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1. Abstract

The problem of boundary effects is well-posed within many areas of mathematics. However, in

individual-based modelling, it is unclear how cell boundary conditions affects the overall population

dynamics. There are multiple modelling choices that could be employed, depending upon the particular

type of model being used. Here, we present three distinct and widely used off-lattice models of cell

dynamics: overlapping spheres, Voronoi tessellation and vertex models. We define three cell boundary

descriptions, of varying complexities, for each of the models. We then consider biological case studies to

observe how, across each of the different modelling paradigms, results can differ significantly. We find

that the Voronoi tessellation model is the most sensitive to changes in the cell boundary description,

while the timescale of tissue evolution when using an overlapping spheres model is coupled to the

boundary description. Lastly, the vertex model is demonstrated to be the most stable to changes

in boundary description, though still exhibits timescale sensitivity. Future individual-based modellers

should consider how cell boundaries are defined in their models, even if they are not explicitly interested

in tissue shape. We provide an initial investigation of common models and cell boundary descriptions in

frequently investigated biological scenarios and discuss their benefits and drawbacks for future models

to consider.

2. Author summary

Individual-based models are emerging as a useful tool for exploring biological phenomena. However,

the qualitative and quantitative impacts of varying the description of cell boundaries and interfaces
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on simulation results in these models have not been investigated. In this work we study different

boundary descriptions in three off-lattice individual-based models: overlapping spheres, Voronoi tes-

sellation and vertex models. For each model, we investigate three biological scenarios that highlight

the importance of cell boundaries in computational simulations; void closure, tissue growth and tissue

collision. We observe that in all biological scenarios considered the choice of cell boundary description

can significantly influence simulation results. Specifically, the overlapping spheres model evolves on a

different timescale depending on the cell boundary description used, the Voronoi tessellation model can

introduce computational artefacts that need to be carefully resolved, and the vertex model is the least

sensitive to changes in cell boundary description. Choosing an inappropriate model or cell boundary

description can have implications for parameter fitting and may lead to a misinterpretation of the

mechanisms driving biological behaviours. We conclude that the appropriate choice of cell boundary

depends on the biological phenomenon being studied and the metrics of interest.

3. Introduction

Epithelial tissues line bodily surfaces including the skin [48], intestines [56], respiratory tract [31],

blood vessels [65], cornea [22] and sweat glands [68]. The primary functions of epithelial tissues are to

protect organs, secrete enzymes and hormones and absorb harmful substances. As epithelial tissues are

more exposed to external impacts than other tissue types, cancer develops more frequently in epithelial

tissues [32]. Epithelial cancers are known as carcinomas and can spread quickly [3, 33]. Certain forms

of carcinoma, such as high-grade serous ovarian cancer and lung adenocarcinoma, severely impact

patients’ quality of life and have low survival rates [11, 38, 39]. In addition to the increased risk of

cancer, the exposure of epithelial tissues to the external environment may also lead to the tissue being

damaged in non-cancerous settings. Disruption in epithelia due to injury can leave organs vulnerable

to infection, or prevent them from functioning normally [20, 14, 66]. Given their ubiquity throughout

the body and importance in maintaining organ health, epithelial tissues have been extensively studied

in vitro, in vivo and in silico. However, there remain many unknowns about epithelial behaviour,

including how tissue geometry affects cells, how injured and diseased tissues respond to treatment,

and how cells interact with the extracellular matrix and surrounding media [41].

Individual-based modelling is a popular tool for simulating biological phenomena in epithelial tis-

sues such as wound healing, tumour growth and colorectal cancer [52]. Epithelial tissues generally

consist of confluent layers of cells. The polygonal structure and confluent arrangement of cells in

epithelial tissues lend themselves well to individual-based modelling. Alternatively, epithelial tissues

can be modelled as a continuous chain, sheet, or block of interacting cells, using techniques within

continuum mechanics. An advantage of individual-based models, compared to their continuum tissue-
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scale counterparts, is that they are able to explicitly incorporate individual cell behaviour, such as cell

cycles, cell interactions, and cell phenotype proportions [52]. The first individual-based models were on-

lattice models, usually of cell-sorting, where cell locations were restricted to lattice sites [7]. On-lattice

models are computationally less expensive and conceptually more straightforward than their more re-

cently developed off-lattice, or lattice-free, counterparts [71]. Historically, the use of individual-based

models, particularly off-lattice models, have been limited by computational complexity. However, as

both computational costs decrease and computational power increases, individual-based models are

increasing in usage and detail (Fig 1). Furthermore, as additional model functionality has developed,

individual-based models can also describe subcellular behaviour, such as cell responses to signalling

pathways [67, 10, 24, 61]. These tools allow for a range of biological scenarios that were previously

inaccessible to the computational biologist to be explored.

In this work, we focus on off-lattice models. These models are more realistic and are based on

physical principles. Moreover off-lattice models are likely to continue to increase in popularity into

the future, as they provide a rigorous framework for investigating mechanistic behaviour. In off-lattice

models, cells are free to move in space and are not restricted to lattice sites [7]. Off-lattice models

can be further categorised into cell-centre models (where a cell is defined by a single point in space)

and element based models (where a cell is defined by more than one point in space). One of the

computationally-simplest cell-centre models is the overlapping spheres (OS) model [19]. In this model,

cells are modelled as point-particles in space, which represent the cell. Cell centres will interact with

each other if they are within a certain distance of each other. If they are too close, there is a repulsive

force between the cell centres. Whereas if the distance between the cell centres is within a specified

range, the cell centres experience an attractive force. An alternative cell-centre approach is known

as a Voronoi tessellation (VT) model [42]. In this model, whether cells interact with each other is

determined by the Delaunay triangulation of the cell centres [6], where the Delaunay triangulation of

a set of points partitions the space into triangles (in R2), or tetrahedrons (in R3) such that no point

lies in any circumcircle/sphere of the triangles/tetrahedrons. If there is an edge/face between two cell

centres in the Delaunay triangulation, then the cell centres exert forces on each other. Typically the

form of this interaction is a simple linear spring acting between the cell centres [54]. The dual of the

Delaunay triangulation is the Voronoi tessellation (the space is partitioned into polygons such that all

points within a particular polygon are closer to the enclosed cell centre compared to any other), which

is used to describe the shapes of the cells [6]. Cell-centre models are considered to be a zeroth order

approximation to the physical system, as they typically model all mechanical intra- and extra-cellular

interactions with a single mechanism.

An alternative approach to off-lattice modelling that does not use cell centres is the vertex model

(VM) [49]. In this model, cells are represented by polygons, with forces acting on the vertices of
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Figure 1: Timeline of individual-based tissue models [19, 53, 42, 49, 17, 18, 23, 62, 50, 67, 70, 51, 4, 73,

63, 16, 60, 58, 21, 34, 35, 2, 27, 37, 26, 45, 64, 69, 46, 5]. Author names are in bold text, with a description of the

boundary type used in plain text. The centre of the shape corresponds to the year of publication along the horizontal

axis. Circles represent overlapping spheres models, rectangles with a diagonal line represent Voronoi tessellation models

and hexagons represent vertex models. Rectangles with a triangle on top represent models that are hybrid models (using

forces on both cell centres and polygonal vertices). Red coloured shapes have void closure applications with little or

no cell proliferation, yellow shapes have tumour growth applications and blue shapes represent colliding tissue front

applications. Shapes that have multiple colours are papers with multiple applications. White coloured shapes have

other applications, but are significant for their contributions on the discussions of cell boundaries. The height of the

grey bars in the background represent the natural logarithm of the cumulative number of papers up to and including

the corresponding year that can be found using the search terms ‘off-lattice individual-cell model’ using Google Scholar.

Note that this terminology first appears in the literature in 2003, therefore the bars corresponding to the years from

1997 to 2004 show the natural logarithm of the cumulative number of citations of early publications of each model type:

OS [19], VT [42] and VM [49].

the polygons. These forces arise due to cell compressibility and cytoskeletal tension and adhesion

between cells. As the vertices move and cells undergo death or division, rearrangements are required

to maintain the structure of the tissue [49, 50]. Within a VM, cell compressibility, cytoskeletal tension

and adhesion between cells each has its own mathematical mechanism of delivery; the VM is considered
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a first order approximation to the physical system.

Although there have been several published works using off-lattice models to investigate various

biological problems in tissues (Fig 1), there has been no investigation to date into the influence of the

choice of cell boundary descriptions for these models. Here we consider the effects of cell boundaries

in two-dimensional models. An extension to three dimensions may result in additional findings and

be of further use when three-dimensional models are computationally cheaper to perform. However,

as three-dimensional models are not widespread, here we focus on two dimensions. There have been

multiple studies into more complicated cell boundaries than those we explore here. Depending on the

context, more complex models may be useful, such as immersed boundary and finite element models

[57, 12]. However, these more complex models are generally computationally intensive. As such, these

models are limited in the number of cells that can be feasibly simulated. We limit our scope to three

different cell boundary descriptions per model. These three boundaries are canonical examples of

boundaries of varying complexity. We seek to highlight the influence, if any, of having increasingly

complex cell boundaries on epithelial tissue dynamics.

The remainder of the paper is structured as follows. Firstly, we describe the three biological scenar-

ios of interest in this work. We then provide an overview of each of the three model types considered in

this work and introduce the different cell boundary descriptions investigated for each model. Next, we

explore each biological scenario using the different model types and boundary descriptions and present

the results as separate case studies. Finally we use our simulations to inform our assessment of which

of the nine (3 off-lattice models× 3 cell boundary descriptions) models are most appropriate for each

biological scenario, and discuss the benefits and drawbacks of each model and boundary description.

