
focus

0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 5 9

only a small—but growing—number of sys-

tematic empirical studies exist that explain

how these communities produce software.3–5

Similarly, little is known about how commu-

nity participants coordinate software develop-

ment across different settings, or about what

software processes, work practices, and orga-

nizational contexts they need for success.

Academic communities, commercial enter-

prises, and government agencies that want to

benefit from FOSS development will need

grounded models of its processes and practices

to effectively invest their limited resources. My

team at the UC Institute for Software Research

investigated the software development prac-

tices, social processes, technical system config-

urations, organizational contexts, and interre-

lationships that give rise to FOSS systems in

different communities. In particular, we

looked at the FOSS computer game commu-

nity to provide examples of common develop-

ment processes and practices.

Understanding FOSS
development practices

No prior model or globally accepted frame-

work exists that defines how FOSS is devel-

oped in practice. The starting point is to inves-

tigate FOSS practices in different communities.

Researchers are investigating at least four

diverse FOSS communities through empirical

Free and Open Source
Development Practices in
the Game Community

T
he free and open source software (FOSS) approach lets commu-

nities of like-minded participants develop software systems and

related artifacts that are shared freely instead of offered as

closed-source commercial products. Free (as in freedom) soft-

ware and open source software are closely related but slightly different ap-

proaches and licensing schemes for developing publicly shared software. Al-

though the amount of popular literature that attests to FOSS is growing,1,2

developing with open source software

Walt Scacchi, University of California, Irvine

Empirical studies of four distinct free and open source software

development communities find at least five common types of

development processes. These communities, particularly the

computer game community, provide examples of common practices.

studies.3,4,6,7 These communities center on

software development for Web and Internet

infrastructure, computer games, software en-

gineering design systems, and X-ray and deep-

space astronomy.

Rather than examining FOSS development

practices for a single system (for example,

GNU/Linux)—which might be interesting but

is unrepresentative—or related systems from

the same community (such as Internet infra-

structure), my team’s focus was to identify

general FOSS practices both in and across

these diverse communities. These practices

were empirically observed in different projects

from these communities using ethnographic

methods detailed elsewhere.6,7 Further, data

exhibits in the form of screenshots from proj-

ects in the computer game community exem-

plify the practices. (On the SourceForge Web

portal, computer games are the fourth most

popular category of FOSS projects, with more

than 8,000 out of the 70,000 total registered

projects.) Comparable data from the other

communities could serve equally well.

FOSS community participants often play

different roles, such as core developer, module

owner, code contributor, code repository ad-

ministrator, reviewer, or end user. They con-

tribute software content (programs, artifacts,

execution scripts, code reviews, comments,

and so on) to Web sites in each community and

communicate their content updates via online

discussion forums, threaded email messages,

and newsgroup postings. Screenshots, how-to

guides, and frequently asked questions also

help convey system-use scenarios. Software

bug reports appearing in newsgroup messages,

on bug-reporting Web pages, or in bug data-

bases describe what isn’t working as expected.

Administrators of these sites serve as gatekeep-

ers by choosing what information to post,

when and where on the site to post it, and

whether to create a site map that constitutes a

taxonomic information architecture for types

of site- and project-specific content.

Software extension mechanisms and FOSS

software copyright licenses that ensure free-

dom and openness are central to FOSS devel-

opment. Extension mechanisms let people

modify the software system’s functionality or

architecture via intra- or interapplication

scripting or external module plug-in architec-

tures. Copyright licenses, most often derived

from the GNU General Public License, are at-

tached to any project-developed software so

that it can be further accessed, examined, de-

bated, modified, and redistributed without fu-

ture loss of these rights. These public software

licenses contrast with the restricted access of

closed-source software systems and licenses.

In each of these four communities, partici-

pants occasionally publish online manuals,

technical articles, or scholarly research papers

about their software development efforts,1,3,8–10

which are then available for offline examina-

tion and review.

Each type content is publicly available data

that can be collected, analyzed, and repre-

sented in narrative ethnographies, quantitative

studies, or computational models of FOSS de-

velopment processes. Significant examples of

each kind of data have been collected, ana-

lyzed, and modeled.3–5

FOSS development processes
Unlike the software engineering world,

FOSS development communities don’t seem to

readily adopt modern software engineering

processes. FOSS communities develop soft-

ware that’s extremely valuable, generally reli-

able, globally distributed, made available for

acquisition at little or no cost, and readily

used in its associated community. So, what de-

velopment processes are they routinely using

and practicing?

From studies to date, they are employing at

least five types of FOSS development processes.

I’ll briefly describe each process in turn, but

don’t construe any one as being independent

or more important than the others. Further-

more, it appears that these processes occur

concurrently, rather than strictly ordered as in

a traditional life-cycle model or partially or-

dered as in a spiral process model.

