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Abstract: - This paper considers the numerical solution of the Fredholm integral equation of the second kind 
using local polynomial splines of the fifth order of approximation and the fourth order of approximation (cubic 
splines). The basis splines in these cases occupy five and four adjacent grid intervals respectively. Different 
local spline approximations of the fifth (or fourth) order of approximation are used at the beginning of the 
integration interval, in the middle of the integration interval, and at the end of the integration interval. The 
construction of the calculation schemes for solving the Fredholm equation of the second kind with these splines 
is considered. The results of the numerical experiments on the approximation of functions and on the solution 
of the Fredholm integral equations are presented. The results of the solution of the integral equation which uses 
the polynomial splines of the fifth order of approximation are compared with ones obtained with cubic splines 
and with the application of the Simpson’s method. Note that in order to achieve a given error using the 
approximation with quadratic splines, a denser grid of nodes is required than when using the approximation 
with the cubic splines or splines of the fifth order of approximation. 
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1 Introduction 
When solving a number of applied problems, 
researchers have to solve the Fredholm integral 
equations. One of the classical forms of 
representation of dynamic systems is integral 
equations. This representation method is compact 
and convenient in the case of linear stationary 
systems, when the spectral characteristics of the 
input and output of the process associated with the 
useful signal and noise are known. The integral 
equations contain the complete statement of the 
problem together with the initial conditions. Of 
particular interest is the representation of 
nonstationary dynamical systems by integral 
equations. Integral equations are divided into two 
main classes: linear and non-linear. In this paper, we 
consider the solution of the linear Fredholm 
equation of the second kind using local interpolation 
splines. The solution of the integral equations of 
Fredholm and Volterra, using local interpolation 
splines of the second, third and fourth order of 
approximation, was considered in the author's 
earlier papers. Here we will focus on the use of local 
interpolation splines of the fifth order of 
approximation. 

    There are many numerical methods for solving 
the Fredholm integral equation of the second kind. 
There are various classical methods based on the use 
of composite quadrature formulas of average 
rectangles, trapezoids, and the Simpson’s method. 
The properties of these methods such as 
approximation, stability and convergence are well 
studied. In some cases, classical methods give a 
significant error in the solution. Therefore, many 
researchers are trying to construct new approaches 
to the numerical solution of integral equations, 
which can have a smaller error in the solution. It is 
often convenient to construct a solution to the 
Fredholm equation based on the use of splines. B-
splines are often used for solving Fredholm 
equations.  
     Among the papers published over the past 3 
years on this topic, we note the papers [1]-[11]. In 
paper [1], some applications to numerical analysis 
especially quadrature formulas, differentiation and 
numerical solutions of linear Fredholm integral 
equations are given. In paper [2], the isogeometric 
Galerkin and collocation methods for solving the 
Fredholm integral eigenvalue problem on arbitrary 
multipatch domains are introduced. In paper [3], the 
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solution of the nonlinear Fredholm integro-
differential equation (NFID) in the complex plane 
by periodic quasi-wavelets is approximated. In 
paper [4], a numerical solution of important weakly 
singular type of Volterra - Fredholm integral 
equations WSVFIEs using the collocation type 
quasi-affine biorthogonal method (based on special 
B-spline tight framelets) is provided. In paper [5], a 
computational method for solving nonlinear 
Volterra-Fredholm Hammerstein integral equations 
is proposed by using compactly supported 
semiorthogonal cubic B-spline wavelets as the basis 
functions. In paper [6], spline functions were used to 
propose a new scheme for solving the linear 
Volterra–Fredholm integral equations of the second 
kind. In paper [7], a method to solve the integral 
equations of the second type with degenerate 
kernels and shifts, is constructed. In paper [8], an 
efficient modification of the wavelets method to 
solve a new class of Fredholm integral equations of 
the second kind with non symmetric kernel is 
introduced. In paper [9] a new computational 
method for solving linear Fredholm integral 
equations of the second kind, which is based on the 
use of B-spline quasi-affine tight framelet systems 
generated by the unitary and oblique extension 
principles is presented. In paper [10], a new 
collocation technique for numerical solution of 
Fredholm, Volterra and mixed Volterra-Fredholm 
integral equations of the second kind is introduced. 
In paper [11], Farnoosh and Ebrahimi developed a 
numerical method based on random sampling for 
the solution of Fredholm integral equations of the 
second kind, which was called the Monte Carlo 
method based on the simulation of a continuous 
Markov chain. 
    The theory of constructing approximations using 
local splines was developed in the works of Prof. 
Yu.K.Demyanovich and Prof. I.G.Burova. Local 
polynomial and nonpolynomial splines of the 
second and third order of approximation were 
successfully used to construct computational 
schemes for solving the integral equations of 
Fredholm and Volterra. 
   Local polynomial splines of the fifth order of 
approximation were, in particular, also considered in 
detail in the works of the author. The features of 
constructing error estimates of approximations with 
nonpolynomial splines were discussed in detail in 
the author's paper [12].  
   This paper is structured as follows: Section 2 of 
this paper considers the main properties of 
polynomial splines of the fifth order of 
approximation and the splines of the fourth order of 
approximation. The approximation formulas for 

different arrangements of the supports of the basis 
splines, and formulates approximation theorems are 
given in it. Section 3 considers the application of the 
splines of the fifth order of approximation to the 
solution of the Fredholm integral equation of the 
second kind. Also, in the third section we discuss 
the construction of calculation schemes.  Section 4 
presents numerical examples.  
    As already noted, new numerical methods for 
solving the Fredholm integral equation of the 
second kind were considered in papers [10, 11].  In 
our paper, we will solve the same Fredholm integral 
equations that were considered in paper [10, 11], but 
using local splines of the fifth order of 
approximation instead. In addition, we will compare 
our results with the results of applying the classical 
method such as method of Simpson. 
 
2 Approximation with the Local 

Splines 
 
2.1 Local Approximation with the Splines of 

the Fifth Order of Approximation 
First, we would like to remind the readers of the 
main details of the local approximation with the 
splines of the fifth order of approximation.  
   Let 𝑎, 𝑏 be real and 𝑛 be integer. Let the values of 
the function 𝑢(𝑥) be known at the nodes of the grid 
of nodes {𝑡𝑖}:  

… < 𝑡−1 < 𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑏 < 𝑡𝑛+1 < ⋯. 
Denote 𝑢𝑖 = 𝑢(𝑡𝑖). In what follows, we will use the 
following types of approximations of the function 
𝑢(𝑡) on interval [𝑡𝑖, 𝑡𝑖+1]. At the beginning of the 
interval [𝑎, 𝑏], we apply the approximation with the 
left splines 

𝑈𝑅5
𝑖 (𝑥) = ∑ 𝑢𝑗𝑤𝑗(𝑥),

𝑖+4

𝑗=𝑖
 𝑥 ∊ [𝑡𝑖, 𝑡𝑖+1], 

where 𝑢𝑗, 𝑗 = 0, … , 𝑛, are the values of the function 
in nodes 𝑡𝑗   the basis splines 𝑤𝑖(𝑥) are the next: 

𝑤𝑖(𝑥)

