove the similar results as in one-dimensional cases.

DEerFiNniTION.  Let .!@:.@(F ) be the set of functions feL' for which there exists
{Cu}wew such that f(x)=3", .. Culcwy(x) converges to f in L' and that

e Y |C,|<x

n=1 |w|=n

for any v' >v.
Set for fe# and v' >v

”f”v’=1nfz e—\"n Z |cw|a

n=1 fw|=n
where infimum is taken over all {C,}, .» Which satisfy the above condition.

REMARK 9. This is an extension of BV in one-dimensional case, since for fe BV
there exists {C,.},,ew such that 3 = r">  _ _ | C,|< oo forany 0<r<1(cf. [10]). Note

n=1

that % in one-dimensional case is a bit wider class than BV. Because the definition of

by alphabets ' by words |w|=2

FiGURE 13. Approximation of a function
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# depends on a mapping F, the above definition may seem to be unnatural. However,
the number of words at n-th step of an approximation of a mountain-like function by
indicator functions of words as in Figure 13 is asymptotically e*”, therefore any function
which has finite numbers of ‘mountains’ and ‘valleys’ belongs to #. Thus the set £ is
sufficiently rich.

By the norms || - ||,., # becomes a locally convex linear space, and Pfe % holds
for fe#. Put for feL' and ge L™

(o)A = 3 =" | Pf(xlglod
LEMMA 5.5. Assume that Fis expanding and & >v. Then in the domain|z|<e® ™" %,

sup  sup [(f,g)z)|<o0

Ifllve=1 ligllo=1
Jor any v'>v, if and only if det(I — @,(z)) #0.

PrOOF. Take any >0 and fix it. For simplicity, we only consider ge L® such
that ||g||,=1. Take fm:Zhvls'n C,1.., which converges to fe % in L', which satisfies
Yiwi=nl Cul <1 fIl, €™ 2 for sufficiently large n. Note that, since f,, »fin L,in|z| <1

| (s 9X2)— (S 9X2) | =

3 2 J ()= N (F (N

1
1—|z|

<3 f | Ful) =S N gFG0) e < [ fr— 1
Therefore (f,,, gXz) = (f, gXz) as m > oo in | z| <1, and

(fms g)(2)= Z Cw(l(w)’ g)(Z)=| Z CWS;W>(Z)

jwl<m wlsm
m k—1

=) | > Cw{ Y. z"n(wll, nl) g(x)dx + z*n(w)sF k<“’>(z)}.
k=1 |w|=k n=0 Frew)

Note that for a word w with |w|=k and k>n

}?’,’(W[l, n]) g(x)dx < Ce“(i—a)k

Frdw)

for some constant C>0. Thus we get for v'>v

a0

Y C Y zmwilLnl) |  g(dx

k=1 |w|=k n=1 F{w>

an

k—1
<CY Y lzle e 9 ¥ |C,]

k=1nr=1 |w|=k
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[ 0
<C Y fzI" Y e ETH| Sl etk
n=1 k=n

[+ 8]
<Clfll, ¥ |zfre € v 29m] —gm-vm20)~1
n=1

with some constant C’>0. In a same way, we can also show that

o0 0O

Y Y G awmI<Cifl, 1|Z|ne—<é~v'—zs)n

k=1 |wl=k n=

with some constant C”>0. Assume that det(J—®,(z,))#0 for |zo|<e* *~%. Then
since s, ,(2)=(I—®,(z)) ™ ' %, 2), by Lemma 4.1 we get sup Rer_ re ¥ sf I/llgll » 1s bound-
ed in some neighborhood U of z,. Therefore by Lemma 4.1 and Lemma 5.1,
sg(z)/ igll, is also uniformly bounded in screens J and U. Therefore, by appealing to
Lemma 2.2(i1), (f,,* g)(z) is uniformly bounded with respect to m in |z|<e® > 7%
except neighborhoods of the zeros of det(/—@,(z)). Since s_f(z) is analytic in the
domain |z| <1, det(J—®,(z)#0. Therefore the zeros of det(/— &,(z)) are isolated, and
there exists an analytic continuation of (f, g)(z) to |z|<e® >~ ? except the zeros,
and lim,,_, (f,, 9)z) = (f, g)(z) in this domain. This shows for |z|<e® 7% which
is not the zero of det(J/— @,(z)), sup,y,.=1 SUP 4. =1 | (f giz)| < oo for v'>v.

