
Fredkin/Toffoli Templates for Reversible Logic Synthesis

Dmitri Maslov
Faculty of Computer Science
University of New Brunswick
Fredericton, NB, E3B 5A3

Canada
cetrau@mail.ru

Gerhard W. Dueck
Faculty of Computer Science
University of New Brunswick
Fredericton, NB, E3B 5A3

Canada
gdueck@unb.ca

D. Michael Miller
Dept. of Computer Science

University of Victoria
Victoria, BC, V8W 3P6

Canada
mmiller@csr.uvic.ca

ABSTRACT
Reversible logic has applications in quantum computing, low
power CMOS, nanotechnology, optical computing, and DNA
computing. The most common reversible gates are the Tof-
foli gate and the Fredkin gate. Our synthesis algorithm first
finds a cascade of Toffoli and Fredkin gates with no back-
tracking and minimal look-ahead. Next we apply transfor-
mations that reduce the size of the circuit. Transformations
are accomplished via template matching. The basis for a
template is a network with m gates that realizes the iden-
tity function. If a sequence in the network to be synthesized
matches more than half of a template, then a transformation
that reduces the gate count can be applied. In this paper we
show that Toffoli and Fredkin gates behave in a similar man-
ner. Therefore, some gates in the templates may not need
to be specified—they can match a Toffoli or a Fredkin gate.
We formalize this by introducing the box gate. All templates
with less than six gates are enumerated and classified. We
synthesize all three input, three output reversible functions
and compare our results to those obtained previously.

1. INTRODUCTION
Reversible logic is an emerging research area. The syn-

thesis of reversible circuits differs significantly from synthe-
sis using traditional irreversible gates. Two restrictions are
added for reversible networks, namely fan-outs and feed-
backs are not allowed. The only possible structure for a re-
versible network is a cascade of reversible gates. The most
frequently used gates are the Toffoli gate [9] and the Fredkin
gate [3]. The Toffoli gate inverts a single bit if the AND of
a set of control lines is 1. That is, it performs a controlled
NOT. The Fredkin gate interchanges two bits if the AND of
a set of control lines is 1. In other words, a controlled swap.
The formal definitions are given in Section 2.
Only a few synthesis methods have been proposed for

reversible logic. Suggested methods include: using Toffoli
gates to implement an ESOP (EXOR sum-of-products) [7],
exhaustive enumeration [8], heuristic methods that itera-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
ICCAD 2003, Nov. 9–13, 2003, San Jose, CA.
Copyright 2003 ACM ...$5.00.

tively make the function simpler (simplicity is measured by
the Hamming distance [1] or by spectral means [5]), and
transformation based synthesis [4], among others. Some
methods use excessive search time, others are not guaran-
teed to converge, and some require many additional outputs
(garbage). We follow the two-step approach suggested in [6]
and further investigated in [2]. The first paper [6] describes
templates with Toffoli gates only. The second [2] introduces
some templates with Fredkin gates, however, they are re-
stricted to three inputs. First a network for the given func-
tion is found. The algorithm for this step is guaranteed to
converge. In fact, the algorithm is very fast. Improvements
on a naive algorithm are described in [6] (as they apply
to Toffoli networks). The second step consists of applying
transformations that reduce the number of gates. In this
paper we describe and classify the templates used for such
transformations in detail.

2. DEFINITIONS
In this work we consider cascades of generalized Toffoli [9]

and generalized Fredkin [3] gates defined as follows.

Definition 1. For the set of domain variables {x1, x2, ...,

xn} the generalized Toffoli gate has the form TOF (C, T),
where C = {xi1 , xi2 , ..., xik

}, T = {xj} and C ∩ T = ∅. It
maps the Boolean pattern (x0

1, x
0
2, ..., x

0
n) to (x0

1, x
0
2, ..., x

0
j−1,

x0
j ⊕ x0

i1
x0

i2
...x0

ik
, x0

j+1, ..., x
0
n).