=
(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)(𝑥 − 𝑡𝑖+3)(𝑥 − 𝑡𝑖+4)

(𝑡𝑖 − 𝑡𝑖+1)(𝑡𝑖 − 𝑡𝑖+2)(𝑡𝑖 − 𝑡𝑖+3)(𝑡𝑖 − 𝑡𝑖+4)
, 

𝑤𝑖+1(𝑥)

=
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+2)(𝑥 − 𝑡𝑖+3)(𝑥 − 𝑡𝑖+4)

(𝑡𝑖+1 − 𝑡𝑖)(𝑡𝑖+1 − 𝑡𝑖+2)(𝑡𝑖+1 − 𝑡𝑖+3)(𝑡𝑖+1 − 𝑡𝑖+4)
, 

𝑤𝑖+2(𝑥)

=
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+3)(𝑥 − 𝑡𝑖+4)

(𝑡𝑖+2 − 𝑡𝑖)(𝑡𝑖+2 − 𝑡𝑖+1)(𝑡𝑖+2 − 𝑡𝑖+3)(𝑡𝑖+2 − 𝑡𝑖+4)
, 

𝑤𝑖+3(𝑥)

=
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)(𝑥 − 𝑡𝑖+4)

(𝑡𝑖+3 − 𝑡𝑖)(𝑡𝑖+3 − 𝑡𝑖+1)(𝑡𝑖+3 − 𝑡𝑖+2)(𝑡𝑖+3 − 𝑡𝑖+4)
, 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.31 I. G. Burova

E-ISSN: 2224-2880 261 Volume 21, 2022



𝑤𝑖+4(𝑥)

=
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)(𝑥 − 𝑡𝑖+3)

(𝑡𝑖+4 − 𝑡𝑖)(𝑡𝑖+4 − 𝑡𝑖+1)(𝑡𝑖+4 − 𝑡𝑖+2)(𝑡𝑖+4 − 𝑡𝑖+3)
. 

The graph of the right basis spline is shown in Fig.1. 
 

 
Fig. 1: The graph of the right basis spline 
 
Let us denote ∥ 𝑢(𝑞) ∥[𝑎,𝑏]= max

[𝑎,𝑏]
|𝑢(𝑞)(𝑥)|. On each 

separate interval [𝑡𝑖, 𝑡𝑖+1], we can estimate the 
approximation error in the assumption that the 
function 𝑢(𝑥)  is 5 times continuously 
differentiable. We receive the error of 
approximation from the remainder term of the 
Lagrange interpolation. If the grid of nodes is such 
that the nodes are equidistant with a step h, then we 
can find the error of approximation for 𝑥 ∈
[𝑡𝑖, 𝑡𝑖+1]  in the form: 
‖𝑈𝑅5

𝑖 − 𝑢‖ ≤ 𝐾 ‖𝑢(5)‖[𝑡𝑖,𝑡𝑖+4]ℎ
5/5!, 𝐾 = 3.63. 

If the grid nodes are not equidistant, then we denote 
the length of the maximum grid interval with h. 
The next option: In the middle of the interval [𝑎, 𝑏], 
we apply the approximation with the middle splines  

𝑈𝑆5
𝑖 (𝑥) = ∑ 𝑢𝑗𝑤𝑗

𝑠(𝑥),𝑖+2
𝑗=𝑖−2  𝑥 ∊ [𝑡𝑖, 𝑡𝑖+1], 

where 
𝑤𝑖−2

𝑠 (𝑥)

=
(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)

(𝑡𝑖−2 − 𝑡𝑖−1)(𝑡𝑖−2 − 𝑡𝑖)(𝑡𝑖−2 − 𝑡𝑖+1)(𝑡𝑖−2 − 𝑡𝑖+2)
, 

𝑤𝑖−1
𝑠 (𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)

(𝑡𝑖−1 − 𝑡𝑖−2)(𝑡𝑖−1 − 𝑡𝑖)(𝑡𝑖−1 − 𝑡𝑖+1)(𝑡𝑖−1 − 𝑡𝑖+2)
, 

𝑤𝑖
𝑠(𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖+1)(𝑥 − 𝑡𝑖+2)

(𝑡𝑖 − 𝑡𝑖−2)(𝑡𝑖 − 𝑡𝑖−1)(𝑡𝑖 − 𝑡𝑖+1)(𝑡𝑖 − 𝑡𝑖+2)
, 

𝑤𝑖+1
𝑠 (𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+2)

(𝑡𝑖+1 − 𝑡𝑖−2)(𝑡𝑖+1 − 𝑡𝑖−1)(𝑡𝑖+1 − 𝑡𝑖)(𝑡𝑖 − 𝑡𝑖+2)
, 

𝑤𝑖+2
𝑠 (𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖+2 − 𝑡𝑖−2)(𝑡𝑖+2 − 𝑡𝑖−1)(𝑡𝑖+2 − 𝑡𝑖)(𝑡𝑖+2 − 𝑡𝑖+1)
. 

If the grid of nodes is such that the nodes are 
equidistant with step h, then we can find the error of 
approximation for 𝑥 ∈ [𝑡𝑖, 𝑡𝑖+1]  in the form:  
‖𝑈𝑆5

𝑖 − 𝑢‖ ≤ 𝐾 ‖𝑢(5)‖[𝑡𝑖−2,𝑡𝑖+2]ℎ
5/5!, 𝐾 = 1.42. 

The graph of the middle basis spline (when supp 
𝑤𝑖

𝑅𝑆 = [𝑡𝑖−3, 𝑡𝑖+2]) is shown in Fig.2. 

 
Fig. 2: The graph of the middle basis spline  
(supp 𝑤𝑖

𝑅𝑆 = [ 𝑡𝑖−3, 𝑡𝑖+2]) 
 

The graph of the middle basis spline (when supp 
𝑤𝑖

𝑠 = [𝑡𝑖−2, 𝑡𝑖+3]) is shown in Fig.3. 

 
Fig. 3: The graph of the middle basis spline  
(supp 𝑤𝑖

𝑠 = [𝑡𝑖−2, 𝑡𝑖+3]) 
 

At the end of the interval [𝑎, 𝑏], we apply the 
approximation with the right splines: 

𝑈𝐿5
𝑖 (𝑥) = ∑ 𝑢𝑗𝑤𝑗(𝑡),

𝑖+1

𝑗=𝑖−3
 𝑡 ∊ [𝑡𝑖, 𝑡𝑖+1], 

where the basis splines are the following: 
𝑤𝑖−3(𝑥)

=
(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖−3 − 𝑡𝑖−2)(𝑡𝑖−3 − 𝑡𝑖−1)(𝑡𝑖−3 − 𝑡𝑖)(𝑡𝑖−3 − 𝑡𝑖+1)
, 

𝑤𝑖−2(𝑥)

=
(𝑥 − 𝑡𝑖−3)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖−2 − 𝑡𝑖−3)(𝑡𝑖−2 − 𝑡𝑖−1)(𝑡𝑖−2 − 𝑡𝑖)(𝑡𝑖−2 − 𝑡𝑖+1)
, 

𝑤𝑖−1(𝑥)

