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�is paper presents free and forced vibration analysis of airtight cylindrical vessels consisting of elliptical, paraboloidal, and
cylindrical shells by using Jacobi-RitzMethod. In this research, the theoretical model for vibration analysis is formulated by Flügge’s
thin shell theory and the solution is obtained by Rayleigh-Ritz method. �e vessel structure is divided into shell components (i.e.,
ellipsoid, parabolic, and cylinder) and their segments, and each displacement �eld of shell segments is represented by the Jacobi
polynomials and the standard Fourier series. �e continuous conditions at the interface are modeled by using the spring sti	ness
technique. �e reliability and the accuracy of the present method are veri�ed by comparing the results of the proposed method
with the results of the previous literature and the �nite element method (FEM). Moreover, some numerical results for free and
forced vibration of elliptical-cylindrical-elliptical vessel (ECE vessel) and paraboloidal-cylindrical-elliptical vessel (PCE vessel) are
reported.

1. Introduction

�e coupled shell consisting of a cylindrical shell and doubly
curved shells of revolution are widely used in aerospace
and marine structures and civil and mechanical engineering.
For example, hermetic capsules, pressure vessels, and stor-
age vessels can be modeled as elliptical-cylindrical-elliptical
shell structures; rockets and submarines can be viewed as
parabolic-cylindrical-elliptical shell structures. So it is impor-
tant to analyze the vibration characteristics of the coupled
shell mentioned above.

To emphasize the characteristic and purpose of this paper,
the existing research related to this paper is reviewed and
shown below: Leissa [1] and Qatu [2] analyzed the classical
thin shell theories (Love’s, Reissner’s, Naghdi’s, Sanders’, and
Flügge’s, etc.) and the thick shell theories. Based on these
theories, many researchers have proposed free and forced
vibration analysis methods for some structures. Liew and

Lim [3] proposed a pb-2 Ritz method to study the free
vibration of the doubly curved shallow shells in form of
a rectangular plane. Tan [4] presented an e�cient sub-
structuring analysis method to investigate the free vibration
characteristics for doubly curved shells of revolution based
on the �rst-order shear deformation shell theory and the
classical thin shell theory. Tang et al. [5] researched the
free and forced vibration analysis of multistepped circular
cylindrical shell with arbitrary boundary conditions with
the employment of the method of reverberation-ray matrix.
Xie et al. [6] presented a semianalytic method to analyze
free and forced vibrations of combined conical-cylindrical-
spherical shells with ring sti	eners and bulkheads. Xie et al.
[7] presented an analyticmethod for free and forced vibration
analysis of stepped conical shells with general boundary
conditions. Qatu and Asadi [8] used the Ritz method to
present vibration frequencies for spherical, cylindrical, and
hyperbolic paraboloidal shells with 21 possible boundary
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conditions by using thin shallow shell theory. Zhang et al.
[9] proposed an analytical method to study the free and
forced vibration behaviors of a submerged �nite elliptic
cylindrical shell. Jiang et al. [10] derived a uni�ed solution
for the vibration analysis of doubly curved shallow shells with
arbitrary elastic supports by using an improved trigonometric
series and the Rayleigh-Ritz method.Messina [11] studied the
free vibrations of multilayered doubly curved shells based on
a mixed variational approach and global piecewise-smooth
functions. Poultangari and Nikkhah-Bahrami [12] developed
the Vectorial-wave method (VWM) to study free and forced
vibrations of cylindrical shells in the presence of dampers
at supports. Chen et al. [13] presented an analytic method
to analyze free and forced vibration characteristics of ring-
sti	ened combined conical-cylindrical shells with arbitrary
boundary conditions. Tornabene et al. [14–16] studied the
dynamic behavior of functionally graded or laminated com-
posite doubly curved shells and panels of revolution by using
the Generalized Di	erential Quadrature (GDQ) method.
Chen et al. [17] presented wave based method to analyze the
free and forced vibration of cylindrical shells with disconti-
nuity in thickness. Ma et al. [18] presented a free and forced
vibration analysis of coupled conical-cylindrical shells with
arbitrary boundary conditions using a modi�ed Fourier-Ritz
method. Dozio [19] deals with the formulation of advanced
two-dimensional Ritz-based models for accurate prediction
of natural frequencies of thin and thick sandwich plates core
made of functionally graded material. In [20, 21], research
results are presented on dynamic behavior of the composite
laminated or the functionally graded material (FGM) dou-
bly curved shells and panels of revolution with arbitrary
boundary conditions. In literatures the displacement �elds
are represented by using several auxiliary functions and a
standard Fourier series, the classical boundary conditions
and the general elastic restraint are imitated by the coupling
spring sti	ness technique, and a uni�ed numerical analysis
model is presented to solve the free vibration of doubly
curved shells and panels by using the Rayleigh-Ritz method.
Dozio [22] used the state-space levy’s method to solve the
free vibration problem of specially orthotropic multilayered
cylindrical and spherical panels. Dozio and Carrera [23]
described a variable-kinematic Ritz formulation to accurately
predict free vibration of thick and thin, rectangular, and skew
multilayered plates with clamped, free, and simply supported
boundary conditions.

Galletly and Mistry [24] investigated the vibration char-
acteristics of the closed cylindrical shells with cones, hemi-
spheres, ellipsoids, and so on by using the �nite di	erence
method. Irie et al. [25] represented the vibration equation
of the shells as a combined set of �rst-order di	erential
equations by using the transfer matrix method, and the
research studied vibration characteristics of the coupled
conical-cylindrical and annular plate–cylindrical shell. Qu
et al. [26] presented a domain decomposition technique
for solving vibration problems of uniform and stepped
cylindrical shells with arbitrary boundary conditions. Wong
and Sze [27] investigated low frequency vibration of the
torsion free axisymmetric modes of thin cylindrical shell
with hemispherical caps vibrating in vacuo by using mem-
brane approximation. Rougui et al. [28] investigated the

nonlinear free and forced vibrations of simply supported
thin circular cylindrical shells using Lagrange’s equations
and an improved transverse displacement expansion. Efraim
and Eisenberger [29] studied the dynamic behaviors of cou-
pled shells made of conical, cylindrical, and plate segments
by using a dynamic sti	ness matrix method. Caresta and
Kessissoglou [30] presented the vibration characteristics of
isotropic coupled conical-cylindrical shells by using a wave
solution and a power series expansion method. Lee [31,
32] presented the axisymmetric free vibration analysis of
sphere, hemisphere and the joined spherical-cylindrical shell
structures by using a pseudospectral method. Qu et al. [33–
36] proposed a kind of domain decomposition method to
study the vibration characteristics of various combination
shell structures consisting of conical, cylindrical, spherical
shell, and ring sti	eners. Chen et al. [13] presented an analytic
method for free and forced vibration analysis of ring-sti	ened
combined conical-cylindrical shells with arbitrary boundary
conditions by using Flügge’s theory and the smeared out
method.