On the other hand, assume det(/— ®,(z,))=0 for some |z,|<e* ¥~ %~ There may
happen that V'={y, (z0)} .1~ does not necessarily span all the space. Thus we must
study the domain of ®,(z;). The following discussions are almost the same as in [10].
To make notations simple, we take » sufficiently large to satisy the following conditions.
For any 4, be <,

1. if Fi(@)=>, then i<n,

2. if Fi(@)=Fi(}) and Fi-Y(@)# F~*(b) for some i, j>1, then i, j<n.

Let V={[fg(x)o(a, x)a’x},;eUL0 e In Figure 11, for example, x e ¥V must satisfy

ACB _ 4 AC _ 4 AD _ yCBD _ ¢ BC _ 4 BD

X =x"",

XCPA — xDCA _ xCD@) — __ yCDB_ _ yDCB_ _ CD(b)

where CD(a) and CD(b) are the edges corresponding to CD in {(a) and {b), respectively.
Recall that

;ng (z)= Jg(x)o(f, x)dx + zs,n(a) Z o, (F 7, b) Jgdx .
be oS

Therefore ng(zo)’s have relations when their screens have same inside, or when their
vertex and edges coincide. From the assumption, this occurs only for Je | Ji_, F¥.of.
For fixed |z, | <e®™", there is an integer »z for which the followings hold. For any Je F".o/,
xg(zo) is an infinite series of z,. Let us divide xgj (zo)=agj + bgf such that agf depends only
on screens {F*T},_, ., and bgj depends only on screens {F*J},., and |b97|< lgll /2N,
where N is the number of screens Je F".o/. Note that the difference is estimated with

L' norm instead of L® norm. From the assumption, Je F".</ has different inside. Thus
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we can choose ge L* with ||g||; =1 such that ag] = 4+ 1/N. This means (xf (zoD7eFng Spans
CV. Therefore V' o V.

On the other hand, let x=®,(z;)x be an eigenvector associated with the eigenvalue
1. Note that @,(z,);; is determined by F%(a). Thus, in Figure 11, for example,

xCAD XAC

zof@)  zon(@)  zom@)  zem®)  zon®)  zom(b)
From the assumption, when x®’s have relations, F(@)e | J;., F“<. This shows

xeD,(z)V=V+(I—B(z)V .

AD CBD BC

X X cD

X X

We divide an eigenvector corresponding to the eigenvalue 1 in x=x, +(/—P,(z,))X,
(x;, X5 € V). If there exists some x such that (/—®,(z))” 'x, is unbounded as z — z,, then
there exists ge L*® such that x, =y, (z,) and s5,(z) =(I— ®,(z)) " ', ,(z) has non removable
singularity at z=z,. On the other hand, assume that (/- ®,(z))~'x, is bounded as z — z,
for any eigenvector x corresponding to the eigenvalue 1. By E, we denote the generalized
eigenspace corresponding to the eigenvalue 1, and by proj; we denote the projection
to E. Then for sufficiently small r >0, it holds

Projgy =j I—D,(2) 'yd:z .
lz—zo|=r

Therefore, since (I—@,(z,))x,; =0, we get
X =projgx=projI— ®,(zo))x; .
Hence,
(I—P(z0))*projex, =0 .

Therefore, there exists ge L™ such that x, =y, /(zo), and x, has non-zero component
to the generalized eigenspace corresponding to the eigenvalue 1. This shows s5,(z) has
also non removable singularity at z=z,,.