=
(𝑥 − 𝑡𝑖−3)(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖−1 − 𝑡𝑖−3)(𝑡𝑖−1 − 𝑡𝑖−2)(𝑡𝑖−1 − 𝑡𝑖)(𝑡𝑖−1 − 𝑡𝑖+1)
, 

𝑤𝑖(𝑥)

=
(𝑥 − 𝑡𝑖−3)(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖+1)

(𝑡𝑖 − 𝑡𝑖−3)(𝑡𝑖 − 𝑡𝑖−2)(𝑡𝑖 − 𝑡𝑖−1)(𝑡𝑖 − 𝑡𝑖+1)
, 

𝑤𝑖+1(𝑥)

=
(𝑥 − 𝑡𝑖−3)(𝑥 − 𝑡𝑖−2)(𝑥 − 𝑡𝑖−1)(𝑥 − 𝑡𝑖)

(𝑡𝑖+1 − 𝑡𝑖−3)(𝑡𝑖+1 − 𝑡𝑖−2)(𝑡𝑖+1 − 𝑡𝑖−1)(𝑡𝑖+1 − 𝑡𝑖)
 . 

We receive the error of approximation from the 
remainder term of the Lagrange interpolation. If the 
grid of nodes is such that the nodes are equidistant 
with step ℎ, then we can find the error of 
approximation for 𝑥 ∈ [𝑡𝑖, 𝑡𝑖+1]  in the form: 
‖𝑈𝐿5

𝑖 − 𝑢‖ ≤ 𝐾 ℎ5/5! ‖𝑢(5)‖[𝑡𝑖−3,𝑡𝑖+1] , 𝐾 = 3.63. 
The graph of the left basis spline is shown in Fig.4. 

 
Fig. 4: The graph of the left basis spline 

 
Theorem 1. 
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 Let 𝑢 ∈ 𝐶5[𝑎, 𝑏]. 𝑡𝑗 = 𝑎 + 𝑗ℎ, 𝑗 = 0, 1, … , 𝑛, 

  ℎ =
𝑏−𝑎

𝑛
, 𝑛 ≥ 4. To approximate the function 𝑢(𝑥), 

𝑥 ∈ [𝑡𝑖, 𝑡𝑖+1], with the left and right splines, the 
following inequalities are valid: 

|𝑢(𝑥) − 𝑈𝐿5
𝑖 (𝑥)| ≤ 𝐾ℎ5 ∥ 𝑢(5) ∥[𝑡𝑖−3,𝑡𝑖+1], 𝐾

= 3.63/5!. 

|𝑢(𝑥) − 𝑈𝑅5
𝑖 (𝑥)| ≤ 𝐾ℎ5 ∥ 𝑢(5) ∥[𝑡𝑖,𝑡𝑖+4],  𝐾

= 3.63/5!. 
To approximate the function 𝑢(𝑥), 𝑥 ∈ [𝑡𝑖, 𝑡𝑖+1], 

with the middle splines, the following inequality is 
valid: 

|𝑢(𝑥) − 𝑈𝑅5
𝑖 (𝑥)| ≤ 𝐾ℎ5 ∥ 𝑢(5) ∥[𝑡𝑖−2,𝑡𝑖+2],  𝐾

= 1.42/5!. 
Proof. It is easy to notice that 𝑈𝑅5

𝑖  is an interpolation 
polynomial, and 𝑡𝑗, 𝑡𝑗+1, 𝑡𝑗+2, 𝑡𝑗+3 , 𝑡𝑗+4 are the 
interpolation nodes, 

𝑈𝑅5
𝑖 (𝑡𝑖) = 𝑢(𝑡𝑖),   𝑈𝑅5

𝑖 (𝑡𝑖+1) = 𝑢(𝑡𝑖+1), 
𝑈𝑅5

𝑖 (𝑡𝑖+2) = 𝑢(𝑡𝑖+2) , 𝑈𝑅5
𝑖 (𝑡𝑖+3) = 𝑢(𝑡𝑖+3), 

𝑈𝑅5
𝑖 (𝑡𝑖+4) = 𝑢(𝑡𝑖+4). 

Using the remainder term we get 

𝑢(𝑥) −  𝑈𝑅5
𝑖 (𝑥) =

𝑢(5)(𝜉)

5!
(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1) 

× (𝑥 − 𝑡𝑖+2) (𝑥 − 𝑡𝑖+3) (𝑥 − 𝑡𝑖+4), 𝜉 ∈ [𝑡𝑖 , 𝑡𝑖+4] .   
We can use 𝑥 = 𝑡𝑖 + 𝜏 ℎ, 𝜏 ∈ [0,1]. It can easily be  
calculated that the next relation is valid: 

max
𝜏∈[0,1]

|𝜏(𝜏 − 1)(𝜏 − 2)(𝜏 − 3)(𝜏 − 4)| = 3.63. 

It follows that on the uniform grid with step h we 
have 

max
𝑥∈[𝑡𝑖,𝑡𝑖+3]

|𝑢(𝑥) −  𝑈𝑅5
𝑖 (𝑥)| ≤ 𝐾ℎ5 max

[𝑡𝑖,𝑡𝑖+3]
|𝑢(5)(𝑥)|, 

𝐾 = 3.63/5!. 
We recall that we constructed an approximation 
with an error of 𝑂(ℎ^5) using approximation 
identities (relations) separately on each grid interval 
[𝑡𝑖, 𝑡𝑖+1] ⊂  [𝑎, 𝑏]. We define the supports of the 
basis splines as follows: For the middle basis splines 
𝑤𝑖

𝑠(𝑥) we use supp 𝑤𝑖
𝑆 = [𝑡𝑖−2, 𝑡𝑖+3] or we can use  

supp 𝑤𝑖
𝑅𝑆 = [𝑡𝑖−3, 𝑡𝑖+2]. In the case of the middle 

basis splines, we distinguish two types: 
supp 𝑤𝑖

𝑆 = [𝑡𝑖−2, 𝑡𝑖+3] and supp 𝑤𝑖
𝑅𝑆 = [𝑡𝑖−3, 𝑡𝑖+2]. 

For the left basis splines 𝑤𝑖
𝐿(𝑥) we use supp 𝑤𝑖

𝐿 =

[𝑡𝑖−1, 𝑡𝑖+4]. For the right basis 𝑤𝑖
𝑅 splines we use 

supp 𝑤𝑖
𝑅 = [𝑡𝑖−4, 𝑡𝑖+1]. Note, that the following 

relations are valid: 𝑤𝑖
𝐿(𝑡𝑖) = 1, 𝑤𝑖

𝑅(𝑡𝑖) = 1, 
𝑤𝑖

𝑆(𝑡𝑖) = 1, 𝑤𝑖
𝑅𝑆(𝑡𝑖) = 1, and 𝑤𝑖

𝐿(𝑡𝑘) = 0, 

𝑤𝑖
𝑅(𝑡𝑘) = 0, 𝑤𝑖

𝑆(𝑡𝑘) = 0, 𝑤𝑖
𝑅𝑆(𝑡𝑘) = 0, when k≠ i. 