As discussed above, many of the vibration analyses focus
on the simple doubly curved shells, while the study on the
vibration analysis for their coupled shell structures is rela-
tively small. Furthermore, most of the mentioned researches
studied the vibration problems of the jointed shell structures
consisting of cylindrical, conical, and spherical shells. And
the authors prefer the free vibration analysis instead of the
forced vibration analysis of the structures, especially for the
structures of doubly curved shells of revolution. However,
the results of these studies provide the feasibility for solving
the free and forced vibration problems of airtight cylindrical
vessels with doubly curved shells of revolution.

�e main purpose of this work is to present a generalized
anduni�ed Jacobi-Ritz formulation to investigate the free and
forced vibration characteristics of airtight cylindrical vessels
consisting of the elliptical, paraboloidal, and cylindrical
shells. �is paper is characterized by not only simplifying
the calculation by applying the Rayleigh-Ritz method and the
penalty function method, but also generalizing the selection
of the permissible displacement function by using the Jacobi
polynomial. Flügge’s thin shell theory is employed to do
vibration analysis for theoretical model; the continuous con-
ditions at the interface are modeled by using the spring sti	-
ness technique. Based on the domain decompositionmethod
[33–36], the vessel structures are divided into ellipsoid,
parabola, cylinder, and their segments, and displacement
functions are represented by the Jacobi polynomials and the
standard Fourier series. �e comparisons with the results of
the previous paper or the �nite element method (FEM) are
presented, and some numerical results for free and forced
vibration of the elliptical-cylindrical-elliptical shell and the
paraboloidal-cylindrical-elliptical shell are reported.

2. Theoretical Formulations

2.1. Geometry of the Airtight Cylindrical Vessel. �egeometric
model for the airtight cylindrical vessel with doubly curved
shell of revolution is shown in Figure 1.
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Figure 1: Cross section and coordinate systems of an airtight cylindrical vessel.

�e airtight cylindrical vessel is divided into its compo-
nents, that is, the elliptical, cylindrical, and paraboloidal shell,
depending on the position of the junctions. �e orthogonal
coordinate systems (��,�, ��,�, ��,�) for the le� and right doubly
curved shells are �xed in the middle surface of shells, where� are the coordinates along the meridional direction, � are
the circumferential coordinates, and � are normal coordi-
nates. Also the cylindrical shell is described by a cylindrical
coordinate system (�, ��, ��), where the subscripts �, �, and �
represent the le�, cylindrical, and right shell, respectively.We
need to remember that there are two main curvatures radii
(curvature radius of the meridional direction 	�, curvature
radius of the circumferential direction 	�) in geometry of the
doubly curved shells [20, 21], and two curvatures radii of the
elliptical shell and the paraboloidal shell can be expressed as
follows:

Elliptical shell:

	� (�) = �2
2√(�2 sin2 � + 
2 cos2 �)3 ;
	� (�) = �2√�2 sin2 � + 
2 cos2 �,

(1)

where � and 
 are the lengths of the semimajor and semimi-
nor axes of the elliptic meridian, which are given by � = 	�
and 
 = � �,�, respectively.

Paraboloidal shell:

	� (�) = �2 cos3 �;
	� (�) = �2 cos�,

(2a)

where � is the characteristic parameter of the parabolic
meridian.

Specially,

� = 	2�� � ,�� = arctan(2	�� ) , (2b)

where �� is the coordinate angle along the meridian at the
junction between the paraboloidal shell and the cylindrical

shell. Also, in this study, the spherical shell is considered
to be a special case of the elliptical shell; the extents of the
coordinate angle � along the meridian for elliptical shell
and the paraboloidal shell are, respectively, de�ned by � ∈[0, �/2] and � ∈ [0, ��]. Regardless of each shell component,
it is assumed that all shells are composed of homogeneous
and isotropic materials; the elastic modulus �, mass density�, Poisson’s ratio ], and thickness ℎ have the same values,
respectively. �e displacement of each shell component is
presented by ��, V�, and �� (� = �, �, �) at coordinate systems.
In order to increase the accuracy of calculations, these shell
components may be further decomposed into �� le�, ��
cylindrical, and�� right shell component segments along the
meridian or the axial of revolution (see Qu et al. [34]).

2.2. Energy Functions of the Airtight Cylindrical Vessel. In this
work, Flügge’s thin shell theory [1] is employed to de�ne the
relationships between strain and displacement of the middle
surface of the �th segment in the � shell component. �ey are
written as follows:

�	�� = 1� ��	���� + V
	
�� ����� + �	�	�� , (3a)

�	�� = 1 �V
	
���� + �	�� � ��� + �	�	�� , (3b)

�	��� = � ���� (�
	
�� ) +  � ���� (V

	
� ) , (3c)

�	�� = 1� ���� ( �	�	�� − 1� ��	���� )
+ 1� ( V

	
�	�� − 1 ��

	
���� ) ����� ,

(3d)

�	�� = 1 ���� ( V
	
�	�� − 1 ��

	
���� )

+ 1� ( �	�	�� − 1� ��	���� ) � ��� ,
(3e)
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�	��� = � ���� [ 1� ( �	�	�� − 1� ��	���� )]
+  � ���� [ 1 ( V

	
�	�� − 1 ��

	
���� )]

+ 1	�� (1 ��
	
���� − V

	
�� � ���)

+ 1	�� ( 1� �V	���� − �	�� �����) ,

(3f)

where �	�� , �	�� , and �	��� are strain components of the merid-

ional, circumferential, and shearing direction in the middle

surface of the shell, �	�� , �	�� , and �	��� are the curvature changes
of the middle surface in the shell, and �	�, V	�, and �	� are the
displacement components in themeridional, circumferential,
and normal directions of the shell, respectively. In above
equations, the superscript � represents the �th segment in
the � shell component and the subscript � (� = �, �, �)
represents the le�, cylindrical, and right shell, respectively.
Also, � and  are the Lamé parameters; 	�� and 	��
indicate the curvature radius in themeridional directions and
circumferential directions ofmiddle surface, respectively.�e
coordinate system and geometric parameters of each shell
components in Figure 1 are de�ned as follows:

(1) Le� shell: �� = ��,�� = ��,	�� = 	�� ,	�� = 	�� ,� = 	�� , = 	�� sin��,

(4a)

(2) Cylindrical shell: �� = �,�� = ��,	�� = ∞,
	�� = 	�,� = 1, = 	�,

(4b)

(3) Right shell: �� = ��,�� = ��,	�� = 	�� ,

	�� = 	�� ,
� = 	�� , = 	�� sin��.