Therefore, there exists Ke | )7 _, F*sf such that sX has a singularity at z, for some
ge L”. Then by Lemma 3.2, there exists some polygon J such that s](z)=(1,, g)(z) has
a singularity at z,. This proves the lemma. '

Since (f, giz)=[(I—zP) f(x)g(x)dx in | z| <1 and §, > 0 as n — oo, taking analytic
continuation, we get:

THEOREM 5.1. Assume that F is expanding and &>v. Take arbitrary £¢>0, then
there exists ny>Q such that for n>ny and for |z|<e* > 7%, z7! is an eigenvalue of P
restricted to A if and only if det(I— @,(z))=0.

PROOF. Let jzo|<e® 7" and det(J—®,(z,))#0. Then by Lemma 5.5, for any
fe® and ge L=, {(I—zP) ' f(x)g(x)dx=(f, gz} is analytic in a neighborhood of z,.
This shows z, belongs to the resolvent of P. On the other hand, let |z4}<e® ° % and
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det(J— ®,(z,)) =0. Then there exists d € .o/ such that sf(z) has a singularity at z,,. Therefore
by Lemma 3.2, there exists a polygon J such that s;(z)=[(I—zP)™ 'l (x)g(x)dx has
singularity at z,. This shows z, is an eigenvalue of P and 1; is a corresponding
eigenfunction. This proves the theorem.

6. The proof of Theorem B.

Now we will discuss the eigenvalues on the unit circle. We will proceed our argument
along [7]. We denote the L! norm by | - ||;. ‘

LeMMA 6.1. For any >0, there exists a constant M >0 such that for any convex
polygon J={w) with some word we# , there exists a decomposition

1,x)= Z lel(u)(x) s

ueWw
where CJ=+1 or 0, and #{u: |u|=n, C] #0} < M9t ~IvD,

Proor. Using inclusion-exclusion formula, set

ll(x)z 1(w>(x)_ Z [1<wa;)(x)— Z [1<wa1nz)(x)
aiesd aze <
wardnJe+ QD {wajaz>nJ°#* 2

- Z [l(walazag)(x)— t ]:l:' s

aze s
{wajara3> nJCFEQD

where J°¢ is the complement of J. Applying the definition of v to each F*({wa) nJ),
for any £>0 there exists a constant C such that the number of words ue % (|ui=n)
for which {wu) intersect F¥({w)> nJ) is bounded by Ce™*?". Note that for any
word we#’, the number of words wuae#” (ae /) is at most #./. This proves the
lemma.

LemMA 6.2,  Assume that E>v. Then for each v' >v, there exist m=>1, a>0, and
0<B <1 such that for all fe &

Pl <al fAly+BIFL -
ProoF. For e, we take a decomposition f=3, C,l,,, such that
Zle‘v’"l ;_ FCW <2111l

Take ¢> 0 sufficiently small such that £ —&>v'>v+¢, and fix it. Then for any word w
(Iw|=m), considering F!"!"™{w>) and using Lemma 6.1, we get
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IP™1 sl = IWLLM DY pm i |y = m(W[ 1, m])

Fm
Z Cu <w>1(u>
u

v

—nw{l,m) e T |CImV | <nmllm]) Y e mMetranTIviem
n lu|=n

n=|w|—m
. , M’ .
=n(w[1, m})M(1 —ev+”_”)_1€_"”w'_'”’=7 n(wl1, ml)e=>dwi=m (21)

where M'=2M/(1 —e***~"). Now we choose m sufficiently large such that, for any
word we #”, n(w[l, m])<e “~9"/M’. Then we get
QRN <Fe v mamemivl,

Therefore, setting f=e %~V 9" <1, we get

2 CuPmlgyl < 3 1GHIP Gyl
iwlZm v |w|2m
<38 3 1CueMSBIS @2)

On the other hand, there exists a constant C'>0 such that for any word |w|<m, we
have a decomposition

P71 (%)= Z Cpel pilx)

where #{C,;.#0} <(#+)™ and | C,w|<C, with some polygons J*<=<{a’™) (a’" e ).
Since