Definition 2. For the set of domain variables {x1, x2, ...,

xn} generalized Fredkin gate has the form FRE(C, T),
where C = {xi1 , xi2 , ..., xik

}, T = {xj , xl} and C ∩ T = ∅.
It maps the Boolean pattern (x0

1, x
0
2, ..., x

0
n) to {x0

1, x0
2, ...

, x0
j−1, x

0
l , x0

j+1, ..., x
0
l−1, x

0
j , x

0
l+1, ..., x

0
n) iff x0

i1
x0

i2
...x0

ik
= 1.

In other words, the generalized Fredkin gate interchanges bits
xj and xl if and only if corresponding product equals 1.

For both gate types, C will be called the control set and
T will be called the target set. The number of elements
of the set of controls C defines the width of the gate. The
set of generalized Toffoli and generalized Fredkin gates will
be called the Fredkin-Toffoli family. For the control set
C = {x3, x4, ..., xk+2} the pictorial representation of gate
TOF (C, x2) is shown in Fig. 1a and the pictorial represen-
tation of gate FRE(C, x1 + x2) (where “+” stays for set
union operation) is shown in Fig. 1b.
Toffoli and Fredkin gates are closely related. In fact, they

can be written as one general gate G(S, B). In section 4 we
will see how useful it is to unite these two gates together.

256

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

?
x1

x
x

x

2

3

...
k+2

x1

x
x

x

2

3

...
k+2

x

x

3

...
k+2

B

(a) (b) (c)

Figure 1: Gates Toffoli, Fredkin and Box.

The uniform way of writing Toffoli and Fredkin gates is cap-
tured in the definition of a box gate G(S, B), which for
|B| = 1 is the TOF (S, B) gate and for |B| = 2 is FRE(S, B).
Such a way of writing the gates is needed when we consider
a general gate from the Fredkin-Toffoli family and do not
want to specify which gate it is. So, if the size of the set B

is not specified, it can be either 1 or 2. The gate shown in
Fig. 1c is G(C, B) where the set B is not specified. If a box
gate is found in a network the following rules help to decide
which gate (Toffoli or Fredkin) it represents and the way the
network looks after assigning EXOR or SWAP to the box.

• If the EXOR operation is assigned to a box symbol,
all the boxes on this line become EXORs and nothing
else changes.

• If the SWAP operation is assigned to a box symbol, all
the boxes on this line are changed to SWAPs. SWAPs
require two lines to be properly written, therefore, add
one line so that the two lines with the newly built
SWAP have controls everywhere the line with box had,
and only there.

• In a correctly built circuit a box symbol will never be
on the same line with EXOR or SWAP symbols.

Further, if the setting for the box (Toffoli or Fredkin) is not
specified, the box can be either one, assigned accordingly to
the above rules.

3. THE ALGORITHM
In this section we consider the synthesis of completely

specified reversible functions realized with gates from the
Fredkin-Toffoli family. Before we describe the algorithm,
we have to agree on the function representation. For our
method it is best to think of the function to be realized as
given by a truth table, which has input patterns on the left
and output patterns on the right side. The input patterns
are arranged in lexicographical order.
The basic algorithm starts with an empty circuit (the

identity function). At every step of the synthesis algorithm
we add some gates from the Fredkin-Toffoli family to the
end of the circuit. Since the reversible cascade can be built
from either end. The basic algorithm starts from the output.
Basic algorithm.