(4c)

With reference to the Flügge’s thin shell theory, the nor-
mal and shear strains of the shell components are expressed
as follows:

&	�� = 11 + ��/	�� (�	�� + ���	��) , (5a)

&	�� = 11 + ��/	�� (�	�� + ���	��) , (5b)

-	���
= 1(1 + ��/	��) (1 + ��/	��) [(1 −

�2�	��	��)�	���
+ ��(1 + ��2	�� + ��2	�� )�	���] ,

(5c)

where −ℎ/2 ≤ �� ≤ ℎ/2.
From Hooke’s law on the relationship between stress and

strain, the corresponding stresses are expressed as follows:

{{{{{{{{{
:	��:	��:	���

}}}}}}}}}
= [[[[

D11 D12 0D21 D22 00 0 D66
]]]]
{{{{{{{{{
&	��&	��-	���

}}}}}}}}}
, (6)

where :	�� , :	�� , and :	��� are the normal and shear stresses

and D	,
 (�, H = 1, 2, 6) are the constants indicating the
relationship between stress and strain, which are de�ned as
follows:

D11 = D22 = �1 − ]2
,

D12 = D21 = ]�1 − ]2
,

D66 = �2 (1 + ]) ,
(7)

where � and ] are Young’s modulus and Poisson’s ratio,
respectively.

From the theory of elasticity, the strain energy equation
in the shells can be expressed as

J	� = 12 ∫�(1 + ��	�� )(1 + ��	�� )
⋅ (:	��&	�� + :	��&	�� + :	���-	���)� M��M��M��.

(8)
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In the case of the thin shells, we can simplify some of
the terms in the energy equation, and the energy equation is
rearranged through a mathematical process:

J	� = �ℎ2 (1 − ]2) ∬[D	�,0 + ℎ212 (D	�,1 + D	�,2)]
⋅ � M��M��,

(9)

where

D	�,0 = (�	��)2 + (�	��)2 + 2]�	���	�� + 1 − ]2 (�	���)2 , (10a)

D	�,1 = (�	��)2 + (�	��)2 + 2]�	���	�� + 1 − ]2 (�	���)2 , (10b)

D	�,1 = −2( 1	�� − 1	�� )(�	���	�� − �	���	��)
− 1 − ]2 ( 1	�� + 1	�� )�	����	���
+ ( 1	�� − 1	�� )(

(�	��)2	�� − (�	��)2	�� )
+ 1 − ]2 ( 1	2�� + 1	2�� − 1	��	�� )(�	���)2 .

(10c)

And the kinetic energy of the shell components can be
de�ned as

S	� = �ℎ2 ∬[(�̇	�)2 + (V̇	�)2 + (�̇	�)2]� M��M��. (11)

In order to investigate the forced vibration of the airtight
cylindrical vessels under point loads, it is assumed that the
external unit force acts on the middle surface of the vessel in
the meridional, circumferential, and the normal directions,
respectively. �e virtual work by the external forces can be
written as

W	
� = ∬(X��	� + XVV	� + X
�	�) Y (�� − ��)
⋅ Y (�� − ��) &	��� M��M��, (12)

where Y is the Dirac function and X�, XV, and X
 are the
external force in the meridional, circumferential, and the
normal directions, respectively.

2.3. Continuity Conditions of the Airtight Cylindrical Vessel.
In this analysis, the continuity conditions of the airtight
cylindrical vessel structures with doubly curved revolution
shells aremodeled by the penalty parameters, which are char-
acterized by arti�cial spring sti	ness. �e penalty parameter
permits the �exible selection of the admissible displacement
functions of the airtight cylindrical vessels, and the appropri-
ate value of the penalty parameter ensures fast convergence of

the accurate solution.�us, the potential energy stored in the
connective springs at the junction between the doubly curved
shells and the cylindrical shell can be described as

J� = 12 ∫2�0 {�� [�� − (�� sin�� − �� cos��)]2
+ �V (V� − V�)2 + �
 [�� − (�� cos�� + �� sin��)]2
+ �� [������ + (�� − ���/���)	�� ]2}

�� ,��

 M�� + 12
⋅ ∫2�
0
{�� [�� + (�� sin�� − �� cos��)]2

+ �V (V� − V�)2 + �
 [�� − (�� cos�� + �� sin��)]2
+ �� [������ + (�� − ���/���)	�� ]2}

�� ,��

 M��,

(13)

where ��, �V, �
, and �� denote the sti	ness of the transla-
tional and rotational springs between the shell components,
respectively.

If each shell component is further subdivided into shell
segments, the potential energy stored in the connective
springs of two adjacent shell segments can be described as
follows:

J	�,� = 12 ∫2�0 {�� (�	� − �	+1� )2 + �V (V	� − V
	+1
� )2

+ �
 (�	� − �	+1� )2
+ ��	2�� [(�	� − ��	���� ) − (�	+1� − ��	+1���� )]

2}
	,	+1⋅  M��,

(14a)

J	�,� = 12 ∫2�0 {�� (�	� − �	+1� )2 + �V (V	� − V
	+1
� )2

+ �
 (�	� − �	+1� )2 + �� (��	���� − ��	+1���� )
2}

	,	+1⋅  M��,
(14b)

J	�,� = 12 ∫2�0 {�� (�	� − �	+1� )2 + �V (V	� − V
	+1
� )2

+ �
 (�	� − �	+1� )2
+ ��	2�� [(�	� − ��	���� ) − (�	+1� − ��	+1���� )]2}

	,	+1⋅  M��,

(14c)
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whereJ	�,�,J	�,�, andJ	�,� represent the potential energy stored
in the connective springs of the shell segments at the le�,
cylindrical, and right shell, respectively. And the superscripts,� and � + 1, represent the �th and (� + 1)th shell segments.

