FREE ACTIONS OF CYCLIC GROUPS
 OF ORDER 2^{n} ON $S^{1} \times S^{2}$

GERHARD X. RITTER

Abstract

In [4] Y. Tao proved that if h is a fixed point free involution of $S^{1} \times S^{2}$, then $\left(S^{1} \times S^{2}\right) / h$ must be homeomorphic to either $M_{1}=S^{1} \times S^{2}$, or $M_{2}=K^{3}$, or $M_{3}=S^{1} \times \mathbf{P}^{2}$ or $M_{4}=\mathbf{P}^{3} \# \mathbf{P} 3$. In this paper we extend this result to free actions of $Z_{2 n}$ on $S^{1} \times S^{2}$, showing that, for $n>1,\left(S^{1} \times S^{2}\right) / Z_{2^{n}}$ must be homeomorphic to either M_{1} or M_{2} 。

1. Introduction. A long outstanding problem in topology is the characterization of the manifold M / G, where M is a given compact 3 -manifold and G is a finite group acting freely on M. For example, if $M=S^{3}$, then M / G has only been classified for $G=Z_{2}[1], Z_{4}[2]$, and Z_{8} [3]. There is little known if M is a compact manifold other than S^{3}. In fact, the only other characterization appearing in the literature was given by Tao [4]. Tao proved that if Z_{2} acts freely on $S^{1} \times S^{2}$ then $S^{1} \times S^{2} / Z_{2}$ must either be $S^{1} \times S^{2}$, or $S^{1} \times \mathbf{P}^{2}$, or K^{3}, or $\mathbf{P}^{3} \# \mathbf{P}^{3}$, the connected sum of two projective spaces. In this paper we show that Tao's results extend without great difficulty to free actions of $Z_{2 n}$ on $S^{1} \times S^{2}$.
2. Notation and preliminary lemmas. The interior of a topological manifold M will be denoted by int M and the boundary by ∂M. The n-dimensional sphere, Klein bottle and projective space will be denoted by S^{n}, K^{n} and \mathbf{P}^{n}, respectively.

We shall view $S^{1} \times S^{2}$ as obtained from $[0,1] \times S^{2}$ by identifying $0 \times$ S^{2} with $1 \times S^{2}$. The next two lemmas are proven in [4].

Lemma 1. Let D_{1}, D_{2}, D_{3} be three discs in $S^{1} \times S^{2}$ such that $D_{1} \cap$ $D_{2}=D_{1} \cap D_{3}=D_{2} \cap D_{3}=\partial D_{i}, i=1,2$, or 3. If any two of the 2 -spheres $S_{1}=D_{1} \cup D_{2}, S_{2}=D_{1} \cup D_{3}$ and $S_{3}=D_{2} \cup D_{3}$ separate $S^{1} \times S^{2}$, then the other one also separates $S^{1} \times S^{2}$.

Received by the editors November 14, 1972 and, in revised form, October 1, 1973.
AMS (MOS) subject classifications (1970). Primary 57A10, 57E25; Secondary 55C35, 54B15.

Key words and phrases. Free actions, piecewise linear, polyhedral, isotopic, manifold.

Lemma 2. Let S be a 2-sphere in $S^{1} \times S^{2}$ such that $S \cap\left(0 \times S^{2}\right)=\varnothing$, S is a polyhedron in some triangulation of $S^{1} \times S^{2}$ and does not separate $S^{1} \times S^{2}$. Then S is isotopic to $0 \times S^{2}$ in $S^{1} \times S^{2}$.

Since we may assume [3] that $S^{1} \times S^{2}$ has a fixed triangulation and that $Z_{2 n}$ acts piecewise linearly on this triangulation, all objects in this paper shall henceforth be considered from the polyhedral point of view.

Lemma 3. Suppose $Z_{2^{n}}$ acts freely on $S^{1} \times S^{2}, b \in Z_{2^{n}}$ a generator and $n \geq 2$. Then there is a 2-sphere S in $S^{1} \times S^{2}$ which is isotopic to $0 \times S^{2}$ and such that $U h^{i} S$ is a disjoint collection of 2^{n} 2-spheres.