According to the location of the support of the basis 
splines relative to the root-point (the point at which 
the basis spline is equal to 1), the four variants of 
continuous basis splines can be distinguished: the 
left basis splines, the middle basis splines, and the 

right basis splines. The interpolation using the right 
basis splines is used at the beginning of the 
interpolation interval [𝑎, 𝑏]. We use the 
interpolation using the middle basis splines in the 
middle of the interpolation interval [𝑎, 𝑏]. We use 
the interpolation with the use of the left basis splines 
at the end of the interpolation interval [𝑎, 𝑏]. So, 
when approximating with the splines of the fifth 
order of approximation at the finite interval [𝑎, 𝑏], 
we use the four types of basis splines. We can use 
only one type of approximation with the fifth-order 
basis splines, but in this case we have to use the 
function values that lie outside the bounds of the 
finite interval [𝑎, 𝑏]. 
    Let a grid of nodes 𝑡0 = 𝑎, 𝑡𝑛 = 𝑏 be built on the 
interval [𝑎, 𝑏]. When approaching with only the 
middle splines on the interval [𝑎, 𝑏], we have to add 
values at the grid nodes 𝑡−2, 𝑡−1, 𝑡𝑛+1. When 
approaching with only the left splines on the interval 
[𝑎, 𝑏], we have to add values at the grid nodes 𝑡−3, 
𝑡−2, 𝑡−1.When approaching with only the left 
splines on the interval [𝑎, 𝑏], we have to add values 
at the grid nodes 𝑡𝑛+1, 𝑡𝑛+2, 𝑡𝑛+3. 
 
2.2 Approximation of the Functions with the 

Cubic Polynomial Splines 
Now, we recall the features of the approximation of 
the functions with the cubic polynomial splines near 
the right end of the interval [𝑎, 𝑏], near the left end 
of the interval [𝑎, 𝑏] , and at the middle of the 
interval. Let {𝑡𝑗} be the set of nodes on the interval 
[𝑎, 𝑏]. The middle basis splines that form the 
continuous polynomial approximation in the interval  
𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1]  ⊂ [𝑎, 𝑏] can be written as follows: 

𝜔𝑗
𝑀(𝑥) =

(𝑥 − 𝑡𝑗+1)(𝑥 − 𝑡𝑗+2)(𝑥 − 𝑡𝑗+3)

(𝑡𝑗 − 𝑡𝑗+1)(𝑡𝑗 − 𝑡𝑗+2)(𝑡𝑗 − 𝑡𝑗+3)
, 

𝑥 ∈ [𝑡𝑗+1, 𝑡𝑗+2], 

𝜔𝑗
𝑀(𝑥) =

(𝑥 − 𝑡𝑗+1)(𝑥 − 𝑡𝑗−1)(𝑥 − 𝑡𝑗+2)

(𝑡𝑗 − 𝑡𝑗+1)(𝑡𝑗 − 𝑡𝑗−1)(𝑡𝑗 − 𝑡𝑗+2)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 

𝜔𝑗
𝑀(𝑥) =

(𝑥 − 𝑡𝑗−1)(𝑥 − 𝑡𝑗−2)(𝑥 − 𝑡𝑗+1)

(𝑡𝑗 − 𝑡𝑗−1)(𝑡𝑗 − 𝑡𝑗−2)(𝑡𝑗 − 𝑡𝑗+1)
, 

𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗], 

𝜔𝑗
𝑀(𝑥) =

(𝑥 − 𝑡𝑗−1)(𝑥 − 𝑡𝑗−2)(𝑥 − 𝑡𝑗−3)

(𝑡𝑗 − 𝑡𝑗−1)(𝑡𝑗 − 𝑡𝑗−2)(𝑡𝑗 − 𝑡𝑗−3)
, 

𝑥 ∈ [𝑡𝑗−2, 𝑡𝑗−1], 

          𝜔𝑗
𝑀(𝑥) = 0, 𝑥 ∉ [𝑡𝑗−2, 𝑡𝑗+2]. 

 

The approximation with these basis splines can 
be written in the form: 
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𝑈𝑗
𝑀(𝑥) = 𝑢(𝑡𝑗−1)𝜔𝑗−1

𝑀 (𝑥) + 𝑢(𝑡𝑗)𝜔𝑗
𝑀(𝑥) +

  𝑢(𝑡𝑗+1)𝜔𝑗+1
𝑀 (𝑥) +   𝑢(𝑡𝑗+2)𝜔𝑗+2

𝑀 (𝑥).           
The continuous polynomial approximation 𝑈𝑗

𝑅(𝑥) 
near the left end of the interval [𝑎, 𝑏] uses the right 
basis spline 𝜔𝑗

𝑅(𝑥) of the form: 

𝜔𝑗
𝑅(𝑥) =

(𝑥 − 𝑡𝑗+1)(𝑥 − 𝑡𝑗+2)(𝑥 − 𝑡𝑗+3)

(𝑡𝑗 − 𝑡𝑗+1)(𝑡𝑗 − 𝑡𝑗+2)(𝑡𝑗 − 𝑡𝑗+3)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 
 

𝜔𝑗+1
𝑅 (𝑥) =

(𝑥 − 𝑡𝑗)(𝑥 − 𝑡𝑗+2)(𝑥 − 𝑡𝑗+3)

(𝑡𝑗+1 − 𝑡𝑗)(𝑡𝑗+1 − 𝑡𝑗+2)(𝑡𝑗+1 − 𝑡𝑗+3)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 

 

𝜔𝑗+2
𝑅 (𝑥) =

(𝑥 − 𝑡𝑗)(𝑥 − 𝑡𝑗+1)(𝑥 − 𝑡𝑗+3)

(𝑡𝑗+2 − 𝑡𝑗)(𝑡𝑗+2 − 𝑡𝑗+1)(𝑡𝑗+2 − 𝑡𝑗+3)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 
 

𝜔𝑗+3
𝑅 (𝑥) =

(𝑥 − 𝑡𝑗)(𝑥 − 𝑡𝑗+1)(𝑥 − 𝑡𝑗+2)

(𝑡𝑗+3 − 𝑡𝑗)(𝑡𝑗+3 − 𝑡𝑗+1)(𝑡𝑗+3 − 𝑡𝑗+2)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1]. 