�erefore, the total potential energy re�ecting the con-
nective conditions can be expressed as

J�� = J� + ��−1∑
	=1

J	�,� + ��−1∑
	=1

J	�,� + ��−1∑
	=1

J	�,�, (15)

where��,��, and�� are the number of segments divided in
the each shell components.

2.4. Uni	ed Solution and Solution Procedure. �e selection of
an admissible displacement function is an important factor
in guaranteeing a stable convergence and accuracy of the
solution. In the handling of the continuity conditions, the use
of spring sti	ness, which can be seen as penalty parameters,
makes the selection of admissible functions very �exible [37–
47]. Subscript � is omitted here for the sake of brevity. In
this work, the admissible displacement functions of shell
segments are generally extended to the Jacobi orthogonal
polynomials and Fourier series, regardless of shape of the
shell components. As we know, classical Jacobi polynomials
[48] are de�ned on the interval of c ∈ [−1, 1] and
the recurrence formula of the classical Jacobi polynomialsd(�,�)	 (c) of degree � is given by

d(�,�)0 (c) = 1,
d(�,�)1 (c) = e + f + 22 c − e − f2 ,
d(�,�)	 (c)

= (e + f + 2� − 1) {e2 − f2 + c (e + f + 2�) (e + f + 2� − 2)}2� (e + f + �) (e + f + 2� − 2)
⋅ d(�,�)	−1 (c) − (e + � − 1) (f + � − 1) (e + f + 2�)� (e + f + �) (e + f + 2� − 2) d(�,�)	−2 (c) ,

(16)

where e, f > −1 and � = 2, 3, . . ..
�e orthogonality condition of classical Jacobi polynomi-

als is

∫1
−1
d(�,�)
 (c) d(�,�)� (c)�(�,�) (c) Mc = ℎ�, (17a)

where �(�,�)(�) = (1 − �)�(1 + �)� and
ℎ�
= {{{{{

2�+�+12� + e + f + 1 Γ (� + e + 1) Γ (� + f + 1)Γ (� + e + f + 1) �! , H = �0, H ̸= �.
(17b)

�e Jacoby polynomials are generalized orthonormal
polynomials containing some orthonormal polynomials such
as Legendre, Chebyshev, and Gegenbauer polynomials. For
example, the choice e = f = −1/2 yields the Chebyshev
polynomials of the �rst kind, while choosing e = f = 1/2

gives the Chebyshev polynomials of the second kind. Also the
choice e = f = 0 yields the Legendre polynomials, while
choosing e = f gives the Gegenbauer polynomials. �us,
the selection of an admissible displacement function for the
airtight cylindrical vessels is more generalized by the Jacobi
polynomials.

�e displacement functions of the shell segments can be
written in the forms

�� = �∑
�=0

�∑
�=0
J��,�d(�,�)� (c) cos (n��) &	��, (18a)

V� = �∑
�=0

�∑
�=0
o��,�d(�,�)� (c) sin (n��) &	��, (18b)

�� = �∑
�=0

�∑
�=0
W��,�d(�,�)� (c) cos (n��) &	��, (18c)

whereJ��,�,o��,�, andW��,� are unknown coe�cients of the

Jacobi polynomials that you want to obtain; d(�,�)� (c) is thepth order Jacobi polynomial for the displacement function
in the meridional direction; q is an angular frequency; r
denotes time. �e nonnegative integers s and � represent
the highest degrees taken in the Jacobi polynomials and the
Fourier series; the positive integer n represents the mode
circumference wave number. �e subscript � (� = �, �, �)
means the le�, cylindrical, and right shells, respectively. �e
classical Jacobi polynomials are complete and orthogonal
polynomials de�ned on the interval of c ∈ [−1, 1]. �us,
a linear transformation rule is introduced for coordinate
conversion from interval � ∈ [�	�, �	+1� ] of the �th shell
segment to interval c (c ∈ [−1, 1]) of the Jacobi polynomials,

that is, �� = [(�	+1� − �	�)/2]c + (�	+1� + �	�)/2.
�e total Lagrangian energy functions (�) of the airtight

cylindrical vessels with doubly curved shells of revolution can
be written in the forms

� = ��∑
	=1
(S	� − J	�) + ��∑

	=1
(S	� − J	�) + ��∑

	=1
(S	� − J	�)

− J�� +W	
� ,

(19)

where J�� represent total potential energy re�ecting the

connective conditions and W	
� represent the virtual work by

the external forces.
�e total Lagrangian energy function is minimized with

respect to the unknown coe�cients by using the Rayleigh-
Ritz method. ���t = 0

t = J��,�, o��,�,W��,�, (20)

(K − q2M)X = F, (21)

where K and M are the sti	ness and mass matrix of the
airtight cylindrical vessel, respectively. AndX andF represent
the coe�cient vector and external force vector. If F is a
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Figure 2: �e convergence characteristics of nondimensionless frequency parameters for two vessels: (a) ECE vessel; (b) PCE vessel.

zero vector, the above equation is the free vibration analysis
equation, and if it is not a zero vector, it is the forced vibration
analysis equation. A detailed description of (21) is given in
Appendix.

3. Numerical Results and Discussions

3.1. Convergence and Comparison Studies. In this section,
the reliability and accuracy of this method are veri�ed by
comparing the results of the method with those of the
previous literature or the �nite element method (FEM).
From the mathematical point of view, unlike the domain
decomposition method which uses the Lagrange multipliers
and the weight residual least squares method [35], when the
penalty parameters is de�ned as a very high value the solution
of the proposed method may not converge [38–40]. And it
is necessary to emphasize that the research will focus on the

elastic deformation rather than rigid deformation. So some
zero eigenvalue obtained in the solution will be ignored in
the following research.�e convergence characteristics of the
nondimensionless frequency parameters for di	erent spring
sti	ness values in the ECE and the PCE vessels are shown in
Figure 2. Where the material parameters and the geometric
dimensions of the elliptical-cylindrical-elliptical and the
paraboloidal-cylindrical-elliptical vessels are as follows:

ECE vessel:� = 211Gpa, � = 7800 kg/m3, ] = 0.3, 	� = 1m,�� = 6m, ℎ = 0.01m, � � = 0.5m, �� = 0.5m.

PCE vessel:� = 211Gpa, � = 7800 kg/m3, ] = 0.3, 	� = 1m,�� = 6m, ℎ = 0.01m, � � = 2m, �� = 0.5m.