3.1. Exemplar biological scenarios

In this work we explore commonly used cell boundary descriptions for the OS and VT models and

VM to determine their impact on the results of simulations for three biological scenarios: void closure,

tissue growth and tissues colliding, shown in Fig 2. We provide more detailed motivation for each

scenario below.

3.1.1. Void closure

The first biological scenario we consider is an internal void in a tissue, such as a wound or the

final stages of morphogenesis [9, 72, 69, 1]. In these biological contexts, the nature of cell-cell and cell-

environment interactions and collective cell behaviours are not fully understood. For example, there

have been multiple mechanisms of epidermal cell migration during wound healing that depend on

cell-cell and cell-environment interactions [59]. However, it is yet to be determined which mechanisms

are applicable in different contexts. Individual-based models are useful for exploring hypotheses about
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(a) (b) (c)

(d) (e) (f)

Void closure Growing tissue Colliding populations

Figure 2: Model schematics for void closure, tissue growth and tissue collisions. In vitro snapshots of (a)

void closure (b) tumour spheroid, and (c) colliding tissues. Left panels of in vitro figures are early time, right panels are

later times. Model schematics of (d) void closure, (e) a growing tissue and (f) tissue collision. Images are adapted from

[72], [47] and [30].

cell scale behaviour. Examples of individual-based models of void closure are shown in red in Fig 1.

However, artefacts introduced by the choice of individual-based model and cell boundary description

can impact the characteristics of void closure. A common metric of interest in this scenario is the

time to void closure. The time to void closure may be impacted by cell behaviour, specifically, which

cells interact with each other and how. Computational individual-based models are able to explicitly

incorporate inter-cellular interactions. Furthermore, unlike continuum models, the shape of the void

does not significantly impact the complexity or fundamental structure of individual-based models,

making them an ideal framework for exploring the evolution of void shape during closure. In this

work we consider a simplified void closure scenario, where tissue compression leads to void closure,

and investigate how different cell boundary descriptions change both the time to void closure and the

wound geometry. In vitro images of wound closure and a model schematic are shown in Fig 2(a) and

(d).

3.1.2. Tissue growth

We next explore how tissues with a free boundary, for example avascular tumours, grow over time

due to cell division [47, 23]. Such tissues are the subject of many in vitro investigations, due to the

relative simplicity and low cost of the experimental design [36, 44]. These investigations primarily
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explore the effects of pharmacological intervention on tissue size. In the case where tissue growth

is not significantly inhibited, tissues grow to a critical size before cells in the centre of the tissue

enter cell cycle arrest [8]. In the context of tumour growth, the rate of tissue growth is of crucial

importance, since fast growing tumours are more likely to be malignant and are associated with lower

responses to clinical treatment in non-small cell lung cancer [28]. Individual-based models are suitable

for studying the effects of individual cell behaviour on the overall tissue size. Here cells in the tissue

are able to divide, provided that they are not too compressed, leading to tissue growth. Examples of

existing individual-based models of tissue growth are coloured yellow in Fig 1. We will explore how

cell boundary descriptions affect tissue tension in a tissue growing due to cell division. In vitro images

of avascular tumour growth and a model schematic are shown in Fig 2(b) and (e).

3.1.3. Tissue collision

Finally, we study the collision of cell fronts that consist of different cell populations. The mechanics

of colliding tissues has remained relatively unexplored until recently. Specifically, the dynamics of

intersections between tissues with different geometries, cell densities and cell types were only studied

in vitro and using continuum models in 2022 [30]. Given that different tissue types can collide in

physiological and pathological scenarios, this may be a fruitful area for future research for biological

and computational experimentalists alike. Mechanically, the concept of tissue collisions may involve

aspects of void closure and tissue growth previously described. Examples of individual-based models

of tissues that grow and collide are shown in blue in Fig 1. In our work, we allow our colliding tissues

to grow via cell division in a confined space, to simulate a much larger tissue. Once a sufficient number

of cell divisions have occurred, the tissues will collide. Here we are interested in the shape of the

boundary between the two tissues after collision, and how different cell boundary descriptions change

this boundary. In vitro images of colliding tissues and a model schematic are shown in Fig 2(c) and

(f).

4. Materials and methods

We begin this section by describing the cell-centre models - OS and VT - and the VM. Further

details of each model can be found in the literature [52]. After introducing the models, we define three

cell boundary descriptions per model to be explored, from simplest to most complex. A schematic of

the different boundary descriptions for the three models investigated is given in Fig 3. A timeline of

the development of each model, and which boundary descriptions have been used in previous studies

is given in Fig 1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

OS repulsion VT unbounded VM smooth

OS short-range VT bounded VM default

OS long-range VT ghosts VM curved

Figure 3: Cell boundary description schematics. OS models are pictured in (a), (d) and (g) (left column); VT

models are shown in (b), (e) and (h) (middle column); and VMs are shown in (c), (f) and (i) (right column). The most

computationally efficient boundaries are shown in (a)-(c) (top row). The most commonly used boundaries are displayed

in (d)-(f) (middle row). The most computationally complex boundaries are shown in (g)-(i) (bottom row).

4.1. Cell-centre models

We first define the cell-centre models (OS and VT). In cell-centre models we represent cells by a

point, free to move in space, that represents the centre of the cell. Suppose that there are N(t) cells

at time t. Let ri(t) = (xi(t), yi(t)) ∈ R2 denote the position of the centre of cell i ∈ {1, . . . , N(t)}.

Note that these methods are generalisable to Rn, for n ∈ {1, 2, 3}, however we restrict our focus to

two-dimensional models in this work. We make the simplifying assumption that all cells exhibit the

same mechanical properties. Subsequently, force balances are used to derive equations of motion for

the cell centres. We assume that cells are moving through dissipative environments where the inertial

forces are small compared to dissipative forces [15]. Therefore, the equation of motion for cell i in the

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.13.520331doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520331
http://creativecommons.org/licenses/by-nc-nd/4.0/


cell centre models is given by:

ηi
dri
dt

=
∑

j∈Ni(t)

Fij(t), ∀i, (1)

where ηi is the drag coefficient, Fij(t) is the interaction force acting between cell i and its neighbours

j ∈ Ni(t), where Ni(t) denotes the set of all neighbours of cell i at time t. To solve the equation of

motion numerically, the forward Euler method is used:

ri(t+∆t) = ri(t) + ∆t
dri
dt

, ∀i, (2)

where ∆t is the time step to be used, chosen to ensure numerical stability.

To allow tissues to grow, we introduce a mechanism for cells to divide. Specifically, a Bernoulli

trial in conjunction with contact inhibition is used to determine whether or not a cell divides, thereby

introducing stochasticity into the simulations. If a cell is more than tdiv hours old, the probability of

the cell dividing within the subsequent hour is pdiv. However, the cell must have an area greater than

or equal to Aq to be able to divide. If a cell’s area is less than Aq, then the probability of the cell

dividing is zero, and the cell is considered quiescent. If the cell grows beyond a size of Aq, then it is

able to divide again. Cells divide symmetrically, meaning their offspring have the same proliferative

properties. This is a common model of malignant cell division, where the only thing preventing a cell

dividing is space constraints. When a cell divides the cell centre of the daughter cell is placed a small

distance from the parent cell’s cell centre in a randomly selected direction.

4.1.1. Overlapping spheres

For the OS model, we define the force acting between cells i and j, Fij(t), as [52]:

Fij(t) =



µijsij(t)r̂ij(t) log

(
1 +

∥rij(t)∥ − sij(t)

sij(t)

)
, for ∥rij(t)∥ < sij(t),

µij (∥rij(t)∥ − sij(t)) r̂ij(t)

× exp

(
−ρ

∥rij(t)∥ − sij(t)

sij(t)

)
, for sij(t) ≥ ∥rij(t)∥ ≥ rmax,

0, for ∥rij(t)∥ > rmax,

(3)

where µij = µ is the magnitude of elastic interaction between cells i and j and sij(t) is the natural

separation between cells i and j, given by sij(t) = Ri(t)+Rj(t). Here, Ri(t) is the radius of cell i, and

is constant for mature cells. During the first hour after cell division, Ri(t) increases linearly from half

of the mature radius to the mature radius. For simplicity, we assume the mature cell radius is the same

for all cells, denoted Rmat. The vector from cell i to cell j at time t is denoted rij(t) = rj(t) − ri(t),

with unit vector r̂ij(t). The parameter ρ determines the decay in the attractive force between two
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cells. We note that for ∥rij(t)∥ < sij(t), cells repel each other, and for sij(t) ≥ ∥rij(t)∥ ≥ rmax, they

attract each other.

In the OS model, cells are point particles, with no volume or ‘boundary’. However, the interaction

forces (and therefore interaction radius rmax) between cells implicitly act as a boundary condition as

they affect which cells are considered to be neighbours (and therefore definesNi(t)). Here we investigate

three different interaction radii for the OS model to simulate different cell boundary descriptions. These

interaction radii represent:

• Repulsion: In these simulations, the interaction radius is rmax = r
(OSR)
max = 2Rmat, so there is

no attraction between neighbouring mature cells (Fig 3(a)). However, there will be attraction

between immature cells (cells with an age less than one hour) if the distance between their cell

centres is less than r
(OSR)
max and greater than the sum of their current radii.