Requirements analysis and specification

Software requirements analysis helps iden-

tify the problems a software system should ad-

dress and the form solutions might take. Re-

quirements specification identifies an initial

mapping of problems to system-based solu-

tions. In FOSS development, how does re-

quirements analysis occur, and where and how

are requirements specifications described?

Studies to date have yet to find records of

formal requirements elicitation, capture, analy-

sis, and validation—the kind suggested by

modern software engineering textbooks—in

FOSS
development
communities
don’t seem to
readily adopt

modern
software

engineering
processes.

6 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

any of the four communities.4 In general, you

can’t find them on FOSS Web sites or in “re-

quirements specification” documents. What

studies have found and observed is different.

FOSS requirements take the form of

threaded messages or discussions on Web sites

that are available for open review, elaboration,

refutation, or refinement. Requirements analy-

sis and specification are implied activities.

They routinely emerge as a by-product of com-

munity discourse about what its software

should or shouldn’t do and who’ll take respon-

sibility for contributing new or modified sys-

tem functionality. The requirements appear as

after-the-fact assertions in private and public

email discussion threads, ad hoc software arti-

facts (such as source code fragments included

in a message), and site content updates that

continually emerge.4,11 More conventionally,

requirements analysis, specification, and vali-

dation aren’t performed as a necessary task

that produces a mandated requirements deliv-

erable. Instead, you find widespread practices

that imply reading and sense-making of online

content. You find interlinked discourse “webs”

that effectively trace, condense, and solidify

into retrospective software requirements. All

the while, the project is globally accessible to

existing, new, or former FOSS project partici-

pants. Figure 1 shows an example of a retro-

spective requirements specification.

In short, requirements take these forms be-

cause FOSS developers implement their sys-

tems and then assert that certain features are

necessary. They don’t result from the explicitly

stated needs of user representatives, focus

groups, or product marketing strategists.

Coordinated version control, system build,

and staged incremental release-review

Software version control tools such as the

Concurrent Versions System—a FOSS system

and document base10—are widely used in

FOSS communities. Figure 2 shows one such

FOSS repository on the Web.

Tools such as CVS serve as both a central-

ized mechanism for coordinating FOSS devel-

opment and a venue for mediating control

over which software enhancements, exten-

sions, or upgrades will be checked in to the

archive. If checked in, these updates will be

available to the community as part of the al-

pha, beta, candidate, or official released ver-

sions, as well as the daily-build release.

Software version control, as part of a soft-

ware configuration management activity, is re-

current. It requires coordination but lets you

stabilize and synchronize dispersed, somewhat

invisible development. This coordination is

necessary because decentralized code contribu-

tors and reviewers might independently con-

tribute software updates or reviews that over-

lap, conflict, or generate unwanted side effects.

Each project team or CVS repository ad-

ministrator must decide what can be checked

in and who can and can’t check in new or mod-

ified software source code content. Some proj-

ects make these policies explicit through a vot-

ing scheme,9 and in other projects they remain

informal, implicit, and subject to negotiation

with the designated module or version owner.

In either case, the team must coordinate ver-

sion updates for a new system build and release

to take place. Subsequently, developers who

want to submit updates to the community’s

shared repository rely primarily on online dis-

cussions in lean media form, such as threaded

email messages posted on a site,5 rather than

having to deal with onerous system configura-

tion control committees or seemingly arbitrary

product delivery schedules. So, joint use of ver-

J a n u a r y / F e b r u a r y 2 0 0 4 I E E E S O F T W A R E 6 1

Figure 1. Computer-

game software

requirements specified

as retrospectively

asserted features.

(figure courtesy of www.

bnetd.org, July 2002)

sioning, system building, online communica-

tion, and file-browsing and file-transfer tools

mediates the process of coordinated version

control, system build, release, and review.

Maintenance as evolutionary redevelopment,

reinvention, and revitalization

Software maintenance—adding and sub-

tracting system functionality, debugging, re-

structuring, tuning, conversion (for example,

internationalization), and migration across

platforms—is a widespread, recurring process

in FOSS development communities. Perhaps

this is no surprise, considering maintenance is

generally viewed as the major activity associ-

ated with a software system across its life cy-

cle. However, the traditional label of software

maintenance doesn’t quite fit what you see oc-

curring in different FOSS communities. In-

stead, it might be better to characterize the

overall evolutionary dynamic of FOSS as rein-

vention. Reinvention occurs through sharing,

examining, modifying, and redistributing con-

cepts and techniques that have appeared in

closed-source systems, research and textbook

publications, conferences, and developer-user

discourse across multiple FOSS projects. Thus,

reinvention is a continually emerging source of

adaptation, learning, and improvement in

FOSS functionality and quality.