Proof. The proof is inductive. If $n=2$, then h^{2} is a free action of Z_{2}. By Lemma 3 of [4] we may assume that for the 2 -sphere $S=0 \times S^{2}$ either $S \cap h^{2} S=\varnothing$ or $h^{2} S=S$.

We suppose that $S \cap h^{2} S=\varnothing$ and $S \cap h^{i} S \neq \varnothing$ for some integer i with $1 \leq i<2^{n}$. Since $\bigcup h^{2 i} S$ remains invariant under h^{2}, we may assume by Proposition 2.2 of [3] that $\mathcal{T}=\left(\bigcup h^{2 i} S\right) \cap\left(\bigcup b^{2 i+1} S\right)$ consists of a finite number of simple closed curves. No component of \mathcal{T} remains invariant under h. Hence, for some odd positive integer m (either 1 or 3), there is a simple closed curve J in $S \cap h^{m} S$ which is innermost on $h^{m} S$. That is, J bounds a disc D on $h^{m} S$ such that $D \cap\left(\bigcup b^{2 i} S\right)=\partial D=J$.

The curve J divides S into two discs D_{1} and D_{2}. By Lemma 1 , one of the 2-spheres $S_{1}=D \cup D_{1}, S_{2}=D \cup D_{2}$ does not separate $S^{1} \times S^{2}$. We suppose, without loss of generality, that S_{1} does not separate $S^{1} \times S^{2}$. Let J_{1} be a simple closed curve on D_{1}, sufficiently close to J, such that the annulus A_{1} on D_{1}, bounded by J and J_{1}, has the property that $\left(\bigcup h^{2 i+1} S\right) \cap$ int $A_{1}=$ \varnothing. Since h is fixed point free and $\mathcal{T} \cap D=\partial D$, we may choose a disc D^{\prime}, with boundary J_{1}, sufficiently close to D such that $\left(U h^{i} S\right) \cap D^{\prime}=\partial D^{\prime}, D^{\prime} \cap$ $h^{i} D^{\prime}=\varnothing$ if $1 \leq i<2^{n}$, and $S^{\prime}=D^{\prime} \cup\left(D_{1}-A_{1}\right)$ does not separate $S^{1} \times S^{2}$.

By construction, $\left(\bigcup h^{2 i} S^{\prime}\right) \cap\left(\bigcup h^{2 i+1} S^{\prime}\right)$ is a strict subset of \mathcal{T}. Since the number of components of \mathfrak{T} is finite, it follows that by repeating the above procedure a finite number of times, we can construct a 2 -sphere $S^{\prime \prime}$ in $S^{1} \times S^{2}$ such that $\bigcup h^{i} S^{\prime \prime}$ is a disjoint union of 2-spheres. Furthermore, if $S^{\prime \prime} \cap S \neq \varnothing$, then, by our construction of $S^{\prime \prime}$, we may use a small deformation of $S^{\prime \prime}$ such that $S \cap S^{\prime \prime}=\varnothing$ and all other required properties for $S^{\prime \prime}$ remain unchanged. By Lemma 2, $S^{\prime \prime}$ is isotopic to $0 \times S^{2}$.

If $h^{2} S=S$, then $S \cap\left(U h^{2 i+1} S\right) \neq \varnothing$. For otherwise, if x denotes a generator of $H_{2}\left(S^{1} \times S^{2}\right)$, then for the homomorphism h_{*} induced by h we have $h_{*}(x)= \pm x$ and $h_{*}^{2}(x)=x$. Since $h^{2} S=S$ and x is carried by S, the degree
of ($h^{2} \mid S$): $S \rightarrow S$ is one. Hence h^{2} has a fixed point. But this is impossible since h is free.