• Short-range: Here the interaction radius is rmax = r
(OSS)
max = 3Rmat, representing both repulsion

and some attraction between mature neighbours, as shown in Fig 3(d). When the distance

between two cell centres of mature cells is less than 2Rmat, the cells exert repulsive forces on

each other. Whereas when the distance between the cell centres is between 2Rmat and 3Rmat,

the cells exert attractive forces on each other.

• Long-range: In this regime the interaction radius is rmax = r
(OSL)
max = 4Rmat. The region of

attraction between neighbours is larger in this setup than the short-range case, as can be seen in

Fig 3(g). As in the short-range case, when the distance between two cell centres of mature cells

is less than 2Rmat, the cells exert repulsive forces on each other. Whereas when the distance

between the cell centres is between 2Rmat and 4Rmat, the cells exert attractive forces on each

other.

The lack of volume for cells in the OS model presents other challenges, as cell cycle descriptions or

subcellular mechanics may rely on cell volume to determine whether or not a cell should divide or exert

additional forces on its neighbours. In these scenarios, approximations for cell volume are employed.

For the purposes of this investigation, the area of cell i, Ai(t), is defined as [52]:

Ai(t) = π(R
(eff)
i (t))2, ∀i, (4)

where

R
(eff)
i (t) =

1

6

 ∑
j∈Ni(t)

1

2
(Ri(t)−Rj(t) + ∥rij(t)∥) +Ri(t) (6− |Ni(t)|)

 , ∀i. (5)
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4.1.2. Voronoi tessellation

In the VT model, which cells are neighbours is determined by the Delaunay triangulation of cell

centres. Recall that the Delaunay triangulation of a set of points in R2 partitions the space into

triangles such that no point lies in any circumcircle of the triangles. If there is an edge between two

cell centres in the Delaunay triangulation, then the cell centres exert forces on each other. The force

acting between cell i and its neighbours j ∈ Ni(t) in the triangulation is given by [54, 42]:

Fij(t) = κij (∥rij(t)∥ − sij(t)) r̂ij(t), (6)

where κij = κ is the linear spring constant, and sij(t) is the natural separation between cells i and j.

In the VT model, the natural separation between neighbouring cell centres increases linearly from 0.1

to 1 cell diameter during the first hour after cell division.

Similar to the OS model, when we discuss cell boundaries, we focus on which cells interact with

each other. Unlike OS models, VT models include explicit descriptions of cell shapes, and therefore the

concept of cell area is mostly well-defined. However, the standard VT tessellates over the entirety of R2,

allowing cells on the outer boundaries of the tissue to have infinite area. Furthermore, since there is no

limit on how long an edge in the Delaunay triangulation may be, connections may be formed between

cell centres that are far apart, causing cells to interact in ways that are biologically infeasible. An

approach for avoiding this issue is to use a bounding polygon. All edges extending beyond the polygon

are shortened so their end point lies on the polygon. This also bounds the Delaunay triangulation,

removing the unrealistic interactions between distant cells. An alternative method for bounding a

tessellation in the context of cell modelling is to introduce ghost nodes. Ghost nodes are nodes that

surround the boundary of a tessellation, but are not a part of the biological problem being considered.

Ghost nodes themselves may have infinite area, but the ‘real’ nodes that describe the cells will have

finite area. The three types of VT cell boundary descriptions considered in this work are:

• Unbounded VT: In these simulations, the VT (and Delaunay triangulation) is used as per

the standard definition, meaning that cells at the free boundaries of the tissue may have infinite

area (in practice, the area is bounded by numeric limits). Moreover, edges in the Delaunay

triangulation may be long, leading to unrealistic interactions between cell centres. A schematic

for this model is given in Fig 3(b).

• Bounded VT: Under this model, at every time step, additional nodes are added around the

boundary so the tessellation defining the tissue has finite volume (the cells on the boundary have

finite area), as shown in Fig 3(e). Note that the additional nodes used here are only present during

the tessellation calculation, and are destroyed every time step after the tessellation is created.

The placement of these nodes and subsequent VT is described in S1 Text. We introduce a cut-off
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length, r
(VTB)
max , in the Delaunay triangulation, analogous to the OS model: if an edge in the

triangulation is greater than r
(VTB)
max , then it is removed and the cells connected by that edge do

not interact.

• Ghost nodes: Ghost nodes are additional nodes beyond the tissue boundary, similar to the

ones introduced in the bounded VT model, except that they persist over time and react to forces

exerted by the ‘real’ nodes (nodes representing cells in the simulation). In practice, ghost nodes

are created by generating more cells than are necessary and labelling all of the cells outside of

the representation of the tissue as ‘ghosts’. A schematic is provided in Fig 3(h). Ghost nodes

exert forces on each other, but do not exert forces on the real nodes in the tissue.

For the void example, ghost nodes will be removed if their associated Voronoi area is below a

certain threshold, A
(VTG)
min . In the colliding tissues example, ghost nodes are also removed if the

associated Voronoi area is less than A
(VTG)
min or if they are not connected to any other ghost nodes.

4.2. Vertex model

Unlike the OS and VT models, the VM does not include forces acting on cell centres. Instead, cells

are modelled as non-overlapping polygons with forces acting on the vertices of the polygons. In the

VM, we consider the points {r1(t), . . . , rNvert(t)} (here, the set of vertices is greater than the number of

cells in the system). The force on each vertex is derived from an energy function, a viscous drag term,

and again involves an assumption that cells are moving through highly viscous environments where

the inertial forces can be ignored [15]. Balancing these forces leads to an equation of motion for vertex

i [21]:

ηi
dri
dt

= −∇i

N(t)∑
j=1

α
(
Aj(t)−A

(target)
j (t)

)2

+ β
(
Cj(t)− C

(target)
j (t)

)2

+

Mj∑
m=1

γjmdjm(t)

 , ∀i, (7)

where α and β are positive constants, describing cell compressibility and cytoskeletal tension, respec-

tively. We define Aj(t) and Cj(t) as the area and perimeter of cell j at time t, respectively. Each

cell is prescribed a target area, with the target area of cell j at time t denoted by A
(target)
j (t). For

simplicity, we assume that every mature cell has the same target area, Atarget. The target area for

mature cells is constant. During the first hour after cell division, the target area increases linearly

from 1
2Atarget to Atarget. Each cell also has a target perimeter. The target perimeter of cell j, is

C
(target)
j (t) = 2

√
πA

(target)
j (t). The number of vertices contained in cell j is denoted by Mj . We

assume that the vertices of each cell are ordered in an anti-clockwise fashion. The parameter γjm is

a positive constant describing cell adhesion, and depends on whether the edge connecting vertices m

and m+ 1 (i.e. the edge between vertex m and the next vertex in anti-clockwise order) in cell j is an
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edge on the boundary, an edge shared between two cells of the same type or an edge shared between

two cells of different types. The length of the edge connecting vertices m and m+1 in cell j at time t

is djm(t).

To ensure that cells do not overlap or deform in unrealistic ways, rearrangements of the cells and

vertices may be necessary [21]. Suppose that an edge connects vertices between cells A and B, who

share no vertices, and that cells C and D are adjacent to the edge. If the edge has length less than the

rearrangement threshold, dr, then the edge is replaced with a perpendicular longer edge such that cells

C and D are no longer adjacent (they share no vertices), but cells A and B become adjacent. If a cell

area is too small, below some threshold Amin, then the cell is removed from the simulation. Finally,

if a cell intersects another cell (or cells), then nodes may be inserted or replaced. Existing operations

for mesh restructuring are described in more detail in [21]. Further cases are developed as necessary

for this work, and can be found in S2 Text. The cell boundary descriptions used in the VM are:

• Smooth boundaries: We define a smooth boundary vertex simulation as one in which a vertex

is shared by at least two cells. Consequently, any vertices on the tissue boundaries contained in

only one cell are removed. This has the effect of ‘flattening’ cells at the boundaries, as seen in

Fig 3(c).

• Default boundaries: In existing VMs, nodes are typically initialised using a (finite) VT of cell

centres that are prescribed by the user. These nodes then move over time according to the force

laws described by the equations of motion in Eq 7. This usually results in boundary cells that

contain one node that is contained in only one cell, two nodes contained in two cells and the

remaining nodes are internal nodes that are contained in three cells, as in Fig 3(f). By neither

adding nor removing additional nodes along the boundary edges, the shapes of the boundary

cells are less constrained than the smooth boundary case.

• Curved boundary: A curved boundary vertex simulation is where additional nodes are added

to boundary cells to approximate curved cell boundaries, as shown in Fig 3(i). To implement this,

we define a maximum boundary edge length, d
(VTC)
max , for boundary edges (note that this does

not apply to internal edges). If a boundary edge length exceeds the maximum edge length, an

additional node is inserted at the midpoint along the edge. We also define a minimum boundary

edge length, d
(VTC)
min , for boundary edges, which acts in a similar manner. If an edge length is less

than the minimum edge length, the two nodes connected by the edge are removed and replaced

by a node in the midpoint of the edge.
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4.3. Implementation

All simulations are performed in the open source simulation package Chaste [43, 55, 13]. Spatial

units for the simulations are non-dimensionalised to cell diameters (CDs) and cell mass (CM), and

time units are in hours. Parameter values used across simulations are provided in Table 1. The code

used to produce this work is available at https://github.com/jmosborne/TissueBoundaries.