FOSS systems seem to evolve through mi-

nor improvements or mutations that are ex-

pressed, recombined, and redistributed across

many releases with short life cycles. FOSS end

users who act as developers or maintainers

continually produce these mutations. They ap-

pear initially in daily system builds. The mod-

ifications or updates are then expressed as ten-

tative alpha, beta, or release versions that

might survive redistribution and review. Then,

they might be recombined and reexpressed

with other mutations in producing a new, sta-

ble release version. As a result, these muta-

tions articulate and adapt a FOSS system to

what its user-developers want it to do while

reinventing the system.

FOSS systems coevolve with their develop-

ment communities; one’s evolution depends

on the other’s. In other words, a project with

few developers (most typically one) won’t pro-

duce and sustain a viable system unless or un-

til the team reaches a critical mass of between

five and 15 core developers. If this happens,

the system might be able to grow in size and

complexity at a sustained exponential rate, de-

fying the laws of software evolution that have

held for decades.12

Closed-source software systems thought to

be dead or beyond their useful product life or

maintenance period may be revitalized through

redistributing and opening their source code.

However, this might only succeed in applica-

tion domains with devoted, enthusiastic user-

developers who are willing to invest time and

skill to keep their cultural heritage alive. The

Multiple Arcade Machine Emulator site (www.

mame.net) for vintage arcade games shows that

thousands of computer arcade games from the

1980s and 1990s are being revitalized through

migration to FOSS-system support.

Project management and career development

FOSS development teams can take the or-

ganizational form of interlinked layered meri-

tocracies operating as a dynamically organ-

ized but loosely coupled virtual enterprise.13

A layered meritocracy9 is a hierarchical orga-

nizational form that centralizes and concen-

trates certain kinds of authority, trust, and re-

spect for experience and accomplishment

within the team. However, it doesn’t imply a

6 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Figure 2. A view into a

Web-accessible CVS

(Concurrent Versions

System) configuration

archive of software

source code files for the

game Quake. (figure

courtesy of the Quake-

Forge Project)

single authority, because decision-making can

be shared among core developers who act as

peers at the top echelon. Instead, meritocra-

cies tend to embrace incremental innovations,

such as evolutionary mutations to an existing

software code base, over radical ones. Radical

change involves exploring or adopting untried

or sufficiently different system functionality,

architecture, or development methods. A mi-

nority of code contributors who challenge the

core developers’ status quo might advocate

radical changes. However, their success usu-

ally implies creating and maintaining a sepa-

rate version of the system and potentially los-

ing a critical mass of other FOSS developers.

So incremental mutations tend to win out

over time.

Figure 3 illustrates the form of a meritoc-

racy common to many FOSS projects.4 In this

form, software development work appears to

be logically centralized while physically dis-

tributed in an autonomous and decentralized

manner.13 However, it’s neither simply a

“cathedral” nor a “bazaar.”1 Instead, when

layered meritocracy operates as a virtual en-

terprise, it relies on virtual project manage-

ment to mobilize, coordinate, control, build,

and assure the quality of FOSS development

activities. It could invite or encourage system

contributors to come forward and take a

shared, individual responsibility that’ll serve

to benefit the FOSS collective of user-develop-

ers. VPM requires several people to act as

team leader, subsystem manager, or system

module owner in either a short- or long-term

manner. People take roles on the basis of their

skill, accomplishments, availability, and belief

in community development. Figure 4 shows an

example of VPM.

Project participants higher up in the meri-

tocracy have greater perceived authority than

those lower down. But these relationships are

only effective if everyone agrees on their

makeup and legitimacy. Administrative or co-

ordination conflicts that can’t be resolved can

end up either splitting or forking a new system

version. Then the conflicting participants must

take responsibility for maintaining that version

by reducing their stake in the ongoing project

or by simply conceding the position in conflict.

VPM exists in FOSS communities to enable

effective control via community decision-

making and Web site and CVS repository admin-

istration. Similarly, it exists to mobilize and sus-

tain the use of privately owned resources that

the community can use (for example, Web

servers, network access, site administrator la-

bor, skill, and effort). Finally, some preliminary

evidence suggests that, compared to projects

with traditional software project management,

J a n u a r y / F e b r u a r y 2 0 0 4 I E E E S O F T W A R E 6 3

Elder Elder

Leader

Regular

Novice

Visitor

Leader

Regular

Staff

VolunteersContractors

Enthusiasts

Figure 3. A layered meritocracy and role hierarchy.

Figure 4. A description of how a FOSS computer game development

project organizes and manages itself. This statement serves as an

organizational surrogate to denote administrative authority, and

includes an invitation to those who seek such project authority.