In this analysis, the number of segments of the two
structures is taken as �� = 4, �� = 8, and �� = 4,
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Table 1: Frequency parameter Ω = q	2�√�(1 − ])2/� of a spherical–cylindrical–spherical shell.

Mode number Number of the segments (�� = �� = ��) Shi et al. [37] ANSYS [37]n p 2 4 6 8 10

0

1 0.04872 0.04872 0.04872 0.04872 0.04872 0.04872 0.04860

2 0.06094 0.06092 0.06092 0.06092 0.06092 0.06101 0.06085

3 0.08434 0.08432 0.08432 0.08432 0.08432 0.08455 0.08409

4 0.09565 0.09565 0.09565 0.09565 0.09565 0.09566 0.09567

5 0.09574 0.09574 0.09574 0.09574 0.09574 0.09581 0.09568

6 0.10132 0.10132 0.10132 0.10132 0.10132 0.10140 0.10118

7 0.10360 0.10359 0.10359 0.10360 0.10359 0.10373 0.10334

1

1 0.04175 0.04174 0.04174 0.04175 0.04173 0.04180 0.04165

2 0.06391 0.06390 0.06390 0.06390 0.06390 0.06399 0.06384

3 0.07743 0.07743 0.07742 0.07742 0.07742 0.07751 0.07732

4 0.08827 0.08825 0.08825 0.08825 0.08825 0.08850 0.08801

5 0.09016 0.09016 0.09016 0.09016 0.09016 0.09014 0.09015

6 0.09626 0.09626 0.09626 0.09625 0.09625 0.09623 0.09622

7 0.10067 0.10067 0.10067 0.10066 0.10066 0.10104 0.10019

2

1 0.01312 0.01312 0.01312 0.01312 0.01312 0.01327 0.01300

2 0.03779 0.03777 0.03777 0.03777 0.03777 0.03800 0.03760

3 0.06021 0.06020 0.06020 0.06020 0.06020 0.06042 0.06000

4 0.07636 0.07635 0.07635 0.07635 0.07635 0.07649 0.07620

5 0.08683 0.08683 0.08683 0.08683 0.08683 0.08689 0.08680

6 0.09321 0.09321 0.09321 0.09321 0.09321 0.09328 0.09310

7 0.09670 0.09669 0.09669 0.09669 0.09669 0.09684 0.09660

the parameters of the Jacobi polynomials are taken as e =−0.5, f = −0.5, and the nondimensionless frequency param-

eter is de�ned as Ω = q	�√�(1 − ])2/�.
As can be seen in Figure 2, it can be seen that the connec-

tion spring sti	ness value ensures stable convergence within

the range of �� = 100E∼106E. �erefore, unless otherwise
noted, in this paper, it is assumed that the connective spring

sti	ness is the same (i.e., �� = 103�, (r = �, V, �)).
Next, in order to verify the accuracy of the presented

method, free vibration of a spherical-cylindrical-spherical
shell having the same material characteristics and structural
dimensions as those of the previous literature is consid-
ered. Frequency convergence results for the shell segments
(��, ��, ��) of the spherical-cylindrical-spherical shell are
shown in Table 1 and the results are compared with those of
the previous literature [37].

In Table 1, it can be seen that the frequency quickly
converges to correct solution with the number of shell
segments increasing. However, for simplicity the calculation,
the number of shell segments is limited to eight or less in
this paper. �e percentage error of the solution for the Jacobi
parameters e and f in the elliptical-cylindrical-elliptical shell
are pointed out in Figure 3.

As shown in Figure 3, it can be seen that the change of
the Jacobi parameters e and f does not have a great in�uence
on the frequency convergence and the maximum error does

not exceed 5 ⋅ 10−4. �is means that not only the Chebyshev,
Legendre, Bernstein, and Gegenbauer polynomials but also

the generalized Jacobi polynomial can be used. In Table 2,
the comparison between the results of the ECE and the PCE
vessels pointed out above and the �nite element method
(FEM) are shown. In here, the ECE vessel used the S4Rmodel
and the 19433 element, and the PCE vessel used the S4R
model and the 19389 element of the ABAQUS.

�e validity and accuracy of the presented method were
veri�ed by comparisons with the above results. For the sake
of understanding, unless otherwise stated, the parameters of
the structure and the material properties in the subsequent
study are taken as follows:

� = 211Gpa, � = 7800 kg/m3, ] = 0.3, s = � =8, �� = 4, �� = 8, �� = 4, e = 0, f = 0, 	� =1m, �� = 6m, ℎ = 0.01m, �� = 0.5m.

Nondimensional frequency parameter is de�ned as Ω =q	�√�(1 − ])2/�.
3.2. Free Vibration of the Airtight Cylindrical Vessel. In
this section, the study on free vibration analysis of
elliptical-cylindrical-elliptical vessel and paraboloidal-
cylindrical-elliptical vessel is performed. �e change in
frequency parameters for the axial wave number p and the
circumferential wave number n in the ECE vessel and the
PCE vessel used in Figure 2 is shown in Figure 4.

As shown in Figure 4, when n = 3, the lowest frequency
of the two structures is shown, and, as n increases, the
frequency parameters increased and the di	erence between
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Figure 3: Percentage error of the frequency for the Jacobi parameters and in the elliptical-cylindrical-elliptical shell.

the frequency parameters is decreased. Table 3 shows the
frequency parameters according to the ratio between the
semimajor axis and the semiminor axis of the right ellipsoid
in the elliptical-cylindrical-elliptical vessel, andTable 4 shows
the frequency parameters according to the ratio between the
maximum radius and the length of the paraboloid in the
paraboloidal-cylindrical-elliptical vessel.

From Tables 3 and 4, it can be seen that the frequency
parameters of the structures are signi�cantly reduced as two
ratios gradually increase. In addition, to facilitate the reader’s

understanding, somemode shapes of the ECE vessel and PCE
vessel are shown in Figure 5.