Step 0. Idea: take the narrowest gates and arrange them
in a cascade so that they bring the first output pattern to the
first input pattern.
The first pattern in the truth table is the lowest on the

order sequence (0, 0, ..., 0) (assume Boolean n-tuples are ar-
ranged in lexicographical order), let the first pattern in out-
put be (b1, b2, ..., bn). To bring it to the form (0, 0, ..., 0),

use gates TOF (∅, xi) for every i : bi 6= 0. After adding the
gates to the cascade, update the output part of the table
such that the pattern (b1, b2, ..., bn) is transformed to the
desired form (0, 0, ..., 0).
Step S, 1 ≤ S ≤ 2n − 2. Idea: without influencing the

patterns of the lower order that were put at their desired
places in the previous steps of the algorithm, use the least
number of the narrowest gates to bring the output pattern to
the form of correspondent input pattern.
The input pattern of the table, (a1, a2, ..., an) is the binary

representation of natural number (S+1). The pattern in the
last update of the output part is any pattern (b1, b2, ..., bn)
of higher order. If the order is the same, the patterns are
equal, and no action is required. The order of (b1, b2, ..., bn)
cannot be less than the order of (a1, a2, ..., an) since all such
patterns were put to their places during the previous steps
of the algorithm.
For pattern (b1, b2, ..., bn) to be transformed to the form

(a1, a2, ..., an) note that each application of a Toffoli gate
is capable of flipping one bit of pattern (b1, b2, ..., bn) either
from value 1 to value 0 or vice versa, and each Fredkin gate
is capable of permuting a pair of unequal Boolean values.
Now, a problem can be formulated as follows: using the
two operations “flip” and “swap” bring a Boolean pattern
(b1, b2, ..., bn) Â (a1, a2, ..., an) to the form (a1, a2, ..., an)
so the all intermediate Boolean patterns are greater then
(a1, a2, ..., an). The controls for the corresponding gates will
be assigned later. The problem’s solution is as follows.

• If the number of ones in (b1, b2, ..., bn) is less than the
number of ones in (a1, a2, ..., an) apply “swaps” that
improve 2 bit positions and flip the remaining incor-
rect bits. Use “swaps” so that the order of each in-
termediate pattern (x1, x2, ..., xn) is less than the or-
der of (a1, a2, ..., an) and the set of controls defined as
minimal subset of unit values of (x1, x2, ..., xn) such
that this subset forms a Boolean pattern of an order
higher than (a1, a2, ..., an) is minimal. This can be eas-
ily done if “swaps” are done on the low order bits first.
Note, that in this case initial pattern (b1, b2, ..., bn)
was greater than (a1, a2, ..., an), so the most signifi-
cant binary digit of (b1, b2, ..., bn) equal one was greater
than the most significant one digit of (a1, a2, ..., an).
Thus, it will be taken as the control (when a control is
needed) for all corresponding Fredkin and Toffoli gates
except the last Toffoli gate, for which the control will
consist of all unit digits of (a1, a2, ..., an).

• If the number of ones in (b1, b2, ..., bn) is equal to the
number of ones in (a1, a2, ..., an), it is possible to trans-
form one pattern into the other using “swap” opera-
tion only. Controls are determined by the procedure
described in the above case.

• If the number of ones in (b1, b2, ..., bn) is greater then
the number of ones in (a1, a2, ..., an), apply “swaps”
starting from the end of the pattern (b1, b2, ..., bn) and
then apply necessary Toffoli gates. All the necessary
controls can be found using the procedure from the
first case.

Step 2n−1. When all the 2n−1 of previous patterns are
in places, the last patterns will automatically be correct.
Motivation. Given a target technology, it usually hap-

pens that the narrower the gate, the less costly it is, thus

257

we try to use the narrowest gates. Although choosing the
narrowest gates at each step may lead to larger initial cir-
cuits which might not be simplified enough by the template
tool. Another possibility is to chose the control set such that
the remaining function is as simple as possible. To measure
“simplicity” we use the Hamming distance as a heuristics.
It also happens that the template simplification tool is sen-
sitive to the width of gates, therefore by taking narrow gates
we prepare the circuit for better template reduction.
Bidirectional modification. The basic algorithm worked

from the output to input by adding the gates in one direc-
tion starting from the end of desired cascade and ending at
its beginning. What if we were able to understand what
happens if during the procedure when a gate is added to the
beginning of cascade? Then we would be able to construct
the network from the two ends simultaneously by growing
the number of gates from the two sides. The idea of the
method is the same—by applying the gates to match input
with output part of the truth table to each other by assuring
that at each step of calculation we put at least one pattern at
its place. It makes sense that such a bidirectional algorithm
on average will converge faster.