 
The approximation with these basis splines can 

be written in the form: 
 
𝑈𝑗

𝑅(𝑥) = 𝑢(𝑡𝑗)𝜔𝑗
𝑅(𝑥) + 𝑢(𝑡𝑗+1)𝜔𝑗+1

𝑅 (𝑥) +

  𝑢(𝑡𝑗+2)𝜔𝑗+2
𝑅 (𝑥) +   𝑢(𝑡𝑗+3)𝜔𝑗+3

𝑅 (𝑥).       
The continuous polynomial approximation 𝑈𝑗

𝐿(𝑥) 
near the right end of the interval [𝑎, 𝑏] uses the left 
basis spline 𝜔𝑗

𝐿(𝑥) of the form: 

𝜔𝑗−2
𝐿 (𝑥) =

(𝑥 − 𝑡𝑗−1)(𝑥 − 𝑡𝑗)(𝑥 − 𝑡𝑗+1)

(𝑡𝑗−2 − 𝑡𝑗−1)(𝑡𝑗−2 − 𝑡𝑗)(𝑡𝑗−2 − 𝑡𝑗+1)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 

 

𝜔𝑗−1
𝐿 (𝑥) =

(𝑥 − 𝑡𝑗−2)(𝑥 − 𝑡𝑗)(𝑥 − 𝑡𝑗+1)

(𝑡𝑗−1 − 𝑡𝑗−2)(𝑡𝑗−1 − 𝑡𝑗)(𝑡𝑗−1 − 𝑡𝑗+1)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 

 

𝜔𝑗
𝐿(𝑥) =

(𝑥 − 𝑡𝑗−2)(𝑥 − 𝑡𝑗−1)(𝑥 − 𝑡𝑗+1)

(𝑡𝑗 − 𝑡𝑗−2)(𝑡𝑗 − 𝑡𝑗−1)(𝑡𝑗 − 𝑡𝑗+1)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 

𝜔𝑗+1
𝐿 (𝑥) =

(𝑥 − 𝑡𝑗−2)(𝑥 − 𝑡𝑗−1)(𝑥 − 𝑡𝑗)

(𝑡𝑗+1 − 𝑡𝑗−2)(𝑡𝑗+1 − 𝑡𝑗−1)(𝑡𝑗+1 − 𝑡𝑗)
, 

𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1]. 

The approximation with these basis splines can 
be written in the form: 

 

𝑈𝑗
𝐿(𝑥) = 𝑢(𝑡𝑗−2)𝜔𝑗−2

𝐿 (𝑥) + 𝑢(𝑡𝑗−1)𝜔𝑗−1
𝐿 (𝑥) +

  𝑢(𝑡𝑗)𝜔𝑗
𝐿(𝑥) +   𝑢(𝑡𝑗+1)𝜔𝑗+1

𝐿 (𝑥),      𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1].   
Theorem 2.  
   Let 𝑢 ∈ С4[𝑎, 𝑏]. 𝑡𝑗 = 𝑎 + 𝑗ℎ, 𝑗 = 0, 1, … , 𝑛, ℎ =
𝑏−𝑎

𝑛
, 𝑛 ≥ 3. To approximate the function 𝑢(𝑥), 𝑥 ∈

[𝑥𝑗, 𝑥𝑗+1], with the left and right splines, the 
following inequalities are valid: 

|𝑢(𝑥) − 𝑈𝑗
𝐿(𝑥)| ≤ 𝐾ℎ4 ∥ 𝑢(4) ∥[𝑡𝑗−2,𝑡𝑗+1], 𝐾 = 1. 

|𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥)| ≤ 𝐾ℎ4 ∥ 𝑢(4) ∥[𝑡𝑗,𝑡𝑗+3],  𝐾 = 1. 

To approximate the function 𝑢(𝑥), 𝑥 ∈ [𝑡𝑗, 𝑡𝑗+1], 
with the middle splines, the following inequality is 
valid: 

|𝑢(𝑥) − 𝑈𝑗
𝑀(𝑥)| ≤ 𝐾ℎ4 ∥ 𝑢(4) ∥[𝑡𝑗−1,𝑡𝑗+2], 

 𝐾 = 0.5625. 
Proof. It is easy to notice that 𝑈𝑗

𝑅 is an interpolation 
polynomial, and 𝑡𝑗, 𝑡𝑗+1, 𝑡𝑗+2, 𝑡𝑗+3 are the 
interpolation nodes, 

𝑈𝑗
𝑅(𝑡𝑗) = 𝑢(𝑡𝑗),     𝑈𝑗

𝑅(𝑡𝑗+1) = 𝑢(𝑡𝑗+1), 
𝑈𝑗

𝑅(𝑡𝑗+2) = 𝑢(𝑡𝑗+2) ,   𝑈𝑗
𝑅(𝑡𝑗+3) = 𝑢(𝑡𝑗+3). 

Using the remainder term we get 

𝑢(𝑥) − 𝑈𝑗
𝑅(𝑥) =

𝑢(4)(𝜉)

4!
(𝑥 − 𝑡𝑗)(𝑥 − 𝑡𝑗+1)(𝑥 −

𝑡𝑗+2)(𝑥 − 𝑡𝑗+3), 𝜉 ∈ [𝑡𝑗, 𝑡𝑗+3]  .   
We can use 𝑥 = 𝑥𝑗 + 𝜏 ℎ, 𝜏 ∈ [0, 1]. It can  easily be 
calculated that 

max
𝜏∈[0,1]

|𝜏(𝜏 − 1)(𝜏 − 2)(𝜏 − 3)| = 1. 

It follows that on the uniform grid with step h 
max

𝑥∈[𝑡𝑗,𝑡𝑗+3]
|𝑢(𝑥) − 𝑈𝑗

𝑅(𝑥)| ≤ ℎ4 max
[𝑡𝑗,𝑡𝑗+3]

|𝑢(4) (𝑥)|. 

The approximation is constructed separately on each 
grid interval [𝑡𝑗, 𝑡𝑗+1]. When constructing an 
approximation on the interval [𝑡𝑗, 𝑡𝑗+1] we need the 
values of the function at several neighboring nodes 
to the right or left of this interval. Therefore, if the 
values of the function are given on the grid of 
nodes, which is constructed on a finite interval 
[𝑎, 𝑏], then we are forced to use the approximation 
with the right or left splines near points 𝑎 or  𝑏. 
When constructing an approximation with only the 
right cubic splines on the interval [𝑎, 𝑏], we use the 
values of the function at the nodes 𝑏 =
𝑡𝑛, 𝑡𝑛+1, 𝑡𝑛+2, 𝑡𝑛+3. When constructing an 
approximation with only the left cubic splines on the 
interval [𝑎, 𝑏], we use the values of the function at 
the nodes  𝑡−2, 𝑡−1, 𝑡0 = 𝑎. When constructing an 
approximation with only the right splines of the fifth 
order of approximation on the interval [𝑎, 𝑏], we use 
the values of the function at the nodes 𝑏 =
𝑡𝑛, 𝑡𝑛+1, 𝑡𝑛+2, 𝑡𝑛+3, 𝑡𝑛+4. When constructing an 
approximation with only the left splines of the fifth 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.31 I. G. Burova

E-ISSN: 2224-2880 264 Volume 21, 2022



order of approximation on the interval [𝑎, 𝑏], we use 
the values of the function at the nodes 
𝑡−3, 𝑡−2, 𝑡−1, 𝑡0 = 𝑎. When constructing an 
approximation with only the middle splines of the 
fifth order of approximation on the interval [𝑎, 𝑏], 
we use the values of the function at the nodes 
 𝑡−2, 𝑡−1, 𝑡0 = 𝑎, 𝑏 = 𝑡𝑛, 𝑡𝑛+1, 𝑡𝑛+2. 
The following Tables show the approximation errors 
of functions on the interval [−1,1]. The actual errors 
were calculated as follows. At each grid interval 
[𝑡𝑗 , 𝑡𝑗+1], an additional grid 𝐷𝑗 of 100 nodes 𝑥𝑗𝑖

 was 
constructed. Next, the approximation values of the 
function at these nodes were calculated. Next, the 
error maxima were calculated using the formula: 

max
∪𝐷𝑗

|𝑢(𝑥𝑗𝑖
) − 𝑈(𝑥𝑗𝑖

)|. 