As before, there must be an integer $m=1$ or $m=3$ and a simple closed curve J in $S \cap b^{m} S$ which is innermost on $h^{m} S$. If D_{1} and D_{2} denote the two discs on S with boundary J, then $h^{2} D_{1} \subset D_{2}$. Hence, constructing $S^{\prime \prime}$ as above, $U h^{i} S^{\prime \prime}$ is a disjoint union of four 2-spheres.

We now proceed by induction, assuming the result to be valid for $n-1$ with $n \geq 3$. Since h^{2} is a free action of $Z_{2^{n-1}}$ we may assume that for the 2-sphere $0 \times S^{2}, \bigcup b^{2 i} S$ is a disjoint union of $2^{n-1} 2$-spheres. We further assume that $S \cap h^{i} S \neq \varnothing$ for some integer i with $1 \leq i<2^{n}$ and that $T=$ $\left(U h^{2 i} S\right) \cap\left(U h^{2 i+1} S\right)$ consists of a finite number of disjoint simple closed curves. Again, there must be an odd positive integer m and a simple closed curve J in $S \cap h^{m} S$ which is innermost on $h^{m} S$. Thus, J bounds a disc D on $h^{m} S$ with $D \cap\left(U h^{2 i} S\right)=\partial D=J$ and J divides S into two discs D_{1} and D_{2}. Using these discs we may now adjust S to a 2 -sphere S^{\prime} isotopic to $0 \times S^{2}$ such that $\left(\bigcup h^{2 i} S^{\prime}\right) \cap\left(\bigcup h^{2 i+1} S^{\prime}\right)$ is a strict subset of \mathfrak{T} by employing exactly the same argument as given for the case $n=2$. If $\bigcup h^{i} S^{\prime}$ is not a disjoint collection we may repeat the entire argument a finite number of times until the desired result is obtained. This proves Lemma 3.
3. Classifying $S^{1} \times S^{2} / Z_{2 n}$. Let $M_{1}=S^{1} \times S^{2}, M_{2}=\mathbf{K}^{3}, M_{3}=S^{1} \times \mathbf{P}^{2}$ and $M_{4}=\mathbf{P}^{3} \# \mathbf{P}^{3}$.

Theorem 1. If $Z_{2^{n}}$ acts freely on $S^{1} \times S^{2}$ then $S^{1} \times S^{2} / Z_{2^{n}}$ is homeomorphic to M_{i} for some $i=1,2,3$ or 4. Furthermore, if $n>1$ then $\left(S^{1} \times S^{2}\right) / Z_{2^{n}}$ is homeomorphic to either M_{1} or M_{2}.

Proof. Let $h \in Z_{2 n}$ be a generator. For $n=1$, this is Theorem 1 of [4]. We suppose that $n>1$ and that S is a 2 -sphere in $S^{1} \times S^{2}$ satisfying Lemma 3. The collection $\bigcup h^{i} S$ divides $S^{1} \times S^{2}$ into 2^{n} components $A_{1}, \cdots, A_{2 n}$, each homeomorphic to $[0,1] \times S^{2}$. Since h permutes the components of $\bigcup h^{i} S$ and $n>1$, h permutes the spherical shells A_{i}. Thus, $\left(S^{1} \times S^{2}\right) / h$ is obtained from a spherical shell by identifying the boundaries with the homeomorphism h. It follows that $\left(S^{1} \times S^{2}\right) / Z_{2 n}$ is homeomorphic to either M_{1} or M_{2}, depending on whether h preserves or reverses orientation.

BIBLIOGRAPHY

1. G. R. Livesay, Fixed point free involutions on the 3-sphere, Ann. of Math. (2) 72 (1960), 603-611. MR 22 \#7131.
2. P. M. Rice, Free actions of Z_{4} on S^{3}, Duke Math. J. 36 (1969), 749-751. MR 40 \#2064.
3. G. X. Ritter, Free actions of Z_{8} on S^{3}, Trans. Amer. Math. Soc. 181 (1973), 195-212.
4. Y. Tao, On fixed point free involutions of $S^{1} \times S^{2}$, Osaka Math. J. 14 (1962), 145-152. MR 25 \#35 15.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32601