• Toffoli gate application. Without loss of generality ap-
ply gate TOF (C, xk+1), C = {x1, x2, ..., xk} with the
controls on first k variables and target on the (k + 1)
variable (all other generalized Toffoli gates have per-
muted set of controls and, maybe, a different target).
Then, in the input part of the truth table the pat-
terns (1, 1, ..., 1, x0

k+1, x
0
k+2, ..., x

0
n) will be interchanges

with patterns (1, 1, ..., 1, x̄0
k+1, x

0
k+2, ..., x

0
n). Which, in

terms of our understanding is the same as permut-
ing the output patterns in front of the (1, 1, ..., 1, x0

k+1,

x0
k+2, ..., x

0
n) and (1, 1, ..., 1, x̄0

k+1, x
0
k+2, ..., x

0
n) input pat-

terns without changing the input part. This under-
standing is easier to visualize, since the matched pat-
terns do not get mixed up in the middle of the truth
table which makes it hard to track everything. For the
program realization, the input part may be changed.

• Fredkin gate application. Apply a Fredkin gate
FRE(C;xk+1, xk+2), C = {x1, x2, ..., xk}. This re-
sults in the following change of all patterns in the input
part of the table: (1, 1, ..., 1, x0

k+1, x
0
k+2, x

0
k+3, ..., x

0
n) is

interchanged with (1, 1, ..., 1, x0
k+2, x

0
k+1, x

0
k+3, ..., x

0
n).

If we want to keep the conventional form of input part
of the truth table when patterns are arranged lexico-
graphically, this operation is the same as interchang-
ing the output patterns of the truth table which stay in
front of input patterns (1, 1, ..., 1, x0

k+1, x
0
k+2, x

0
k+3, ..., x

0
n)

and (1, 1, ..., 1, x0
k+2, x

0
k+1, x

0
k+3, ..., x

0
n).

The presented algorithm is an improved version of the al-
gorithm proposed in [6]. The algorithm in [6] uses Toffoli
gates only, and its basic structure was simple: for input pat-
tern (a1, a2, ..., an) use the Toffoli gates to bring the output
pattern (b1, b2, ..., bn) to the form (a1∨b1, a2∨b2, ..., an∨bn)
(increase the order) using controls xi : bi = 1. And then
use the Toffoli gates with controls xi : ai = 1 to bring
(a1∨b1, a2∨b2, ..., an∨bn) to the desired form (a1, a2, ..., an).
For such an algorithm it was easy to construct the worst
case function. Particularly, for n = 3 such a function was
constructed (it is unique) and called 3 17.pla. The cost of
realizing this function was 17.

a
b
c

a
b
c

(a) (b)

Figure 2: Circuits for 3 17.pla.

The following two tables illustrate the work of the algo-
rithm synthesizing the circuits for 3 17.pla. Table 1 refers
to the basic approach (Toffoli gates are denoted by T and
Fredkin gates by F), and Table 2 illustrates the bidirectional
algorithm. Each column in the tables shows the change of
the output part of the truth table as the gates from the pre-
vious steps are applied. The arrows in Table 2 indicate the
direction of gate assignment (beginning of the cascade →,
or the end of the cascade ←). The corresponding circuits
are shown in the Fig. 2.

4. TEMPLATE SIMPLIFICATION TOOL
Let a size m template be a sequence of m gates (a cir-

cuit) which realizes identity function. The template size m

should also be independent of the templates of smaller size,
e.g. for a given template size m no application of any set
of templates of smaller size can decrease the number of its
elements. For a template G0 G1... Gm−1 its application is
one of the two operations:

1. Forward application. A sequence of gates in the net-
work which matches the sequence Gi G(i+1) mod m...

G(i+k−1) mod m in the template G0 G1... Gm−1 is re-
placed with the sequence G(i−1) mod m G(i−2) mod m...