The next tables of theoretical errors contain the 
maximum deviations of the exact solution from the 
approximate one on the interval [-1,1] based on the 
formulas given in the theorems: 

max
𝑥∈[−1,1]

|𝑢(𝑥) − 𝑈(𝑥)|. 

      In 1901, Runge established that the interpolation 
process over equidistant nodes on the interval 
[−1,1] does not converge with the increasing 
number of nodes even for a smooth arbitrarily 
differentiable function 𝑢 =

1

1+25𝑥2. Table 1 presents 
the actual errors in absolute values of approximation 
with the polynomial cubic splines 𝑈(𝑥)  when ℎ =
0.1. Table 2 presents the theoretical errors in 
absolute values of approximation with the 
polynomial splines of the fifth order of 
approximation when ℎ = 0.1. Table 3 presents the 
actual errors in absolute values of approximation 
with the polynomial splines 𝑈(𝑥)  using the 
polynomial splines of the fifth order of 
approximation when ℎ = 0.1. Table 4 presents the 
theoretical errors in absolute values of 
approximation with the polynomial cubic splines 
𝑈(𝑥) when ℎ = 0.1. Analyzing the information 
presented in the Tables show that with the same 
number of interpolation nodes, the approximation 
using the middle splines gives a smaller error. The 
results of numerical experiments show that the 
actual errors of numerical calculations correspond to 
theoretical errors. Errors when using splines of the 
fifth order of approximation can be less than when 
using splines of the fourth order of approximation, if 
the interpolated function is sufficiently smooth. 
 
Table 1. The results of the approximation using the cubic 

polynomial splines. Actual errors (ℎ = 0.1). 

Function 𝒖 Cubic polynomial splines 
Left splines Middle splines  

1/(1 + 25𝑥2) 0.01388 0.009097 

Function 𝒖 Cubic polynomial splines 
Left splines Middle splines  

sin(3 𝑥) 0.0003098 0.0001746 

sin(5 𝑥) 0.002341 0.001327 
 

Table 2. The results of the approximation using the 
polynomial splines of the fifth order of approximation. 

Actual errors (ℎ = 0.1). 

Function 𝒖 

Polynomial  splines of the fifth 
order of approximation 

Left splines 
Middle splines 

(𝒘𝒋
𝑺) 

1/(1 + 25𝑥2) 0.03372 0.01244 

sin(3 𝑥) 0.00007233 0.00002840 

sin(5 𝑥) 0.0009116 0.0003579 
 

Table 3. The results of the approximation using the cubic 
polynomial splines. Theoretical errors (𝒉 = 𝟎. 𝟏). 

Function 𝒖 Cubic polynomial  splines 
Left splines Middle splines 

1/(1 + 25𝑥2) 0.0625 0.03516 

sin(3 𝑥) 0.0003375 0.0001898 

sin(5 𝑥) 0.002604 0.001465 
 

Table 4. The results of the approximation using the 
polynomial splines of the fifth order of approximation. 

Theoretical errors (ℎ = 0.1). 

Function 𝒖 

Polynomial  splines of the fifth 
order of approximation 

Left splines 
Middle splines 

𝒘𝒋
𝑺 

1/(1 + 25𝑥2) 0.09496 0.03715 

sin(3 𝑥) 0.00007351 0.00002876 

sin(5 𝑥) 0.0009453 0.0003698 
 
  Note that if the derivatives of the solution grow 
rapidly, then the approximation by cubic splines 
may turn out to be more profitable than the 
approximation by splines of the fifth order of 
approximation Let the Runge function be given at 
the nodes of a uniform grid with a step of ℎ = 0.1 
on the interval [−1, 1]. The approximation error of 
the approximation of the Runge function obtained 
with the cubic polynomial splines is given in Fig.5. 
The maximum of the error in absolute error is 
0.009097. The approximation error in absolute value 
(of the approximation of the Runge function, ℎ =
0.1) obtained with the right polynomial splines of 
the fifth order of approximation is given in Fig.6.  
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Fig. 5: The approximation error obtained with the 
middle cubic polynomial splines 
 

 
Fig. 6: The approximation error obtained with the 
right cubic polynomial splines 

 
The approximation error in absolute value (of the 
approximation of the Runge function, ℎ = 0.1) 
obtained with the middle polynomial splines of the 
fifth order of approximation (with 𝑤𝑗

𝑆) is given in 
Fig.7 (the maximum of the error in absolute error is 
0.012438).  
 

 
Fig. 7: The approximation error (in absolute value) 
obtained with the middle polynomial splines (wj

S)of 
the fifth order of approximation 

 
Fig. 7 confirms the theoretical estimate (Theorem 2) 
that the approximation with the middle splines give 
lesser error than the approximation with the left or 
right splines. 
 
 

3 Applying splines to the Solution of 

the Fredholm Equation of the Second 

Kind 
Consider the Fredholm equation of the second kind 

𝜑(𝑥) − ∫ 𝐾(𝑥, 𝑠) 𝜑(𝑠) 𝑑𝑠 = 𝑓(𝑥).
𝑏

𝑎
              (1) 

We construct an approximate solution of the integral 
equation by applying the polynomial splines of the 
fourth order of approximation as follows. Let {𝑡𝑖} be 
a grid of nodes on the interval [𝑎, 𝑏]. Divide the 
interval [𝑎, 𝑏] into 𝑛 parts, 𝑛 ≥ 4. 

∫ 𝐾(𝑥, 𝑡) 𝜑(𝑡) 𝑑𝑡 = ∑ ∫ 𝐾(𝑥, 𝑡) 𝜑(𝑡)𝑑𝑡

𝑡𝑖+1

𝑡𝑖

𝑛−1

𝑖=0

.
𝑏

𝑎

 

Let  𝑠 + 𝑟 = 4, 𝑠 ≥ 1, 𝑟 ≥ 1.On each grid interval 
[𝑡𝑖, 𝑡𝑖+1],   we apply a formula of the form: 

𝜑(𝑡) = ∑ 𝐶𝑗𝑤𝑗(𝑡),
𝑖+𝑟

𝑗=𝑖−𝑠
 𝑡 ∊ [𝑡𝑖, 𝑡𝑖+1],

𝑖 = 0, … , 𝑛 − 1. 
Here  𝑤𝑗(𝑡) are the basis splines that are discussed 
above, and 𝐶𝑗 are unknowns (values of the solution 
of the equation at grid points, 𝐶𝑖 ≈ 𝜑(𝑡𝑖)) to be 
found. Now we transform the following expression 

∫ 𝐾(𝑥, 𝑡) 𝜑(𝑡)𝑑𝑡

𝑡𝑖+1

𝑡𝑖

≈ ∫ 𝐾(𝑥, 𝑡) ∑ 𝐶𝑗𝑤𝑗(𝑡)𝑑𝑡 
𝑖+𝑟

𝑗=𝑖−𝑠

𝑡𝑖+1

𝑡𝑖

 