Table 1: Parameter values used across all simulations. Parameter values sourced from [54, 21], except

for boundary specific values, rearrangement thresholds and adhesion between cells and free space in the

VM.

Parameter Description Model(s) Value Units

η Drag coefficient All 1.0 CM hours−1

∆t Time step All 0.001 hours

µ elastic interaction constant OS 50.0 CM hours−2

Rmat Mature cell radius OS 0.5 CD

ρ Decay in attractive force OS 5.0 -

r
(OSR)
max Force cut-off length OS (repulsion) 1.0 CD

r
(OSS)
max Force cut-off length OS (short-range) 1.5 CD

r
(OSL)
max Force cut-off length OS (long-range) 2.0 CD

κ Spring constant VT 50.0 CM hours−2

r
(VTB)
max Force cut-off length VT (bounded) 1.5 CD

A
(VTG)
min Area threshold for ghost node removal VT (ghosts) 0.4 CD2

α Area deformation coefficient VM 50.0 CM hours−2 CD−2

β Membrane tension coefficient VM 1.0 CM hours−2

Atarget Cell target area VM Varies CD2

γcell,cell Cell-cell adhesion coefficient VM 1.0 CM CD hours−2

γcell,boundary Cell-boundary adhesion coefficient VM 2.0 CM CD hours−2

dr Cell rearrangement threshold VM 0.01 CD

Amin Cell volume removal threshold VM 0.001 CD2

d
(VMC)
max Boundary node removal threshold VM (curved) 0.1 CD

d
(VMC)
min Boundary node addition threshold VM (curved) 0.025 CD

5. Results

In this section we describe the differences between model type arising from the choice of cell

boundary descriptions in each of our biological scenarios. We find that tissue behaviour often differs
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between model types, and at a more granular level, there is also significant variability between cell

boundary descriptions.

5.1. Void closure: Choice of model and representation dictates void closure timescale and mechanism

The first case study we consider is a void within a tissue, which can represent a wound or late stage

morphogenesis [72] (Fig 2(a) and (d)). Biological experiments into void closure have attempted to

determine how cytoskeletal structures impact void closure [9]. However, the mechanisms driving void

closure are yet to be fully understood. In 2009, Nagai and Honda used their VM to investigate wound

closure driven by tissue compression in silico [50, 51]. Here we use a similar approach to understand

what effects, if any, model choice has on compression-driven void closure. We begin by initialising a

hexagonally-packed tissue 14 cells wide and 16 cells high. We choose hexagonal packing so any cell

movement is not caused by the tissue relaxing to the least energetic configuration. We implement

a periodic domain for cell motion in both the x and y-directions to simulate a much larger tissue

than would otherwise be computationally feasible. This tissue is then compressed in both the x and

y-directions to a length that would be optimally packed for a tissue 12 cells wide and 13 cells high

and allowed to relax to its equilibrium. Cells are subsequently removed from the tissue if their cell

centre resides within a polygonal (capsule) region defined by |y − x| < 2, with 4 < x, y < 8, where x

and y are the x and y-coordinates of the cell centre, creating a void in the tissue. The tissue is now

allowed to relax to in-fill the space. Cells do not divide in these simulations, and so the simulations

are deterministic. Traces of the void over time for each model are given in Fig 4 and void area over

time is shown in Fig 5. Calculations of void area are described in S3 Text. Void closure is considered

to have occurred when the void area reaches 0 CD2.

We find that for the OS model, varying the interaction radius significantly impacts the timescale

at which the void closes. A repulsion only model results in the quickest closure time for OS models,

since cells do not experience any attractive forces. The short-range interaction model closes the void

more slowly than the repulsion only model, because of the attractive forces between cells. As cells

in the long-range interaction model experience the highest magnitude of attractive force, this model

closes the void the most slowly of all of the OS models. These dynamics are shown in Figs 4(a), (d)

and (g) and 5(a). The repulsion only void outlines shown in Fig 4(a) (OS repulsion) exhibit small

tears in the tissue at various times. These tears occur due to localised ‘cell-shoving’. The interaction

radius, rmax, dictates the degree of tension within a tissue: for the short and long-range models,

increasing rmax results in higher tension, and hence decreases the rate at which the void closes due

to compression. However, even after the void has closed, there are heterogeneities in compression

through the tissue, evidenced in S1 Movie, using cell area as a proxy for tissue compression. In the

initial stages of void closure there is low compression near the wound edge (this is true across all
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

OS repulsion VT unbounded VM smooth

OS short-range VT bounded VM default

OS long-range VT ghosts VM curved

Figure 4: Void outlines over time. Initial cell positions and configuration in blue, and void boundary trace for each

model setup at later times. Orange outlines correspond to void boundary traces at later times, if the void has not closed.

Void outlines are plotted every 0.04 hours until the void has zero area or 20 outlines have been plotted, whichever occurs

first. The small ‘dots’ seen in (a), the OS repulsion case, are small tears that occur in the tissue at various times due to

how the boundaries are defined, see S3 Text. Videos of all simulations are provided in S1 Movie.
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Figure 5: Void area over time curves for each model. The curve corresponding to the simplest cell boundary

description for each model is plotted using a solid line and the curves corresponding to the most computationally complex

cell boundaries are plotted with a dotted line. The dashed curves correspond to the most common cell boundary

descriptions. Note the log scale for the time axis. A consequence of the scaling is that the void area at t = 0 is not

shown, but can be inferred from Fig 4.

models and boundary descriptions). Once the void has closed, in the OS models, there is generally a

region of lower compression in the centre of the tissue where the void was initially located, and regions

of higher compression surrounding this central low compression area. The level and shape of the low

compression region and surrounding high compression region depends on the boundary description. In

the repulsion case, the low compression region is small and the surrounding high compression region

is asymmetrically distributed. In the short-range interaction simulation, the low compression region is

slightly elongated in the y-direction. Again, the high compression region is asymmetric, with prominent

areas in the top-right and left of the low compression region. In the long-range interaction setup, the

low compression region is approximately centred with regions of higher compression to the left and

right. Heterogeneous stress is also observed in in vitro experiments of wound closure, with regions of

low stress near the wound edge, surrounded by regions of high stress [9].

For VT models we again obtain distinct behaviour for each of the boundary descriptions. For un-

bounded tessellations a void cannot be created, since there can be interactions between cells regardless

of how far apart they are. This can be seen in Fig 4(b), showing that if cells are removed, adjacent

cells become artificially enlarged to fill the space. Over time, the large cells become smaller and the

compressed cells become larger, shown in S1 Movie. In the bounded tessellation case, restructuring

of the tessellation causes jump discontinuities in the void area over time, see Fig 5(b) (VT bounded).

For ghost node tessellations, we implement a density dependent ghost node removal, where if a ghost

node’s Voronoi area is less than 50% of that at equilibrium, the ghost node is removed from the sim-

ulation. As in the bounded tessellation case, ghost node removal leads to discontinuities in void area,
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as demonstrated in Fig 5(b). The change in shape of the voids over time for the VT bounded and VT

ghost simulations can be seen in Figs 4(e) and (h), respectively. For both bounded and ghost node tes-

sellations, due to the discrete nature of the model (either from tessellation restructuring or ghost node

removal), the void area closure also exhibits a discrete behaviour. We see from the initial dynamics

that the void area for both bounded and ghost node tessellations follow similar closure trajectories.

However, for the bounded tessellation, once the void is of a certain aspect ratio (where the distance

between cell centres on opposite sides of the void is less than r
(VTB)
max ), the nature of the tessellation

results in the void closing instantaneously. In comparison, the void in the ghost node tessellation case

takes longer to close. In each case, once the void has closed the tessellations have a similar form, as

seen in S1 Movie. Where the void was originally located, the space has been filled by cells that are

larger than those in the surrounding tissue. However, these larger cells are unable to elongate in ways

observed in vitro because the forces between cells do not take into account orientation or distance from

the wound. Surrounding these larger cells is a region of much smaller cells; approximately 0.1 CD2

smaller than the cells in the void. Beyond the smaller cells, the cells in the rest of the tissue are of an

intermediate size between the larger cells in the centre and the surrounding smaller cells.

The default VM has previously been used to model wound healing due to compression [51]. The

change in shape of the void for the VT simulations is shown in Figs 4(c), (f) and (i). We see that in

both the smoothed boundary model and default model the void closures follow similar trajectories,

and close at similar rates. The curved VM requires more time to close the void compared to the other

two VMs investigated here, as demonstrated in Fig 5(c). This is due to the fact that boundary cells

have the ability to achieve their idealised area and perimeter more readily due to the extra nodes along

the boundary. Hence, once the cells on the boundary have attained their target areas and shapes, the

closure dynamics are governed predominantly by tissue compression. In contrast to the OS and VT

models, compression is homogeneous throughout the tissue after void closure. In the VM, cells are

able to elongate in ways that are not possible in the OS and VT models, as shown in S1 Movie. The

explicit incorporation of cell shape in the VM allows the tissue to relax into a configuration where all

cells are the same size. Depending on the biological context, this may be desirable behaviour. For

example, cell elongation is observed in vivo in wound healing experiments and has implications for cell

contractility [9]. Hence cell-based computational models of wound healing should be able to account

for this behaviour.