G(i+k) mod m without changing the network’s output,
where k ∈M, k ≥ m

2
.

2. Backward application. A sequence of gates in the net-
work which matches the sequence Gi G(i−1) mod m...

G(i−k+1) mod m is replaced with the sequence G(i+1) mod m

G(i+2) mod m ... G(i−k) mod m without changing the net-
work output, where k ∈M, k ≥ m

2
.

Thus, each application of a template size m for parameter
k > n

2
leads to a reduction in the number of gates.

Definition 3. A class of templates size n is a cir-
cuit G(S1, B1) G(S2, B2) ...G(Sn, Bn) with a set of logical
conditions on sets S1, B1, S2, B2, ..., Sn, Bn. When a class
is mentioned, it may be written as Gi1 Gi2 ... Gin , where
ik = ij iff Sk = Sj and Bk = Bj .

This approach to defining a class is useful for short classi-
fication and computer implementation, but it is difficult to
visualize. Thus, we introduce the following notation (defi-
nition):

Definition 4. A class can be written as a set of disjoint
formulas, i.e. formulas G1(S1, B1) G2(S2, B2) ...Gm(Sm, Bm),
where:

• according to the number of elements in Bi Gi is written
as TOF (|Bi| = 1) or FRE(|Bi| = 2);

• Si is written as a union of sets (C) and single variables
(t): Si = Ci1 + Ci2 + ... + Cik

+ ti1 + ti2 + ... + tij
;

• if |Bi| = 1, it is written as single variable, tj ; if |Bi| =
1 it is written as union tj + tk;

258

In Out S0 S1 S2 S3 S4 S5
000 111 000 000 000 000 000 000
001 001 110 001 001 001 001 001
010 100 011 111 010 010 010 010
011 011 100 100 100 011 011 011
100 000 111 011 110 111 100 100
101 010 101 110 011 101 110 101
110 110 001 010 111 110 101 110
111 101 010 101 101 100 111 111
apply T (a) F (; b, c) T (b; c) T (a; c) T (a; c) F (a; b, c)
gates: T (b) T (c; a) T (b; a) F (c; a, b) T (a; b)

T (c)

Table 1: An example of the basic synthesis algorithm.

In Out S0 S1 S2 S3 S4 S5
000 111 000 000 000 000 000 000
001 001 010 001 001 001 001 001
010 100 110 101 010 010 010 010
011 011 101 110 111 011 011 011
100 000 111 111 110 110 100 100
101 010 001 010 100 100 110 101
110 110 100 100 011 111 101 110
111 101 011 011 101 101 111 111
apply → TOF (; a) ← FRE(; b, c) ← FRE(; a, b) → FRE(b; a, c) ← TOF (a; b) → FRE(a; b, c)
gates: ← TOF (b; c)

Table 2: Bidirectional synthesis of 3 17.pla.

• all the sets are disjoint: Ci ∩ Cj = ∅, Cj ∩ tk = ∅, tk ∩
tl = ∅.

In order to classify the templates, we need to discuss the
box notation in more detail. If the box is found in a network,
there are certain rules for changing the network when the
operation of EXOR or SWAP is assigned to the box.

• If the assignment was EXOR, then the box is substi-
tuted with the EXOR symbol. If the line with the box
assigned EXOR contains other box symbols, they are
all substituted with EXOR.

• If the assignment was SWAP, the line with the box be-
comes the two lines, where the symbol SWAP is put.
Every occurrence of a control on the line with this box
is substituted with two controls and every occurrence
of the box symbol is substituted with SWAP. EXOR
symbol cannot appear in this line, since by the first
item, had it be there, all the boxes would be substi-
tuted with EXOR, thus SWAP substitution will be
incorrect initially.