= ∑ 𝐶𝑗 ∫ 𝐾(𝑥, 𝑡) 

𝑡𝑖+1

𝑡𝑖

𝑤𝑗(𝑡)𝑑𝑡 .
𝑖+𝑟

𝑗=𝑖−𝑠
 

At the beginning of the interval [𝑎, 𝑏] at 𝑖 =  0, 1, 2, 
the values of the parameters 𝑠 =  0, 𝑟 =  4 should 
be taken. At the end of the interval [𝑎, 𝑏] at 𝑖 = 𝑛 −
1, 𝑛 −  2, the values of the parameters 𝑠 = 𝑖 −
3, 𝑟 = 1  should be taken. 
Denote by  𝛼𝑖𝑗(𝑥) the integral  

𝛼𝑖𝑗(𝑥) = ∫ 𝐾(𝑥, 𝑡) 
𝑡𝑖+1

𝑡𝑖
𝑤𝑗(𝑡)𝑑𝑡. 

 Now we take = 𝑡𝑖. The problem of solving the 
integral equation is reduced to solving the system of 
linear algebraic equations. When 𝑖 = 0,1  we have 
the equations 

𝐶𝑖 − ∑ ∑ 𝐶𝑗𝛼𝑖𝑗(𝑡𝑖) − ∑ ∑ 𝐶𝑗𝛼𝑖𝑗(𝑡𝑖) 
𝑖+2

𝑗=𝑖−2

𝑛−2

𝑖=2  

𝑖+4

𝑗=𝑖

1

𝑖=0

 

− ∑ ∑ 𝐶𝑗𝛼𝑖𝑗(𝑡𝑖) = 𝑓(𝑡𝑖),
𝑖+1

𝑗=𝑖−3

𝑛−1

𝑖=𝑛−1

 

   𝑖 = 0, 1, 2 , … , 𝑛. 
When 𝑖 = 3,4, … , 𝑛 − 3   we have the equations 

𝐶𝑖 − ∑ ∑ 𝐶𝑖𝛼𝑖𝑗(𝑡𝑖) − ∑ ∑ 𝐶𝑖𝛼𝑖𝑗(𝑡𝑖) 
𝑖+2

𝑗=𝑖−2

𝑛−3

𝑖=3  

𝑖+4

𝑗=𝑖

2

𝑖=0

 

− ∑ ∑ 𝐶𝑖𝛼𝑖𝑗(𝑡𝑖) = 𝑓(𝑡𝑖),
𝑖+1

𝑗=𝑖−3

𝑛−1

𝑖=𝑛−2

 

𝑖 = 3,4, … , 𝑛 − 3 , 
When 𝑖 = 𝑛 − 2, 𝑛 − 1   we have the equations 

𝐶𝑖 − ∑ ∑ 𝐶𝑖𝛼𝑖𝑗(𝑡𝑖) − ∑ ∑ 𝐶𝑖𝛼𝑖𝑗(𝑡𝑖) 
𝑖+2

𝑗=𝑖−2

𝑛−3

𝑖=3  

𝑖+4

𝑗=𝑖

2

𝑖=0
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− ∑ ∑ 𝐶𝑖𝛼𝑖𝑗(𝑡𝑖) = 𝑓(𝑡𝑖) 
𝑖+1

𝑗=𝑖−3

𝑛−1

𝑖=𝑛−2

, 

𝑖 = 𝑛 − 2, 𝑛 − 1 . 
The unknowns in the system of equations are 𝐶𝑖, 𝑖 =
0,1, … , 𝑛 − 2, 𝑛 − 1.  
 
 
4 Results of the Numerical 

Experiments 
In this section, we present the results of the 
numerical experiments. 
Problem 1. Now we take the next Fredholm integral 
equation: 

𝑢(𝑥) + ∫ exp(𝑥 + 𝑡) 𝑢(𝑡)𝑑𝑡
1

0

= 𝑒𝑥𝑝(−𝑥) + 𝑒𝑥𝑝(𝑥), 𝑥 ∈ [0, 1]. 
The exact solution of the integral equation is 𝑢(𝑥) =
𝑒𝑥𝑝(−𝑥). Figs. 8, 9 show the errors of the solution 
of Problem 1 with polynomial splines of the fifth 
order of approximation when 𝑛 = 6, 16, 𝐷𝑖𝑔𝑖𝑡𝑠 =
20.  Figs. 10, 11 show the errors of the solution of 
Problem 1 with cubic polynomial splines when 𝑛 =
16, 32 (𝐷𝑖𝑔𝑖𝑡𝑠 = 20). In the Figures, grid nodes are 
marked along the 𝑋 axis at the interval [0, 1]. 
 

 
Fig. 8: The plot of the errors of the solution of 
Problem 1 with polynomial splines of the fifth order 
of approximation, n = 6 

 

 
Fig. 9: The plot of the errors of the solution of 
Problem 1 with polynomial splines of the fifth order 
of approximation, n = 16 

 

 

Fig. 10: The plot of the errors of the solution of 
Problem 1 with polynomial cubic splines, n = 16 
 

 
Fig. 11: The plot of the errors of the solution of 
Problem 1 with polynomial cubic splines, n = 32 
 
Now we present the result of applying Simpson’s 
rule to solving Problem 1. Figure 12 shows the 
graph of the error of problem 1 when the Simpson’s 
method was used. 
 

 
Fig. 12: The graph of the error of problem 1 when 
the Simpson’s method was used. 
 
The maximum of the error in absolute value is about 
0.3471 ∙ 10−7

 These results show that the use of 
splines of the fifth order of approximation 
contributes to a significant reduction in the number 
of grid nodes. However, it must be remembered that 
the use of splines of the fifth order of approximation 
assumes that the solution of the equation and the 
kernel are five times differentiable functions. 
Problem 2.  Let the right side of the system of 
equations be constructed under the assumption that 
the solution of the integral equation is 𝑢 = 1/(1 +
25𝑥2). We leave the kernel of the equation the 
same. Figure 13 shows the graph of the error of 
Problem 2 (𝑛 = 64). 
 

 
Fig. 13: The plot of the errors of the solution 
when the polynomial cubic splines were used and 
u = 1/(1 + 25 x2), n = 64 
 
At the same time, when using splines of the fifth 
order of approximation, we obtain the error of the 
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solution, the graph of which is shown in Fig.14, 𝑛 =
64. 

 
Fig. 14: The plot of the errors of the solution when 
the polynomial splines of the fifth order of 
approximation were used and 𝑢 = 1/(1 + 25 𝑥2), 
𝑛 = 64 
 
The errors presented in the last two graphs show 
that if the derivatives of the solution grow rapidly, 
then it is enough to use traditional methods for 
solving integral equations. In this case, it is often 
advisable to use an uneven grid of nodes 

   Problem 3. Now, we again take the Fredholm 
integral equation from paper [10]: 

𝑢(𝑥) − ∫ 𝑥2 exp(𝑡(𝑥 − 1)) 𝑢(𝑡)𝑑𝑡
1

0

= 𝑥 + (1 − 𝑥) 𝑒𝑥𝑝(𝑥), 𝑥 ∈ [0, 1]. 
The exact solution of the integral equation is 𝑢(𝑥) =
𝑒𝑥𝑝(𝑥). Figs. 15,16 show the errors of the solution 
of Problem 1 with polynomial splines of the fifth 
order of approximation,  𝑛 = 8, 𝑛 = 5. 
 