Overall in this relatively simple scenario of compression driven void closure, the choice of cell

boundary description influences void shapes and closure times. In OS models, larger interaction radii

can lead to slower void closure rates because cells feel attractive forces towards cells that are further

away from the void. An artefact of the VT model is that jump discontinuities occur in the void area over

time because of tessellation changes. Furthermore, voids cannot occur in unbounded VT models. In
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VMs, the greater the degrees of freedom in the cell boundaries at the tissue edge, the more cells are able

to deform to reach their target areas and perimeters. For more restrictive cell boundary descriptions,

the tissue compensates by enlarging the cells at the tissue boundary more quickly, resulting in faster

void closure.

Table 2: Model comparisons for void closure.

Model

OS VT VM

Low

Quickest closure time (of

OS models), tissue

tearing occurs

Void not possible, cells

where void would be are

large, but decrease in

size over time (of VT

models)

Quickest closure time (of

VM models),

homogeneous cell sizes

after void closure

Boundary

resolution
Default

Quick closure time (OS),

heterogeneous cell sizes

after void closure

Jump discontinuities in

area and changes in void

shape due to edge

changes in Delaunay

triangulation

Quick closure time

(VM), homogeneous cell

sizes after void closure

High

Slowest closure time

(OS), after void closure

larger cells in the space

where void was

surrounded by smaller

cells

Jump discontinuities in

area and changes in void

shape due to ghost node

removal

Slowest closure time

(VM), homogeneous cell

sizes after void closure

5.2. Tissue growth: Choice of model and representation influences tissue density and shape

The second case study we consider is tissue growth (Fig 2(b) and (e)). Tissue growth is of consid-

erable interest to both experimental and computational biologists due to the implications for under-

standing cancer and cellular functions [36, 44]. Furthermore, (the simplest) models of tissue growth

are amenable to in vitro and in silico experimentation. In our tissue growth simulations, we again

begin with a hexagonally-packed tissue, this time centred at the origin, with cell centres located within

a radius of five cell diameters of the origin and with free boundaries. These simulations also contain

cell division events that cause the tissue to grow, since we do not remove cells from the simulation,

causing the tissue to expand into free space. We use a Bernoulli trial incorporating contact inhibition
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to determine whether a cell will divide. To understand the impacts of stochasticity, we run ten simula-

tions for each model. Parameter values for these simulations are given in Table 3. Sample snapshots of

tissues growing over time are shown in Fig 6. As in the void closure case, tissue boundaries need to be

defined for the OS models. We also require tissue boundaries to be defined for the Voronoi tessellation

models in this case. Details of the tissue boundary definition are given in S4 Text. The number of

cells, circularity of the tissue and proportion of quiescent cells in the tissue over time are presented

in Fig 7. Tissue circularity is calculated as 4πAtissue

(Ptissue)
2 , where Atissue and Ptissue are the tissue area and

perimeter, respectively. The tissue perimeter is found from the polygon defined by the centres of the

boundary cells, and the tissue area is the polygon’s associated area.

Table 3: Parameter values used in the tissue growth simulations.

Parameter Description Model(s) Value Units

tdiv Minimum age for cells to divide All 1 hours

pdiv Probability of a cell dividing (once old enough) All 0.1 hours−1

Aq Cell quiescence threshold All 0.8 CD2

In the OS model, changing the interaction radius affects how large the tissue can grow in 40

hours. For repulsive forces, the tissue is able to grow the largest. Furthermore, over time the tissue

becomes most dense near the origin, and less densely packed near the tissue boundary. Increasing

the interaction radius decreases the rate of tissue growth, as seen in Figs 6 and 7(a), (d) and (g),

since cells experience greater attractive forces towards each other, and hence do not grow as readily.

For long-range interaction forces, the tissue grows most slowly. Fig 7(d) demonstrates that, in all

cases, the circularity of the tissue remains roughly constant over time. In the long-range interaction

simulations, quiescent cells appear relatively early in the simulations because of the high tissue density,

and the proportion of quiescent cells persists throughout. In contrast, in the repulsion simulations,

the proportion of quiescent cells stays close to zero until a quiescent region begins to form at around

26 hours, shown in Fig 7(g). In the short-range interaction simulations, a small number of quiescent

cells develop at early times, but the number of quiescent cells remains low until approximately 15

hours, when the quiescent region begins to develop. Example simulations showing the development

of quiescent regions and tissue growth are given in S2 Movie. In vitro experiments show that once a

tissue is large enough, the cell cycle of the cells in the centre of the tissue arrest, and there is an outer

ring of cells whose cell cycle continues to progress [29]. We do not observe this structure in the OS

model simulations. However, this may be due to the tissue size not reaching a large enough size.

The type of boundary used in a VT model has a significant impact on the size and shape of

a growing tissue with a contact-inhibited cell cycle. Both the bounded and unbounded tessellation
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

OS repulsion VT unbounded VM smooth

OS short-range VT bounded VM default

OS long-range VT ghosts VM curved

Figure 6: Example growing tissue outlines over time. Initial outline plotted in blue, later times plotted in orange.

Outlines plotted every 2.5 hours. Videos are provided in S2 Movie.

simulations are unable to grow as large as the simulations with ghost nodes (Figs 6 and 7(b), (e) and

(h)). However, simulations of tissues with ghost nodes are less circular, with circularity decreasing
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

OS VT VM

Figure 7: Cell numbers, tissue circularity and cell quiescence over time. (a)-(c) Average number of cells within

the tissue over time. (d)-(f) Average tissue circularity over time. (g)-(i) Proportion of quiescent cells within the tissue

over time. Darker lines show averages, shaded regions show 95% confidence intervals for ten simulations. All results are

smoothed using a moving average with a sample width of ten data (time) points.

over time (Fig 7(e)). To ensure that tissues with ghost nodes remain bounded, there needs to be a

sufficient number of ghost nodes surrounding the tissue at the start of the simulation. The number of

ghost nodes needed is dependent on the type of tissue growth and how long the simulation runs for.

Alternatively, additional ghost nodes need to be added around the tissue as it grows larger. For the

ghost node simulations in this work we use eight ghost nodes to the left and right of the tissue, and

above and below the tissue (visualised in S2 Movie). In the simulations with ghost nodes, cells are able
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to interact with fewer neighbours at the boundary, and form finger-like protrusions from the tissue,

leading to the tissue becoming less circular. Regardless of the boundary description, quiescent cells

appear early in the simulations, as shown in Fig 7(h). The proportion of quiescent cells is greatest in the

unbounded case, although this can be partly attributed to cells around the boundary being quiescent

from the start of the simulation, as can be seen in Fig 7(h). In practice, cells with infinite area at the

boundary of the tissue do not have their entire area calculated. Instead their area is calculated using

only the finite vertices in the tessellation. The higher proportion of quiescent cells in the unbounded

case leads to less tissue growth compared to other simulations. A notable feature of the VT models,

which differs from in vitro experiments, is that the quiescent cells are relatively uniformly distributed

throughout the tissues (except for the boundary effects in the unbounded model). Quiescent cells are

‘isolated’, rather than concentrated in quiescent regions. This is attributed to the linear force used

to describe cell interactions, which does not heavily penalise compression, in comparison to the force

used in OS. This is shown in S2 Movie, and the feature persists regardless of the strength of the force

acting between cells (results not shown).

In the VM, the cell boundary description has a less significant impact on tissue growth and shape

compared to the OS and VT models. The smooth and default descriptions exhibit similar rates of tissue

growth, as Figs 6 and7(c), (f) and (i) show, and develop quiescent regions at similar times, as seen in

Fig 7(i)). This is due to the fact that, as the tissue grows, the boundary nodes belonging to a single

cell only in the default model make up a smaller proportion of the boundary, and so the default model

exhibits the same dynamics as the smooth model. In contrast, the curved VM develops a quiescent

region around 5 hours earlier than the smooth and default cases, see Fig 7(i) and S2 Movie. The earlier

emergence of the quiescent region slows tissue growth from around 25 hours for the curved boundary

simulations, exhibited in Fig 7(c). In all VM cases, the region of contact inhibited cells developed

approximately in the centre of the tissue as it grew, although the shape of the quiescent regions are

asymmetric because of stochastic effects. All boundary descriptions result in highly circular tissues

(see Fig 7(f)). The development of a central region of cells experiencing cell cycle arrest, surrounded

by cells progressing through the cell cycle qualitatively agrees with the behaviour exhibited in in vitro

experiments [29]. However, the emergence of the quiescent region in the VM models occurs when the

tissue is small, suggesting that the parameter values in the model need to be calibrated to in vitro

data.

In the growing tissue example, where cell divisions are dependent on cell size, both cell boundaries

and model choice can inhibit tissue growth. Naturally, in the OS model, greater attraction between

cells leads to denser tissues, fewer cell divisions and smaller tissue sizes. The VT model is an interesting

case, where cell quiescence occurs at early times for all boundary descriptions, resulting in slower tissue

growth. In VT models, no central core of dense tissue forms over the time scales that we simulated,
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suggesting that spatial effects take longer to emerge, if they emerge, in VT models. We have run longer

simulations to verify whether the quiescent core structure emerges, but did not observe this behaviour

for times up to 60 hours, beyond which point the simulations become extremely computationally

expensive because of the large number of cells. All VM simulations develop quiescent regions. However,

the timescale of quiescent region formation varies depending on the boundary description. For smooth

and default boundaries, the time scale is approximately the same. For the curved boundary description,

the quiescent region forms more quickly.

Table 4: Model comparisons for tissue growth.