Further, if a box symbol in a circuit is not specified, it can
be either EXOR or SWAP which are substituted into the
circuit by the above rules.
m=1. There are no templates of size 1, since every gate

changes at least two input patterns.
m=2. There is one class of templates size 2 the duplica-

tion deletion rule, AA, which is defined as G(S1, B1) G(S1, B1).
This class is a generalization of the duplication deletion rule
[6] and it is true for any two gates which perform a self-
inverse transformation. In disjoint notations this class can
be written as two formulas, one for two Toffoli gates and
one for two Fredkin gates: TOF (C1, t1) TOF (C1, t1) and
FRE(C1, t1 + t2) FRE(C1, t1 + t2) shown in Fig. 3.

C
t

C
t
t1

2
1

1

1 ?
C
B

1

1 ?
, =

Figure 3: Class AA.

m=3. There are no templates of size 3.
m=4. There are several classes of size 4 templates.

• A very important class is the passing rule, a class
ABAB (analogy of the passing rule from [6]) G(S1, B1)
G(S2, B2) G(S1, B1) G(S2, B2) with conditions: (S2 ∩
B1 = ∅, S1 ∩ B2 = ∅, B1 = B2) OR (S2 ∩ B1 =
∅, S1 ∩ B2 = ∅, B1 ∩ B2 = ∅) OR (|B1| = 2, B1 ⊆ S2).
There can be a shorter but less formal condition: the
template G(S1, B1) G(S2, B2) G(S1, B1) G(S2, B2) ex-
ists if for the first (if there are two with this property)
line containing a control (dot) and a BOX, the BOX
is SWAP, and sets B1, B2 either disjoint or equal. All
the cases are shown in Fig. 4. The first part of the
OR condition covers the first picture, the second OR
condition describes the second. The third and fourth
pictures illustrate the case when the third condition
holds.

There is a regular procedure for finding all the tem-
plates of the form ABAB. Since ABAB is the identity,
the circuit produced by the sequence of gates AB must
be a self-inverse permutation. The search of the tem-
plates of the form ABAB, thus, becomes equivalent
to the search of self-inverse permutations that can be
realized by two different gates.

• The following sets of templates can be treated as one,

259

?C1 ?
C2

C3

C4

? ?
?C1

?C2

C3

C4

?
?

C5

C1

C2

C3

1

2t
t

C1

C2

C3

1

2t
t

? ?

C4

? ?

C4

1. 2.

3. 4.

Figure 4: Class ABAB.

t

1

C1

C2

t
t

2

3 t

1

C1

C2

t
t

2

3

C
C
t
t

1

2

1

2

t

C
C

t
t

1

2

3

1

2

C
C
t
t

1

2

1

2

t

C
C

t
t

1

2

3

1

2

t

C
C

t
t

1

2

3

1

2

C
C1

2

t
t
t

3

1

2

t4

Figure 5: A group of semi passes.

two or even three classes, depending on one’s view of
the templates. The sets are:

– Semi passing rule: a group FAFB of gates
FRE(S1, B1) G(S2, B2) FRE(S1, B1) G(S3, B3)
with conditions S1 ⊆ S2, B2 6⊆ S1, and gate
G(S3, B3) is the gate G(S2, B2) with controls and
targets permuted according to the swap opera-
tion defined by the 2-bit set B1. This description
clarifies the name of the group - if the template
is applied for parameter k = 2, the change of the
network that we see can be described by: gates
FRE(S1, B1) and G(S2, B2) are interchanged, but
gate G(S2, B2) may be slightly changed. The
above group of gates has a non-empty intersec-
tion with the passing rule class. For example, the
second template in Fig. 4 where the first box is
Fredkin and the second is Toffoli and the set C4

is empty, is a template of a semi-passing group.
The new templates added by this group are shown
in Fig. 5. Note, some of the semi-passes leave
the gate G(S2, B2) unchanged. Also, if we take
the set of all semi-passing group templates and
subtract the set of all templates of the passing
rule group, the resulting set will have the semi-
passing group templates where the second gate
always changes.