 
Fig. 15: The plot of the errors of the solution of 
Problem 1 with polynomial splines of the fifth order 
of approximation, 𝑛 = 8 

 
Fig. 16: The plot of the errors of the solution of 
Problem 1 with polynomial splines of the fifth order 
of approximation, 𝑛 = 5 
 
 Now consider the solution of the following 
problem.    

Problem 3.   

𝑢(𝑥) + ∫ exp(−𝑥 𝑡) 𝑢(𝑡)𝑑𝑡
1

0

= 𝐹(𝑥),

𝑥 ∈ [0, 1], 

where the right side of 𝐹(𝑥) is constructed 
according to the known solution 𝑢 =
sin (3𝑥)sin (𝑥 − 1). 
   First, we apply the calculation scheme constructed 
using the cubic polynomial splines. Using the set of 
nodes {𝑥𝑗} with  𝑛 = 16 we obtain the approximate 
solution 𝑢𝑗  in the nodes (see Fig.18). Fig.17 shows 
the error of the solution obtained in the nodes. It can 
be calculated that the following relation is valid: 

max
{𝑥𝑗}

|𝑢(𝑥𝑗) − 𝑢𝑗| = 0.8753 ∙ 10−5. 

 

 
Fig. 17: The plot of the error of the approximate 
solution of Problem 3  (𝑛 = 16). 

 
Then we apply the numerical method with the 
splines of the fifth order of approximation. Fig.19 
shows the error of the solution of Problem 3 when 
𝑛 = 16. We have max

{𝑥𝑗}
|𝑢(𝑥𝑗) − 𝑢𝑗| =  0.4416 ∙

10−5. 

 
Fig. 18: The plot of the approximate solution of 
Problem 3 

 
Fig. 19: The plot of the error of the solution of 
Problem 3 when splines of the fifth order of 
approximation were used (𝑛 = 16). 
 
Problem 4.   
As is known, in the internal Dirichlet problem of 
potential theory, it is required to find a function 
𝑢(𝑥, 𝑦) that is harmonic in domain D and takes 
given values  on the boundary 𝛾 of this domain D 
(for example, see Kollatz [13]). Let the boundary 
functions be given by the equations  

𝑥 = 𝜉(𝑡), 𝑦 = 𝜂(𝑡). 
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The solution of the internal Dirichlet problem can be 
written as:  

𝑢(𝑥, 𝑦) = ∫ 𝜇(𝑡)
𝑑𝜃

𝑑𝑡𝛾
𝑑𝑡, 

where the angle theta is calculated by the formula  

𝜃 = 𝑎𝑟𝑐𝑡𝑔
𝜂(𝑡) − 𝑦

𝜉(𝑡) − 𝑥
 

and function 𝜇(𝑠) satisfies the Fredholm integral 
equation of the second kind.  
𝜋𝜇(𝑠) + ∫ 𝐾(𝑠, 𝑡)

2𝜋

0
 𝜇(𝑡)𝑑𝑡 = 𝑔(𝑠),  

where 

𝐾(𝑠, 𝑡) =
𝜕

𝜕𝑡
𝑎𝑟𝑐𝑡𝑔

𝜂(𝑡) − 𝜂(𝑠)

𝜉(𝑡) − 𝜉(𝑠)
 . 

If area 𝐷 is an ellipse: 𝑥 =  𝑎 cos 𝑡 , 𝑦 = 𝑏 cos t 
with semi-axes 𝑎 = 2, 𝑏 = 1, then the kernel of the 
integral equation can be written as: 

𝐾(𝑠, 𝑡) =
𝑎𝑏

𝑎2 + 𝑏2 − (𝑎2 − 𝑏2)cos (𝑎 + 𝑏)
. 

 Let us find the function 𝜇(𝑠). To do this, we solve 
the integral equation 

 𝜋𝜇(𝑠) + ∫
2𝜇(𝑡)𝑑𝑡

5−3 cos (𝑠+𝑡)

2𝜋

0
= {

sin(𝑠) , 0 ≤ 𝑠 ≤ 𝜋,
0, −𝜋 ≤ 𝑠 ≤ 0

.  
Let us choose 𝑛 = 8. Having solved the integral 
equation, we obtain the following values: 
𝜇0=-0.04290; 𝜇1:= -0.1066; 𝜇2:=-0.1360;  
𝜇3:=-0.1045; 𝜇4:=-0.04017; 𝜇5:= 0.2330;  
𝜇6:=0.3427; 𝜇7:=0.2322; 𝜇8:=-0.04290. 
 

 
Fig. 20: The plot of the solution 𝜇(𝑠) (𝑛 = 8) 
Then we choose 𝑛 = 16.  Further, the obtained 
solution can be represented using splines of the fifth 
order of approximation in the following form. The 
graph of the solution is shown in Fig. 20. In Figures 
20, 21, the values of 𝑠 are plotted along the x-axis, 
and the calculated values 𝜇(𝑠𝑗) at the points 𝑠𝑗 are 
connected using splines of the fifth order of 
approximation. 
Now we can calculate the temperature on the axis of 
the cylinder: 𝑢(0,0). We can use Simpson’s method 
and the trapezium method. After the calculations, 
we get 𝑢(0,0)≈0.43. 
 

 

Fig. 21: The plot of the solution 𝜇(𝑠) (𝑛 = 16) 
 

 

5 Conclusion 
In this paper, we study the numerical solution of the 
Fredholm integral equation of the second kind using 
polynomial splines of the fifth order of 
approximation. Here, a comparison is also made 
with the results of applying cubic splines to the 
solution of the Fredholm equation. The paper also 
gives approximation theorems for polynomial cubic 
splines of the fourth order of approximation and 
polynomial splines of the fifth order of 
approximation. As is known, theorems on the 
solution of an integral equation follow from 
approximation theorems. However, when using 
cubic splines and splines of the fourth order of 
approximation, assumptions are required about the 
sufficient smoothness of the kernel of the integral 
equation, the solution of the integral equation and its 
right side. If the smoothness is insufficient, then the 
desired error reduction cannot be achieved. In this 
case, it is preferable to use splines of the second or 
third order of approximation or the classical 
methods of trapezoids or middle rectangles. 
    Thus, we summarize the results obtained. If the 
kernel of the integral equation is represented by a 
delta function, then we almost immediately obtain a 
solution. If the kernel of the integral equation and 
the solution of the integral equation have sufficient 
smoothness, then the method proposed in this paper 
will give a good result when we use a small number 
of grid nodes. 
   In the author’s next studies, new numerical 
methods for solving the nonlinear Volterra and 
Fredholm equations using spline approximations 
will be considered. 
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