Model

OS VT VM

Low

Quickest growth (OS),

quiescence emerges late,

tissue maintains

circularity

Slowest growth (VT),

quiescence always

present, highest

proportion for VT, tissue

maintains circularity

Fast growth (VM),

quiescence emerges late,

tissue maintains

circularity

Boundary

resolution
Default

Fast growth (OS), low

levels of quiescence

present early,

exponential growth in

quiescence late, tissue

maintains circularity

Quick growth (VT),

quiescence always

present, tissue maintains

circularity

Fast growth (VM),

quiescence emerges late,

tissue maintains

circularity

High

Slowest growth (OS),

quiescence always

present, tissue maintains

circularity

Quickest growth (VT),

quiescence always

present, lowest

proportion for VT, tissue

circularity decreases over

time

Slowest growth (VM),

quiescence emerges

quickest (VM), tissue

maintains circularity

5.3. Tissue collision: Choice of model and representation affects tissue interface shape

Here, we consider two initially physically separate cell populations growing in a confined region

until they collide; the scenario contains aspects of the dynamics of both previous studies (Fig 2(c)

and (f)). The interaction between different tissues is currently an under-explored area, with scope

for computational modelling to advance our understanding [30]. Each simulation is started with two
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columns of cells on the right (labelled cell type A) and left (labelled cell type B) sides of a domain, as

shown in Fig 8. We use a domain which would hexagonally pack a tissue of 14 cells wide and 14 cells

high. In this instance, we have reflective boundaries on the left and right and periodic boundaries in

the y-direction. In the two cell population simulations, we again use a Bernoulli trial in conjunction

with contact inhibition to determine whether or not a cell divides. We use the same conditions for

division as the growing tissue example. As cells in both populations divide, each tissue grows until the

two populations collide. Upon collision, interactions between cells from different cell populations are

different compared to interactions with cells of the same type. In the OS model, the elastic interaction

constant between cells of the same label remains unchanged, µAA = µBB = µ. However, for cells

of a different label, we use a weaker interaction constant, µAB = µBA < µ. Likewise, for the VT

model, the spring constant for two cells of the same type remain the same, κAA = κBB = κ, but for

cells with different labels it is weaker, κAB = κBA < κ. In the VMs, the adhesion between cells of

the same label is given by γAA = γBB = γ, while the adhesion between cells of a different label is

given by γAB = γBA > γ. Parameter values are provided in Table 5, and chosen with the physical

interpretation that cells are more likely to interact with other cells of the same label, compared to cells

with a different label, to reduce the likelihood of the two cell populations mixing. To determine the

location of the interface between the two cell populations, we take the cell centre of all cells which are

labelled A, which are in contact with a cell labelled B. We name these cells ‘interface cells’. Interface

cells are shown with dark green outlines in Fig 8. The interface between the two populations is a line

through the cell centres of the interface cells. We note this is not unique, and the equivalent interface

would differ slightly if we change the labelling, however, the key results would remain unchanged. An

example snapshot of the two tissues after collision at t = 40 hours is given in Fig 8. Since the domain

size, and therefore tissue size, is limited in this scenario, we are able to run additional simulations to

account for stochasticity. In this case we run 12 simulations per model. Traces of the interfaces for

the 12 simulations of each model, and the distribution of the pooled x-positions along the interfaces,

are given in Fig 9.

Table 5: Parameter values used in colliding tissues simulations.

Parameter Description Model(s) Value Units

µAB Elastic interaction constant between cells with different labels OS 5 CM hours−2

κAB Spring constant between cells with different labels VT 5 CM hours−2

γAB Adhesion between cells in different tissues VM 2 CM CD hours−2

In the OS models, we find that larger interaction radii lead to straighter interfaces between the

two cell populations once they collide. As mentioned in the previous examples, larger interaction radii
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

OS repulsion VT unbounded VM smooth

OS short-range VT bounded VM default

OS long-range VT ghosts VM curved

Figure 8: Cell outlines for example tissue collision simulations. Initial conditions are shown in black, final frames

(at t = 40 hours) are shown by a green population on the left (cell label B) and purple population on the right (cell

label A). Cells at the interface of the two populations are indicated via darker outlines. Videos of each simulation are

provided in S3 Movie.

result in denser tissues, which in this case gives rise to a less jagged interface, since cells experience

more attraction to their source tissue. This can be seen in Figs 8 and 9(a), (d) and (g). In Fig 9(a),

(d) and (g), we see lines with greater variation in the x-position for the repulsion case, and much

smaller variation in the long-range interaction case. This is also reflected in the histograms showing
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

OS repulsion VT unbounded VM smooth

OS short-range VT bounded VM default

OS long-range VT ghosts VM curved
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Figure 9: Tissue collision interface structure. Top panels: interface plots (x-y axes) for the 12 individual simulations

of each model at t = 40 hours, after the two populations have collided. Bottom panels: histograms showing the probability

distributions of the pooled x-positions of the interface between the two populations for the 12 simulations.

the distributions of the x-position along the interface, with the spread in the distributions of the

interface decreasing as we increase rmax. In the repulsion case, there are instances where cells become

detached from their source tissue, as can be seen by the isolated (dark) green cell, surrounded by (dark)

purple cells approximately halfway up the tissue in Fig 8(a)) and S3 Movie. Changes in the shape of

the boundary of each (pre-collision, isolated) tissue occur due to the stochastic cell division events,

and these stochastic changes in tissue boundary are amplified in the repulsion case compared to the

other two cases, since mature cells experience no attractive forces towards each other. However, once

the tissues collide, the variation in the x-positions along the interface decrease as the tissue relaxes. As

in the void closure case, the repulsion-only tissues collide first, followed by the short-range interaction

tissues, with the long-range interaction tissues colliding last, shown in S3 Movie.
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For the VT models, the unbounded tessellations have the highest variation of x-position at the

interface. The bounded tessellations had the least variation in x-position along the interface, as

evidenced in Figs 8 and 9(b), (e) and (h). We note that there is always an interface between the two

cell populations in the unbounded tessellation and the tissues grow outwards, rather than growing

towards each other (see S3 Movie), however, we only consider the shape of the interface between the

populations at t = 40 hours. In the bounded and ghost node simulations, the tissues also move away

from the reflective boundaries throughout the simulation, shown in S3 Movie - This is most notable in

the ghost node case, where the tissues form highly irregular shapes until the domain is filled. Similarly

to the void closure scenario, but in contrast to the tissue growth scenario, the ghost node simulations

took the longest to fill the domain in the tissue collision simulations.

In the VMs, the default and curved boundary cases have similar spread in x-position along the

interface, as shown in Figs 8 and 9(c), (f) and (i). In the smooth boundary case there is some

additional variation in x-position of the interface, as seen in Figs 8 and 9(c). However, the shape of

the tissue boundaries before collisions are broadly consistent across cell boundary descriptions. The

slight increase in frequency of x-positions near ±1 CD in the smooth boundary case seen in Fig 9(c)

can be explained by the regions of purple (or green) tissue extending into the green (or purple) tissue

and forming a flat boundary near x = ±1 CD in some simulations. This can be seen in the interface

tracings in the top panel of Fig 9(c). Similarly to the previous two biological scenarios considered, the

choice of cell boundary on the tissue edge affects the time scale of the tissues colliding, with smooth

simulations again being the fastest, but on a similar time scale to the default boundaries, and the

curved boundaries being the slowest, as demonstrated in S3 Movie.

For the tissue collision example, we find the shape of the interface between two cell populations

varies depending on cell boundary description. For OS models, we see that long-range interactions

result in less variable interfaces, whereas repulsion-only models have greater variation. As in the void

example, unbounded VT models are inappropriate for modelling collisions between tissues, as cells

interact with other cells that are too far apart, which would be physically unrealistic. Of the remaining

two boundary descriptions for the VT model, the ghost node description has a more variable interface

than the bounded tessellation description. As in the previous biological examples, we observe that the

shape of the interface is least sensitive to the boundary description in VMs, however, the time scale of

the tissues colliding can vary depending on the boundary description (not shown).

6. Discussion

When simulating biological tissues with individual-based models, there are many considerations to

take into account, such as the complexity of the individual-based model and the biological relevance of
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the model. Off-lattice models are explicitly informed by physical principles that determine individual

cell behaviour and interactions between cells. As such, these models can readily investigate mechanical

hypotheses about cell behaviour. Recent work into off-lattice individual-based models have proposed

modifications to cell boundaries, particularly at tissue boundaries, that increase the complexity of

the model [34, 35, 46, 25]. In this work, we use three common individual-based models; the OS,

VT and VMs - and three cell boundary descriptions for each model to investigate the impact of cell

boundary descriptions on tissue behaviour in three biological scenarios. In total 27 simulation setups

were explored, with multiple simulations run for setups with stochastic effects.