– A group can be treated as the definition of the

t

C
C

t
t

1

2

3

1

2

Figure 6: Link group.

Fredkin gate in terms of Toffoli gates, TTTF,
TOF (S1, B1) TOF (S2, B2) TOF (S1, B1)
FRE(S3, B3) with conditions B1 ⊆ S2, B2 ⊆ S1,

B1 6= B2, (S1 \B1) ⊆ (S2 \B2), S3 = S2 \ (B1 ∪
B2), B3 = B1∪B2. Pictorial representation of this
class can be found in Fig. 7.

– And a link between the semi passing rule and
Fredkin definition groups, group of templates
FFFF, FRE(S1, B1) FRE(S2, B2) FRE(S1, B1)
FRE(S3, B3) with conditions: |S1∩S2| = 1, S1∩
B2 6= ∅, S1 ∩B2 6= ∅, (S1 ∪B1) ⊆ (S2 ∪B2) and
FRE(S3, B3) is the gate FRE(S1, B1) with the
controls and targets permuted by the swap de-
fined by the set B1 (Fig. 6). This group is not a
part of the semi passing rule, since, for instance,
condition S1 ∈ S2 does not hold, but essentially it
is doing the same thing. For a certain configura-
tion of the first two gates, it allows passing of one
gate through the other by permuting the elements
of one gate. From the other point of view, this
group is similar to the Fredkin definition group in
the sense that if we cut out line t2 and each oc-
currence of half of the SWAP (which requires two
lines, so the half is one line) change with EXOR
symbol, it results in getting the Fredkin definition
group.

Given these three groups, the classification is not unique.
We suggest unifying the semi passing group with the
link group under the name of semi passing class

and leaving the Fredkin definition group as a separate
Fredkin definition class. If the reader is not com-
fortable with this classification, other classifications
are possible with the only condition of semi passing
and Fredkin definition group can be in one class only
if the link group is a part of it.

m=5. Amazingly, there is only one class of templates of
size 5. Class ATATB, G(S1, B1) TOF (S2, B2) G(S1, B1)
TOF (S2, B2) G(S3, B3) has conditions B2 ⊆ S1, B1 6⊆
S2, S3 = (S1 ∪ S2) \ B2, B3 = B1. Although this is the
largest class we have, and one would expect to see less ap-
plications of larger classes, since it is harder to match them
then to match smaller classes, in practice this class is the
most useful. The pictorial representation of this class is
shown in Fig. 7.
m=6. Using the idea of regular search for the ABAB type

templates, it was possible to find and generalize a template
of size 6 of the form ABCABC, where ABC is a self-inverse
permutation. Using this idea, the template FTTFTT of the
form FRE(S1, B1) TOF (S2, B2) TOF (S3, B3) FRE(S1, B1)
TOF (S2, B2) TOF (S3, B3) with conditions B2 ⊆ B1, S2 ∩
B1 = ∅, B3 ⊆ B1, B2 6= B1, S3 ∩ B1 = ∅, (S2 4 S3) ⊆ S1.
This class is illustrated in Fig. 8. The program which
searches for the self dual functions of size three has found

260

?

C2

C3

? ?
t

C1

1

C4C
C
t
t

1

2

1

2

Figure 7: Fredkin definition group and class ATATB.

C1

C2

C3

1

2t
t

C4

C5

Figure 8: Class FTTFTT .

only those functions that are described by the presented
template or circuits which can be simplified by other tem-
plates. Thus, we conclude that we built all the size 6 tem-
plates of the form ABCABC.
Applying the templates to the circuits shown in Fig. 2

results in the two circuits shown in Fig. 9. The circuit of
size 12 (Fig. 2a) resulted in a circuit of size 7 (Fig. 9a).
The second circuit (Fig. 9b) was reduced to size 6 from the
original 7 (Fig. 2b).