3.3. Forced Vibration of the Airtight Cylindrical Vessels.
Analyzing the forced vibration of a vessel subjected to a
point load is an important factor in studying the vibration
response characteristics of the vessel. In this study, the forced
vibration of the structure is investigated assuming that the
axial unit force X� (X� = 1�) and the radial unit forceX
 (X
 = 1�) act separately on the vessels used in Figure 1.
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Table 2: Comparison of some frequency parameters Ω = q	�√�(1 − ])2/� for the ECE vessel and PCE vessel (�� = 4, �� = 8, �� = 4,e = −0.5, and f = −0.5).
Mode number ECE vessel PCE vesseln p Present FEM Present FEM

0

1 0.27209 0.27203 0.25524 0.25520

2 0.36257 0.36328 0.34346 0.34549

3 0.45512 0.45653 0.46885 0.47130

4 0.49345 0.49265 0.50378 0.50361

5 0.52093 0.52117 0.52362 0.52489

1

1 0.20694 0.20708 0.06650 0.06619

2 0.39073 0.39132 0.19918 0.19861

3 0.51455 0.51439 0.34286 0.34208

4 0.51863 0.51785 0.47787 0.47683

5 0.55112 0.55172 0.58726 0.58442

2

1 0.04723 0.04754 0.04193 0.04231

2 0.15759 0.15815 0.13737 0.13842

3 0.28803 0.28890 0.23527 0.23682

4 0.41272 0.41382 0.31923 0.31989

5 0.52104 0.52222 0.41943 0.42089
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Figure 4: �e change in frequency parameters for the axial and the circumferential wave number, (a) ECE vessel, (b) PCE vessel.

And the structural damping is realized by using a complex
modulus �� = (1 + �{)� instead of the original Young’s
modulus �, where { ({ = 0.002) is de�ned as the damping
of the vessel structures [33]. Forced vibration analysis is
investigated between the frequency domain 20∼500Hz and
the calculation frequency step is adopted as 0.2Hz.�e four-
point coordinate systems D1 ∼D4 are set in the ECE vessel

and the PCE vessel. In the ECE vessel and the PCE vessel,
the radial displacements of point |3 when the radial forceX
 (X
 = 1�) acts on point |2 are shown in Figure 5, and
this is compared with FEM results (ECE vessel; S4R model,
19433 element, PCE vessel; S4R model, 19389 element).

�e comparisons of Figures 5 and 6 show that the results
of the presented method are in good agreement with those
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Table 3: �e frequency parameters Ω of the ECE vessel.

Mode number 
�/��n p 0.25 0.75 1 1.5 2 4

1

1 0.21294 0.20016 0.19303 0.17892 0.16554 0.12115

2 0.28211 0.38297 0.37333 0.35314 0.33271 0.25608

3 0.34942 0.51601 0.51518 0.50953 0.49062 0.38977

4 0.40583 0.54892 0.54102 0.52504 0.51931 0.50164

5 0.48499 0.57600 0.57432 0.57110 0.56761 0.52089

2

1 0.04915 0.04599 0.04449 0.04165 0.03901 0.03023

2 0.16195 0.15409 0.14986 0.14118 0.13230 0.09610

3 0.29253 0.28359 0.27743 0.26314 0.24612 0.16737

4 0.33434 0.40855 0.40148 0.38216 0.35420 0.24808

5 0.41344 0.51765 0.51034 0.48569 0.44557 0.33182

3

1 0.03379 0.03286 0.03242 0.03159 0.03083 0.02832

2 0.09443 0.09063 0.08874 0.08499 0.08126 0.06605

3 0.18303 0.17682 0.17348 0.16637 0.15855 0.11518

4 0.27993 0.27265 0.26824 0.25796 0.24463 0.16372

5 0.37353 0.36688 0.36189 0.34871 0.32661 0.22331

Table 4: �e frequency parameters Ω of the PCE vessel.

Mode number � �/	�n p 0.5 1 3 4 5 6

1

1 0.21003 0.19808 0.14626 0.12231 0.09940 0.07730

2 0.39050 0.37759 0.29602 0.25246 0.21458 0.18308

3 0.51339 0.51519 0.43596 0.38056 0.33747 0.30398

4 0.52518 0.54030 0.51637 0.50212 0.46736 0.43979

5 0.56843 0.57416 0.54903 0.52123 0.51790 0.51668

2

1 0.04860 0.04647 0.03807 0.03375 0.02991 0.02651

2 0.16002 0.15437 0.11249 0.08539 0.06749 0.05671

3 0.28897 0.28114 0.17834 0.15122 0.13437 0.12147

4 0.40934 0.39996 0.27766 0.24244 0.20903 0.18748

5 0.50955 0.49775 0.37315 0.31397 0.28271 0.26366

3

1 0.03384 0.03337 0.03160 0.03079 0.02993 0.02928

2 0.09454 0.09263 0.08141 0.06986 0.05939 0.05415

3 0.18307 0.17988 0.12435 0.09689 0.08751 0.08245

4 0.27974 0.27567 0.17770 0.16298 0.14935 0.14074

5 0.37331 0.36820 0.25761 0.21300 0.18892 0.18024

of ABAQUS. Figure 7 shows the radial displacements of the
points|2,|3, and|4 when the axial forceX� (X� = 1�) acts
on the point|1 of the ECE and PEC vessels.

�e forced vibrations of the airtight vessels show almost
the same resonance peak at the three test points of the airtight
vessel. However, as shown in the Figure 7, when the axial
force } is acted, the displacement is the largest at point |4,
which is far from the point of action of the force, and point

|2 is the next. �is means that the in�uence of vibrations at
the junction of the shell component is great when the airtight
vessel is subjected to external action.

4. Conclusions

In this paper, the uni�ed Jacobi-Ritz Method was presented
and the free and forced vibrations of the airtight vessels
consisting of elliptical, cylindrical, and paraboloidal shells
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Ω1,2 = 0.04754 Ω2,2 = 0.15815 Ω1,3 = 0.03332

(a) ECE vessel

Ω1,2 = 0.04230 Ω1,3 = 0.03247 Ω2,3 = 0.08817

(b) PCE vessel

Figure 5: Some mode shapes of the ECE and PCE vessels.
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Figure 6: �e radial displacements of point |3 when the radial force X
 acts on point |2 of the ECE vessel and the PCE vessel: (a) ECE
vessel, (b) PCE vessel.

were analyzed. In this study, Flügge’s thin shell theory was
adopted for the calculation model of vessels; the selection
of displacement functions was generalized by the Jacobi
polynomials. In addition, the continuous conditions at the
interface were incorporated into the presented model by

using the spring sti	ness technique, and the accuracy of solu-
tion was improved by the domain decomposition method.
�e results of the proposed method show that this method
can vouch faster convergence, high accuracy, and simplicity
of calculation. Furthermore, the results of various free and
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Figure 7: �e radial displacements of the point|2,|3, and|4 when the axial force X� acts on the point|1 of the ECE and PEC vessels: (a)
ECE vessel, (b) PCE vessel.

forced vibrations of the elliptical-cylindrical-elliptical and the
paraboloidal-cylindrical-elliptical vessels were presented.We
hope that these results can be used as benchmark data for
future researchers.