”"lJ“Vllv’:Ze_-v"l Z IC:wls Ze—V'HMe(v+s)n=M,,
n n .

luj=n
we get
m—1 m—1
Y CuP™s] < X 1G22 Cmlpw
lw|=1 v lwl=1 J v’
m—1 m—1
SIIZ ICwI(#d)’”CIIIlelv-SHZ | Col(#2)"CM’
wi=1 w|=1
m—1
< Y, |C,|Lebes({w)d~ ‘(#A)"CM' ,
|wi=1

where d=min, ., <m-1{Lebes({w))} >0. Take a=5""(#)"CM’'>0. Then we get

m—1
Y. C,P™,,

fwi=1

Combining (22) and (23), we get the proof.

<ol fly (23)
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THEOREM 6.1. Assume that F is expanding and ¢>v. For fell, Z;;éP"f/n
converges to some f*eZ in L', and Pf*=f*.

ProOF. We can prove this theorem just in a same way as in [7]. Put for fe#,
€={P™f} -o. Then by Lemma 6.2, we get [|P™f|,<a/(1=B)IfI:+B"IfI,.
Therefore we can choose

Pf= ¥ Clla. X e™* T [ChI<a/L=BI/1i+B"11 ],

lwi=k

Then for any £>0, there exists M which is independent of n such that

Y e % Y |Chl<e. (24)
k=M lw|=k

Now we consider some order in & and extend it naturally to #". Let & be any infinite
subset of €. Choose an infinite sequence {n};2, such that ) . C,’:}l‘l(w> €% and {C;','I;}
converges as kK — oo, where w, is the first word in the order. Then we take a subsequence
(n2}, of {n!}, such that {Clk} converges as k — o0, where w, is the second word,
and so on. Thus by diagonal method, we can choose a sequence {n¥} > ; and there exist
© limits lim, , C,':,": =C, for all words we# . Therefore by (24), it follows Y ew
C,1.w,€L". This shows % is relatively compact in L'. Since {P"f}2o<=\/r 4 P*%,
{P"f}2, is also relatively compact. By Mazur’s theorem {3 i_’ P*f/n}®  is also
relatively compact. Hence by Kakutani-Yosida theorem, for feL! there exists
f*=0f=lim,. Y _s P*f/n in L' and Pf*=f* By Lemma 6.2, |Qf |, <afl—
Al f1;. Note that any step function belongs to # and {{a):ae .o/} is generating
partition because Fis expanding. Thus 4 is dense in L'. Therefore there exists a sequence
J»€% such that f,— fin L'. Now take v such that v'>v”>v and apply Lemma 6.2
for v”. Then, since Q is contracting, there exists some C>0 such that || Qf,|. - <Cl f,.
Choose {D}} such that

Qfi= 2 Diley, 2 e 2 |DLI<CIf];-
wewW k=1 |w|=k

Then for any £>0, there exists M >0 which is independent of »n such that

Y e Y |Dil<e.

kxM fw|=k

Therefore, just as we proved the relative compactness of €, by diagonal method we
can select {C,}, .4 and

Qf= Z Cwl(w)a Z e—v”k Z |C’w|<cO
k=1

we'W |wi=k

“This proves the theorem.
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COROLLARY 6.1. Assume that F is expanding and &>v. The eigenfunctions of
the Perron-Frobenius operator P in L' associated with eigenvalues modulus 1 belong
to %.

PrROOF. In the proof of Theorem 6.1, take P,f=7y~ ' Pf instead of P where |y|=1.
Suppose that P, f=f, that is Pf=yf Then since 1/n ;;éP,’,‘f:f, we get f*=

tim,_,,, 1/nY 1_g P*f=fe . This completes the proof.

COROLLARY 6.2. Assume that F is expanding and £>v. There exists an invariant
probability measure u, whose density function belongs to 4.

PrOOF. Since P is a positive operator, the proof directly follows from Theorem
6.1.
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