The OS model is known to result in (sometimes) physically unrealistic artefacts because of the

way cell interactions are defined [54, 52]. Specifically, if the interaction radius is large enough, cells

may physically interact with cells that they are not in direct contact with. This can result in tissues

being artificially dense, as seen in our long-range interaction simulations. If cells are able to emit

chemical cues to other cells, as opposed to mechanical cues, that can pass by intermediate cells without

distortion, then long-range OS models may be appropriate to model such interactions. One approach

to resolve this artefact, is to use a Delaunay triangulation to define cell neighbours (as in the VT

case), but with the OS force function, Eq (3) [40]. An advantage of the OS model is that it is the least

computationally expensive model of those considered here. This makes the OS model more amenable

to simulating larger tissues, provided the assumptions of the model hold. The OS model is useful for

modelling tissue-scale behaviour, despite no explicit representation of cell shape. However, as cells

are represented by points in space, it is less useful for analysing specific tissue boundary shapes, as

cell boundaries are not explicitly described by the model. Detailed descriptions of how we describe

tissue boundaries in the OS model for the void closure and growing tissue cases are given in S3

Text and S4 Text, respectively. However, alternative choices could be made that result in different

simulation snapshots and area curves in the internal void and tissue growth examples. It is clear

that the interaction radius of the OS model has a significant impact on simulation results across all

three biological scenarios that we studied. Generally, the most commonly-used interaction radius, the

short-range interaction case, is a reasonable choice. In the void example, the void with short-range

interactions is able to close in a reasonable time without causing tissue tears (Figs 4(d) and 5(a)).

However, in the tissue growth example, the repulsion model is better able to capture spatial effects

on cell division behaviour. Specifically, while the tissue is small there is negligible compression on

cells, but once a critical mass is reached, the number of compressed (quiescent) cells begins to increase

exponentially (Fig 7(g)). In contrast, in the tissue collision example, we see that the long-range

interaction model better describes in vitro experiments, with less variation at the tissue interface, seen

in Fig 9(g).

VT models are more computationally expensive than their OS counterparts. However, cells cannot
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physically interact ‘through’ other cells, and therefore VT models more realistically represent mechan-

ical interactions between cell neighbours. In all biological scenarios we explore, VT models exhibit

unique, and sometimes surprising, behaviour. In the void closure scenario, voids either cannot be

defined, as in the unbounded VT case, or tessellation changes, such as ghost node removal, cause un-

realistic deformations in void shape. In the tissue growth example, the presence of quiescent cells from

early times in the simulations in all cases prevent the tissue from growing as quickly as in the other

models, regardless of the strength of the interactions between cells. This suggests that the VT model

may not be appropriate for capturing cell compression in growing tissues, unless coupled with chemical

or other signalling pathways. Unbounded VT models are often unphysical, as shown in Figs 4, 6 and

8(b), and generally should be avoided. Bounded VT models had the least variation in tissue shape in

all biological scenarios, compared to the other VT cell boundary descriptions. This is exemplified in

Figs 7 and 9(e). Tissue shape is highly irregular when ghost nodes are used, and indeed in the tissue

growth examples, ghost nodes can ‘infiltrate’ the tissue. These artefacts can be removed by deleting

ghost nodes that are not connected to any other ghost nodes in the Delaunay triangulation, however,

sometimes ghost nodes penetrate the tissue in pairs or triples (and possibly larger configurations).

Handling the artefacts arising from these cases requires checking whether a group of ghost nodes is

surrounded by real cells and adds to the computational cost of the system. An additional subtlety to

consider when using ghost nodes is the density of the ghost nodes. In our simulations, we assume ghost

nodes have the same density as real cells. If ghost nodes are more or less dense than the real cells,

then the shape of the tissue will be altered and overall dynamics of the system may be impacted. For

example, in the void closure scenario, if the ghost node density is greater than the density of the real

cells, the discontinuities in the void area over time curves may not be so pronounced, provided that

ghost node removal was defined appropriately, and not all of the ghost nodes are removed simultane-

ously. The criteria for removing ghost nodes can similarly impact the void area over time curve. In the

tissue growth example, if the ghost nodes are more dense than the real nodes then there may be more

infiltration of ghost nodes into the tissue. The effect of the density of ghost nodes is less significant in

the tissue collision scenario, since we are interested in how the tissues behave after they collide, when

there are no ghost nodes between the two tissues. Still, ghost node density will affect both the time at

which the tissues collide and the shape of the interface between the two tissues until the overall tissue

reaches confluence. There are several choices that must be made when using ghost nodes which can

result in unexpected computational artefacts if not appropriately made.

The VM does not suffer from the same tissue shape artefacts as the OS or VT models, as the tissue

boundary is explicitly defined in the VM. However, the VM is the most computationally expensive

model considered here. A portion of the computational cost can be attributed to the forces acting on

polygonal vertices, rather than cell centres. This results in the number of force calculations performed
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in a VM being approximately six times the number performed in the OS and VT models. This is

magnified further for the curved boundary model where additional nodes are introduced. The greater

cost, however, arises from the manual cell rearrangement and mesh restructuring operations required

in the VM. Additionally, the VM is highly parameterised, and great care must be taken when selecting

parameters, as the resulting dynamics are highly sensitive to model parameters. In the biological

scenarios we consider here, the intersection of tissues often requires additional mesh restructuring

operations, which are detailed in S2 Text. The more restructuring operations that need to be checked

and performed, the more expensive simulations become. The VM is the least sensitive to changes

in cell boundary description, with the smooth and default descriptions behaving similarly across all

biological scenarios. The curved model is the most computationally expensive of all the models here.

Furthermore, tissue behaviour evolves on a longer timescale in the curved model compared to the

smooth and default cases in the void closure and tissue collision examples. The additional degrees of

freedom in the cells on the boundary in the curved model mean that the boundary cells do not have

to rely on interactions with their neighbours to deform and attain their target areas and perimeters.

Arguably, this makes the curved VM the most ‘realistic’ model we have considered in this work.

However, the simplest model, the OS model - which can be 2-7 times faster than the VM [52] - is

able to capture qualitatively similar behaviour as the curved model in many cases, particularly the

short-range interaction case.

While we have considered boundary effects in this work, an avenue of individual-based models that

is yet to be fully explored is that of model stability, parameter values and quantitative comparisons

with in vitro or in vivo data. Given the interactions between multiple cells and the computational

costs of these models (even the simplest ones), these issues are not straightforward to resolve and have

been overshadowed by the drive to ensure that the models qualitatively describe biological data. Fu-

ture investigations into individual-based models should investigate which parameter values ensure the

mathematical stability of these models. Moreover, understanding the range of parameter values that

result in biologically relevant simulations and quantitative analyses of how closely simulations com-

pare with biological data is highly desired, as parameter fitting for these models is a computationally

expensive task. Lastly, an approach which would significantly advance the field of individual-based

models is a natural way to move between the cell-scale, tissue-scale and organ-scale. Ideally, this would

be in the form of a multi-scale modelling framework.

We have restricted our exploration in this paper to two-dimensional examples. An investigation into

three-dimensional tissue boundaries would further elucidate the influence of cell boundary descriptions

on computational studies of biological phenomena. We expect that the two-dimensional artefacts,

such as differing time scales for biological behaviour and observations of tissue shape effects will be

exaggerated in three dimensions. Of course, moving into three dimensions adds to the computational
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complexity. The OS and VT models are both relatively straightforward to extend to three dimensions.

However, the VM involves careful consideration of cell rearrangements and the intersections of tissues,

which is already quite complex in two dimensions. As such, we leave this for future work.

7. Conclusion

In this paper we have demonstrated that the choice of cell boundary descriptions in individual-

based models can significantly influence behaviour at a tissue scale. In our case study of a void within a

compressed tissue, we observe that the cell boundary description changes the time scale of void closure.

In each case, we find that the ‘simplest’ cell boundary description (repulsion-only for the OS model,

unbounded tessellations in the VT model and smooth boundaries in the VM) leads to the fastest void

closure. In the case of the unbounded VT model, a void cannot even be (naturally) defined. In contrast,

the most complex cell boundary descriptions (long-range interactions for OS models, ghost nodes for

the VT model and curved boundaries in the VM) have the longest void closure times. However, in

the case of the VM, this may be the most realistic representation of void closure, since cells on the

tissue boundary are able to deform more. In our case study of tissue growth, we find that all VT

models have relatively uniform cell compression throughout the tissue. This is similarly true of the

long-range interaction OS model. However, this uniformity of compression is not observed in in vitro

experiments of growing tissues. In comparison, all VMs, and the repulsion and short-range OS models

were successfully able to characterise cell compression as the tissue grew. In our case study of tissue

collision, we find that the cell boundary description influences the shape of the interface between

the two populations after they have collided. The VT models show the greatest variability of the

x-coordinates of the interface between the two populations and the VMs showed the least variation.

The variation in the OS model depends strongly on which cell boundary description is used.

Overall, the OS model is the most sensitive to changes in cell boundary description, since this

has a direct effect on the forces acting between cells. The VM was the least sensitive to changes

in cell boundary description, especially with regard to tissue shape in the tissue growth and tissue

collision examples. However, the curved VM evolves on a different time scale to both the smooth and

default VMs in all biological scenarios investigated. Finally, the VT model exhibits different artefacts

depending on the cell boundary description used. Using the unbounded description, voids cannot be

described, and space between tissues cannot exist. In the void example, the nature of tessellations

results in jump discontinuities in the void area over time. In the tissue growth example, tissues with

ghost nodes exhibit highly irregular tissue shapes. The VT model is useful because of its ability to

appropriately define cell shapes in confluent tissues and define neighbours to calculate forces between

cells. However, this work is a cautionary tale of the artefacts that can arise when using VT models,
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or indeed OS or VMs; these issues must be carefully considered when interpreting simulation results.

Individual-based modeling is relatively new in the context of biological modelling and there are

many avenues for exploration. Future work is necessary to more carefully analyse the stability of

individual-based models and the parameter space where these models can provide relevant biological

insight. These future investigations will ideally be conducted in three dimensions, with the caveat that

the VM becomes much more complex in the three-dimensional case and is currently computationally

infeasible for such a study.
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9. Supporting information

9.1. Parameter values for Supporting information.

Table S.1: Parameter values used in the Supporting information.