Appendix

�e generalized mass and sti	ness matrix of the airtight
cylindrical vessels used in (21) is given ass = diag [s1

� ,s2
� , . . . ,s��

� ,s1
� ,s2

� , . . . ,s��
� ,s1

� ,s2
� ,

. . . ,s��
� ]

s	
� = ∫��,�+1��,�

∫2�
0

[[[[
s�,�� 0 00 s�,VV 00 0 s�,



]]]]
� M��M��

s�,�� = �ℎJ�J,
s�,VV = �ℎo�o,
s�,

 = �ℎW�W,
J = d� ⊗ ��,o = d� ⊗ ��,W = d� ⊗ ��,
d� = [d(�,�)0 (c) , d(�,�)1 (c) , . . . , d(�,�)� (c) , . . . ,
d(�,�)� (c)] ,

�� = [cos (0��) , cos (1��) , . . . , cos (n��) , . . . ,
cos (���)] ,

�� = [sin (0��) , sin (1��) , . . . , sin (n��) , . . . ,
sin (���)] ,

(A.1)

where the subscript � (� = �, �, �) represents the le�,
cylindrical, and right shells and the superscript � represents
the �th segment in the � shell components.

� = �� + �� + ��
�� = diag [�1� , �2� , . . . , ���� , �1� , �2� , . . . , ���� , �1� , �2� , . . . ,
���� ]

�	� = ∫��,�+1��,�
∫2�
0

[[[[
��,�� ��,�V ��,�
���,�V ��,VV ��,V
���,�
 ���,V
 ��,



]]]]
� M��M��.

(A.2)

Le� and right shell:

��,�� = �����0 + | (���1 + ���2)��,�V = ���V�0 + | (�V�1 + �V�2)��,�
 = �����0 + | (���1 + ���2)
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��,VV = ��VV�0 + | (VV�1 + VV�2)��,V
 = ��V��0 + | (V��1 + V��2)��,

 = �����0 + | (���1 + ���2) ,
(A.3)

where�� = �ℎ/(1 − ]
2), | = �ℎ3/[12(1 − ]

2)].
���0 = 1	2� �J��

� �J�� + 1	2�S2�J�J
+ ]	�	�S� (�J��

�J + J� �J�� ) + (1 − ])2	2��2�
⋅ �J�� � �J��

���1 = 1	2� (J1�J1 + 1	2�S2�J�J
+ ]	�S� (J1�J + J�J1) + (1 − ])	2��2� �J�� � �J�� )

���2 = ( 1	� − 1	�)[ 1	2�S2� ( 2	� − 1	�)J�J
− 1	2� (�J��

�J1 + J1� �J�� ) + 1	3� �J��
� �J�� ]

+ (1 − ])2	2��2� (−1	2� + −3	�	� + 1	2�) �J�� � �J��
�V�0 = ( ��	2��2�J + ]	�	��� �J�� )

� �o�� + (1 − ])2	���
⋅ �J�� �o1

�V�1 = ( 1	�	���)[( 1	2�S�J + ]	�J1)
� �o��

+ 2 (1 − ]) �J�� �o2]
�V�2 = ( 1	� − 1	�) ��	�	2��2�J� �o�� − 1 − ]2	���

⋅ �J�� � [( 2	�	� + 1	2�)o1 + ( 1	� + 1	�)o2]
���0 = [( 1	2� + ]	�	�) �J��

+ ( 1	2�S� + ]	�	�S�)J]
�W

���1 = − 1	�J1�( 1	�W1 + ]	���W2) − 1	�	�S�
⋅ J�( 1	���W2 + ]	�W1) + 4 (1 − ])	�	2��2� �J��

�W3
���2 = ( 1	� − 1	�){ 1	2� �J��

�(W1 + 1	�W)
− 1	2�J1�W
+ ��	2��2�J� [( 1	� − 1	�)��W−W2]} − ( 1	�
+ 1	�) (1 − ])2	2��2� �J��

�W3
VV�0 = 1	2��2� �o��

� �o�� + (1 − ])2 o1�o1
VV�1 = 1	4��2� �o��

� �o�� + (1 − ])2 o2�o2
VV�2 = ( 1	�	3��2� − 1	4��2�) �o�� � �o��

− (1 − ])2 [( 1	� + 1	�)(o1�o2 + o2�o1)
+ ( 1	2� − 1	�	� + 1	2�)o1�o1]

V��0 = ( ]	�	��� + 1	2���) �o�� �W
V��1 = − 1	2��� �o��

�( 1	���W2 + ]	�W1)
+ 4 (1 − ])	��� o2�W3

V��2 = − 1	2��2� ( 1	� − 1	�) �o�� �W2
− (1 − ])2	��� ( 1	� + 1	�)o1�W3

���0 = 1	2� + 1	2� + 2]	�	�W�W
���1 = 1	2�W1�W1 + 1	2��2�W2�W2

+ ]	�	��� (W1�W2 +W2�W1) + 2 (1 − ])	2��2�⋅ W3�W3
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���2 = ( 1	� − 1	�)[ 1	2� (W�W1 +W1�W)
− 1	2��� (W�W2 +W2�W)
+ ( 1	3� − 1	3�)W�W] ,

(A.4)

where �� = cos (�), �� = sin (�), S� = tan (�):
d1 = ( 1	� − 1	�) ,
d2 = ( 1	� + 1	�) ,
d3 = ( 1	2� − 1	�	� + 1	2�)

J1 = M	�M� J + 1	� �J�� ,
o1 = 1	� �o�� − 1	�S�o,
o2 = 1	� ( 1	� �o�� − 1	�S�o) = 1	�o1
W1 = M	�M� �W�� + 1	� �

2W��2 ,
W2 = 1	��� �

2W��2 + ��	� �W�� ,
W3 = 1	�S� �W�� − 1	� �

2W���� .
(A.5)

Cylindrical shells � (� = �):
��,�� = �� (�J�� � �J�� + (1 − ])2	2� �J�� � �J�� ) + | ((1 − ])2	4� �J�� � �J�� )
��,�V = �� ( ]	� �J��

� �o�� + (1 − ])2	� �J�� � �o�� )
��,�
 = �� ]	� �J��

�W−| ( 12	� �J��
� �2W��2 − (1 − ])2	3� �J�� � �2W����)