5. RESULTS
We have written a program that synthesizes functions us-

ing the bidirectional algorithm and then, applies the tem-
plate tool as a primary circuit simplification procedure. We
ran our program exhaustively for all reversible functions
with 3 variables and compared the results of our algorithm
to the results of optimal synthesis. Table 3 shows how many
functions with 3 inputs can be realized with k = 0..10 gates
in optimal synthesis with the model gates NOT, CNOT,
Toffoli, SWAP and Fredkin, (calculated in [2]), optimal syn-
thesis with the model gates NOT, CNOT and Toffoli (calcu-
lated in [8]), optimal synthesis with the model gates NOT,
CNOT, Toffoli and SWAP (calculated in [8]), our previous
results of the heuristic synthesis presented in [2] and for the
presented algorithm realization. WA shows the weighted
average of the circuit size of a three variable reversible func-
tion. Note, our algorithm produces the circuits which on
average are 105.9% of the optimal size, which in compari-
son with the previous realization (111.5%) is almost twice
as close to the optimal. The 105.9% difference from the op-
timal circuit allows us to say that our algorithm produces
near optimal circuits for reversible functions of a small num-
ber of variables. Also note, that even the heuristic synthesis
of Toffoli/Fredkin networks (Algorithm column) produces a

a
b
c

a
b
c

(a) (b)

Figure 9: Circuits for 3 17.pla after simplification.

Size Optimal NCT NCTS CCECE Algorithm
0 1 1 1 1 1
1 18 12 15 18 18
2 184 102 134 175 184
3 1318 625 844 1105 1290
4 6474 2780 3752 4437 5680
5 17695 8921 11194 10595 13209
6 14134 17049 17531 13606 13914
7 496 10253 6817 8419 5503
8 0 577 32 1877 512
9 0 0 0 86 9
10 0 0 0 1 0
WA: 5.134 5.866 5.629 5.724 5.437

Table 3: Number of reversible functions using a

specified number of gates for n = 3.

better weighted average then the synthesis of Toffoli net-
works (NCT column) only. The program can be used to
synthesize functions with n > 3. The algorithm does not
impose any limits on the number of variables. However,
since the truth table must be stored, functions with more
than 16 varialbes may require too much space and time.

6. REFERENCES
[1] G. W. Dueck and D. Maslov. Reversible function

synthesis with minimum garbage outputs. In 6th
International Symposium on Representations and
Methodology of Future Computing Technologies, pages
154–161, March 2003.

[2] G. W. Dueck, D. Maslov, and D. M. Miller.
Transformation-based synthesis of networks of
toffoli/fredkin gates. In IEEE Canadian Conference on
Electrical and Computer Engineering, Montreal,
Canada, May 2003.

[3] E. Fredkin and T. Toffoli. Conservative logic.
International Journal of Theoretical Physics,
21:219–253, 1982.

[4] K. Iwama, Y. Kambayashi, and S. Yamashita.
Transformation rules for designing cnot-based quantum
circuits. In Proceedings of the Design Automation
Conference, New Orleans, Louisiana, USA, June 10-14
2002.

[5] D. M. Miller and G. W. Dueck. Spectral techniques for
reversible logic synthesis. In 6th International
Symposium on Representations and Methodology of
Future Computing Technologies, March 2003.

[6] D. M. Miller, D. Maslov, and G. W. Dueck. A
transformation based algorithm for reversible logic
synthesis. In Proceedings of the Design Automation
Conference, June 2003.

[7] A. Mishchenko and M. Perkowski. Logic synthesis of
reversible wave cascades. In International Workshop on
Logic Synthesis, June 2002.

[8] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P.
Hayes. Reversible logic circuit synthesis. In ICCAD,
pages 125–132, San Jose, California, USA, Nov 10-14
2002.

[9] T. Toffoli. Reversible computing. Tech memo
MIT/LCS/TM-151, MIT Lab for Comp. Sci, 1980.

261