Parameter Description Model(s) Value Units

rcell-pixel Cell-pixel interaction radius OS, VT 0.55 CD

rEcell-pixel Extended cell-pixel interaction radius OS, VT 1.5 CD

n
(VTB)
b Number of bounding nodes VT (bounded) 2 –

d
(VTB)
b Distance between existing edge and added nodes VT (bounded) 1 CD

ϵ
(VTB)
b Minimum distance between existing and added nodes VT (bounded) 0.01 CD

AV
min Minimum void area VM 0.1 CD2

9.2. Bounded VT model.

In order to implement bounding of cells in the VT model we take the following approach.

Extend the Delaunay mesh by adding a new node perpendicular to any external edge (i.e., inside

void or outside growing domain). n
(VTB)
b evenly spaced nodes are added a distance d

(VTB)
b from the

boundary edge, see Fig S.1. Note that if one node is added it is placed in the centre of the edge

otherwise two nodes are placed at the end and the remaining nodes are spread evenly. Here we use

either one (void and tissue collisions) or two nodes per edge (tissue growth). If any new node being

added is within a given threshold of any existing nodes (ϵ
(VTB)
b ) then it is not added; this is to avoid

a degenerate case of multiple nodes occupying the same location. The Voronoi regions of all cells are

then calculated which are now all bounded. Once calculated all the extra image nodes are removed

and we continue on as for the non-bounded case.

An example of the image nodes and resulting bounded Voronoi regions is given in Fig S.1.
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(a) Extra nodes along one edge.

(b) Example tessellation.

Figure S.1: How to allocate extra nodes in the bounded VT simulations.

9.3. Vertex model boundary node remodelling.

One of the difficulties when using a VM is the need to resolve various node-node or node-edge

collisions. Here we briefly outline the key remodelling decisions implemented to complete this work

for the VM.

9.3.1. Boundary node-boundary node collision with a neighbouring node in common

An instance which causes issues if gone unchecked is when two boundary nodes that share a common

neighbouring node collide, as shown in Fig S.2. If the boundary nodes become too close (depending

on the cell boundary description of the VM), then the nodes are merged with the neighbouring node

in common, which is then placed at the midpoint of the two original nodes.

9.3.2. Boundary node-boundary edge collision

Since we have introduced a curved VM, we can have boundary edges being very small, in comparison

to a traditional VM. Therefore, in a previous work, such as [21], when a boundary node intersects a

boundary edge, the nodes making the edge would be moved apart, to make room for the incoming
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(a) Pre collision (b) Post resolution

Figure S.2: Resolution of boundary node-boundary node collision with a neighbouring node in common. The neighbour-

ing node in common is shared by elements 1 and 2, with the nodes that? are colliding.

boundary node. However, as our edges here are too small, this causes issues, such as collisions with

other nodes, or collisions into other elements. To prevent this occurring, if a boundary node becomes

too close to a boundary edge, we merge the boundary node into the element that edge belongs to. This

joins the two elements together. The boundary node is placed at the midpoint of its original position

and the closest point of the edge. A schematic is given in Fig S.3 that illustrates the pre collision, post

collision and long term outcome of the boundary node-boundary edge collision.

(a) Pre collision (b) Post resolution (c) Long term outcome

Figure S.3: Resolution of boundary node-boundary edge collision. Here, the node that is too close to the edge is added

to the element belonging to the edge, joining the two elements together.

9.3.3. Preemptive boundary T1

A conventional T1 swap in a VM is performed when the edge between two interacting elements

becomes too small, and the edge of interaction is switched to the adjacent neighbouring elements, as

deescribed in [21]. Here, we do not have the exact scenario as above as the nodes interacting are

boundary nodes. In this instance, when two boundary nodes which belong to two separate elements

are sufficiently close to each other, we perturb the nodes perpendicular to their pairwise displacement,

thus preventing the nodes from colliding and possibly merging, creating a rosette. A schematic is

given in Fig S.4 that illustrates the pre collision, post collision and long term outcome of the boundary

node-boundary edge collision..
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(a) Pre collision (b) Post resolution (c) Long term outcome

Figure S.4: Resolution of boundary node-boundary edge collision. Here, the node that is too close to the edge is added

to the element belonging to the edge, joining the two elements together.

9.3.4. T2 void removal consisting of three boundary nodes

We often have the case of three elements closing a gap to all meet each other. When this happens,

an internal void consisting of 3 boundary nodes forms. In previous work, a void of this nature would be

removed via a series of T3 swaps, as the tissue is undergoing large amounts of compression. However,

in our scenarios, we rarely have this high degree of compression, and therefore the series of T3 swaps

do not occur. To compensate for this, when the void area, AV is sufficiently small, AV < AV
min, we

remove the void by merging the 3 boundary nodes at their centre of mass. A schematic of this scenario

is given in Fig S.5.

(a) Pre collision (b) Post resolution

Figure S.5: Resolution of void consisting of boundary nodes. When the void is sufficiently small, we remove the void by

merging the 3 boundary nodes at their centre of mass. The merged node is now an internal node.

9.3.5. Boundary node labelling

As the fundamental change we are implementing is how the boundary is modelled, we needed a

consistent method for tracking either the boundary or internal status of a node. Previously, VMs have

not contained highly dynamic boundaries, and as such, the status of a node has not been important.

To rectify this, each time step, we update the status of each node, labelling it as either boundary
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or internal. This is done by checking how many elements a node belongs to, and compare that to

how many node neighbours a node has. If the node has more neighbouring nodes than the number of

elements it belongs to, it is a boundary node.

9.4. Calculating void area.

Finite VT models and VMs naturally account for cell boundaries. For these models, the area of the

void is the difference in the area of the tissue and the total area the cells occupy. By definition, in an

infinite VT, removing cells does not create a void, so we can never model a void. OS models do not have

explicitly defined boundaries with which to calculate void areas. Therefore, a method for determining

the void area for OS is required. To do this, we first layout a discrete pixel background mesh, of

resolution sufficiently small to obtain the desired accuracy. We then assign a cell-pixel interaction

radius, rcell-pixel, to each cell. If a pixel falls within a cell’s cell-pixel interaction radius, it does not

contribute to the void area, otherwise, it does. A depiction of the calculation is shown for the OS

model in Fig S.7.

Figure S.6: A depiction of the void area calculation for OS. The solid black dot represents the cell’s centre, the solid

black circle the cell’s boundary and the dashed grey circle the cell-pixel interaction radius, rcell-pixel. The red squares

are the discrete pixels contributing to the void area.

9.5. Determining growing tissue boundary.

Similarly to the void area problem, seeing as OS models, unbounded VT models and finite VT

models have no defined boundary, we here introduce a method to calculate the boundary of a growing

tissue of cells. As we did with the closing void, to determine if a cell is on the boundary of a tissue, we

use a discrete pixel background mesh. Unlike in the previous example, a coarse mesh may be used here.

We again assign both a cell-pixel interaction radius, rcell-pixel, and an extended cell-pixel interaction

radius, rEcell-pixel, to each cell, with rEcell-pixel > rcell-pixel. As before, if a pixel is within a cell’s cell-pixel

radius, we remove the pixel. However, if a cell contains a pixel in its extended cell-pixel radius, it is

labelled a boundary cell, and is part of the boundary of the tissue.

For a VT model with ghost nodes, a cell is labelled a boundary cell if it neighbours a ghost node.

Lastly, for a VM, a cell is labelled a boundary cell if it contains a boundary labelled node. We can
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then check which cells are interacting with each-other to find the boundary of the tissue, defined by

the connected line, passing through the centre of mass of each cell.

(a) OS boundary calculation. (b) VT boundary calculation.

Figure S.7: A depiction of the boundary calculation for OS and VT models. The solid black dot represents the cell’s

centre, the solid black circle/lines the cell’s boundary, the dashed grey circle the cell-pixel interaction radius, rcell-pixel,

and the dashed blue circle the extended cell-pixel interaction radius, rEcell-pixel. The red squares are the discrete pixel

mesh.

9.6. Void closure video.

This video shows the deterministic Void Closure simulations. We present all 9 models, with the

colour bar representing the volume of the cell. Ghost nodes are represented by their Voronoi area, with

white colour. https://drive.google.com/file/d/1jAZ-qxptpvPp91WX3qapL2xakvJhGNvl/view?usp=

sharing.

9.7. Tissue growth video.

This video shows a sample simulation of the tissue growth simulations. We present all 9 models, with

the colour of the cell relating to the cell’s proliferative type, with light brown being proliferative cells,

and red cells being quiescent cells. Ghost nodes are represented by their Voronoi area, with grey colour.

https://drive.google.com/file/d/1DUUHEb4BPUf6oTdDJ-RPhEAVUxE65F3Z/view?usp=sharing. Brown

cells are able to divide, red cells are quiescent.

9.8. Tissue collision video.

This video shows a sample simulation of the tissue collision simulations. We present all 9 models,

with the colour of the cell representing the cell’s label, with green being for fcell label B, and red

being for cell label A. Ghost nodes are represented by their Voronoi area, with white colour. https:

//drive.google.com/file/d/1t0XvJ5vO4dm6Rfp9mweMrhjPPiiZYvl-/view?usp=sharing.
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