��,VV = �� ((1 − ])2 �o�� � �o�� + 1	2� �o��
� �o�� ) + | 3 (1 − ])2	2� �o�� � �o��

��,V
 = �� 1	2� �o��
�W−| ( ]	2� �o��

� �2W��2 + 3 (1 − ])2	2� �o�� � �2W����)
��,

 = �� 1	2�W�W+| [�2W��2

� �2W��2 + ]	2� (�
2W��2

� �2W��2 + �2W��2
� �2W��2 ) + 1	4� �

2W��2
� �2W��2 + 2 (1 − ])	2�

⋅ �2W����
� �2W���� + 1	4�W�W+ 1	4� (W� �2W��2 + �2W��2

�W)]

�� =

[[[[[[[[[[[[[[[[[[[[[[[[

��⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞0 ⋅ ⋅ ⋅... d ���

��⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⋅ ⋅ ⋅
���

��⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⋅ ⋅ ⋅ 0...
����...

���0 0 ���!
...���

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ���� 0⋅ ⋅ ⋅ ���

]]]]]]]]]]]]]]]]]]]]]]]]
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��� = ∫2�
0

[[[[
���,�� 0 ���,�
0 ���,VV 0����,�
 0 ���,



]]]]�=��1
	�M�,

��� = ∫2�
0

[[[[
���,�� 0 ���,�
0 ���,VV 0���,
� 0 ���,



]]]]�=��1 ,"=0
	�M�,

���0,! = ∫2�
0

[[[[
���,�� 0 00 ���,VV 00 0 ���,



]]]]"=0,"=!�
	�M�,

��� = ∫2�
0

[[[[
���,�� 0 ���,�
0 ���,VV 0����,�
 0 ���,



]]]]�=��1
	�M�,

��� = ∫2�
0

[[[[
���,�� 0 ���,�
0 ���,VV 0���,
� 0 ���,



]]]]"=!�,�=��1
	�M�

���,�� = (�� sin2 ��1 + �
 cos2 ��1 + �� 1	2�)J��J�
���,VV = �Vo��o�
���,

 = (�� cos2 ��1 + �
 sin2 ��1)W�

�W� + �� 1	2� �W���
� �W���

���,�
 = (−�� + �
) cos��1 sin��1J��W� − �� 1	2�J�� �W���
���,�� = −�� sin��1J��J"
���,VV = −�Vo��o"
���,

 = −�
 sin��1W�

�W" − �� 1	� �W���
� �W"��

���,�
 = −�
 cos��1J��W" + �� 1	�J�� �W"��
���,
� = �
 cos��1W�

�J"
���,�� = ��J"�J"
���,VV = �Vo"�o"
���,

 = �
W"

�W" + �
 �W"�� � �W"��



Shock and Vibration 17

��� = ∫2�
0

[[[[[[[[[[[[[[[[

���,�� 0 ���,�
 ���,�� ���,�
0 ���,VV 0 ���,VV����,�
 0 ���,

 ���,
� ���,

����,�� ����,
� ���,������,VV ���,VV����,�
 ����,

 ���,



]]]]]]]]]]]]]]]]"=!�,�=��1

	�M�

���,�� = ��J"�J"
���,VV = �Vo"�o"
���,

 = �
W"

�W" + �
 �W"�� � �W"��
���,�� = �� sin��1J"�J�
���,VV = −�Vo"�o�
���,

 = −�
 sin��1W"

�W� − �� 1	� �W"�� � �W���
���,
� = −�
 cos��1W"

�J� + �� 1	� �W"�� J��
���,�
 = �
 cos��1J"�W�

���,�� = (�� sin2 ��1 + �
 cos2 ��1 + �� 1	2�)J��J�
���,VV = �Vo��o�
���,

 = (�� cos2 ��1 + �
 sin2 ��1)W�

�W� + �� 1	2� �W���
� �W���

���,�
 = − (�� − �
) cos��1 sin��1J��W� − �� 1	2�J�� �W���
�� = diag [�1� , �2� , . . . , ���� , �1� , �2� , . . . , ���� , �1� , �2� , . . . , ���� ]

�	� = ∫2�0
[[[[[[[[[[[[[[[

����� 0 ���
� �����+1 ���
�+10 �V�V�
0 �V�V�+1����
	 0 �
�
	 �
���+1 �
�
�+1������+1 ��
���+1 ���+1��+1 ���+1
�+1��

V�V�+1
�V�+1V�+1����
�+1 ��
�
�+! ����+1
�+1 �
�+1
�+1

]]]]]]]]]]]]]]]

 M�

(A.6)
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Le� and right shell:

����� = (�� + �� 1	2�)J	�J	
���
� = −�� 1	2�J	� �W	��
�V�V�

= �Vo	�o	
�
�
� = �
W	

�W	 + �� 1	2� �W	�� � �W	��
�����+1 = −(�� + �� 1	2�)J	�J	+1
���
�+1 = �� 1	2�J	� �W	+1��
�
���+1 = �� 1	2� �W

�
	�� J	+1

�V�V�+1
= −�Vo	�o	+1

�
�
�+1 = −�
W	
�W	−1 − �� 1	2� �W	�� � �W	+1��

���+1��+1 = (�� + �� 1	2�)J�	+1J	+1
���+1
�+1 = −�� 1	2�J�	+1 �W	+1��
�V�+1V�+1

= �Vo�	+1o	+1
�
�+1
�+1 = �
W�

	+1W	+1 + �� 1	2� �W
�
	+1�� �W	+1�� .

(A.7)

Cylindrical shell:

����� = ��J	�J	���
� = 0
�V�V�

= �Vo	�o	
�
�
� = �
W	

�W	 + �� �W	�� � �W	��
�����+1 = −��J	�J	+1���
�+1 = 0�
���+1 = 0

�V�V�+1
= −�Vo	�o	+1

�
�
�+1 = −�
W	
�W	−1 − �� �W	�� � �W	+1��

���+1��+1 = ��J�	+1J	+1���+1
�+1 = 0�V�+1V�+1
= �Vo�	+1o	+1

�
�+1
�+1 = �
W�
	+1W	+1 + �� �W�

	+1�� �W	+1�� ,
(A.8)

where �� = cos (�), �� = sin (�), S� = tan (�).
X = [J	��,�, o	��,�,W	

��,�]�
F = [X	�,��,�, X	V,��,�, X	
,��,�]� . (A.9)
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