(figure courtesy of PlaneShift)

FOSS projects can produce higher quality sys-

tems,3 perhaps owing to VPM.

Traditional software project management

stresses planning and control. Lawrence Lessig

observes that source code intentionally or un-

intentionally achieves a mode of social control

over those who use it.15 So, in the case of

FOSS development, Lessig’s observation sug-

gests that source code controls or constrains

user–system interaction, while the code in

software development tools, Web sites, and

project assets controls, constrains, or facili-

tates developer interaction with the evolving

FOSS system code. CVS enables some form of

social control. However, the fact that these

systems’ source codes are freely available

means that user-developers can examine, re-

vise, and redistribute patterns of social control

and interaction, thus favoring one form of

project organization and user–system interac-

tion over others. Thus, this dimension of VPM

is open to manipulation by core developers.

They can encourage certain patterns of devel-

opment and social control and discourage

ones that might not advance the collective

needs of project participants.

FOSS developers have complex motives for

being willing to allocate their time, skill, and

effort to their systems’ ongoing evolution.

They might simply think the work is fun, per-

sonally rewarding, or a means to exercise and

improve their technical competence in a way

that they can’t in their formal jobs or fields.6

In FOSS computer game communities, “peo-

ple even get hired for doing these things,” as

Figure 5 shows. Some FOSS developers create

computer game modifications (game mods)

that widely circulate and generate substantial

sales revenue for the game’s proprietary ven-

dor, and they sometimes share in the profits.8

Furthermore, being a central node in a net-

work of software developers who intercon-

nect multiple FOSS projects doesn’t only

bring social capital and recognition from

peers. It also lets independent FOSS systems

merge into larger ones that gain the critical

mass of developers to grow even more and at-

tract even larger user-developer communities.

So, it might be surprising that more than 60

percent of the FOSS developers surveyed in a

recent study6 reported participating in two

to 10 FOSS projects. This effectively intercon-

nects not only independent system projects

into a larger system architectures, but also in-

terlinks their meritocracies, VPM practices,

and social control. This enables the collective

system and community to grow more robust

together.

Software technology transfer and licensing

Software technology transfer is an impor-

tant and often neglected process in the aca-

demic software engineering community. How-

ever, the diffusion, adoption, installation, and

routine use of FOSS software systems and

their Web-based assets are central to the sys-

tems’ ongoing evolution. Transferring FOSS

technology from existing Web sites to organi-

zational practice is a community and project

team-building process.14 FOSS developers

publicize and share their project assets by

adopting and using FOSS project Web sites—

a communitywide practice. You can build

these Web sites using FOSS content manage-

ment systems (such as PhP-Nuke) and serve

them using FOSS Web servers (Apache), data-

base systems (MySQL), or application servers

(JBoss). User-developers are increasingly ac-

cessing these sites via FOSS Web browsers

(Mozilla). Furthermore, ongoing FOSS proj-

6 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Figure 5. This

page highlights

career development

opportunities for

would-be computer

game developers via

open source game

mods. (figure courtesy

of Epic Games)

ects might use dozens of FOSS development

tools as stand-alone systems (CVS), integrated

development environments (NetBeans or

Eclipse), or their own application’s subsystem

components. These projects similarly employ

asynchronous project communications sys-

tems that are persistent, searchable, traceable,

public, and globally accessible.

FOSS technology transfer isn’t an engineer-

ing process—at least not yet. It’s instead a so-

ciotechnical process that entails the develop-

ment of constructive social relationships;

informally negotiated social agreements; and a

routine willingness to search, browse, down-

load, and try out FOSS assets. It’s also a com-

mitment to continually participate in public,

Web-based discourse and shared representa-

tions about FOSS systems, much like the other

processes identified earlier. Community build-

ing and sustained participation are essential,

recurring activities that let FOSS persist with-

out centrally planned and managed corporate

software development centers.

FOSS systems, development assets, tools,

and project Web sites serve as a venue for so-

cializing, building relationships and trust,

sharing, and learning with others. Some open

source software projects have made develop-

ing such social relationships their primary

project goal. Figure 6 shows such a system, in

which developers took an existing networked

game system and created an open source game

mod that transformed it into a venue for social

activity. Many contemporary visual artists are

also creating game mods as the basis for new art

works (see examples at www.selectparks.net).

An overall, essential part of what enables

the transfer and practice of FOSS development,

and what distinguishes it from traditional soft-

ware engineering, is the use and reiteration of

FOSS public licenses. More than half of the

60,000 FOSS projects registered at Source-

Forge use the GNU General Public License.

The GPL preserves and reiterates the beliefs

and practices of sharing, examining, modify-

ing, and redistributing FOSS systems and as-

sets as property rights for collective freedom.

Open source software projects that comingle

assets that weren’t created as free property

have instead adopted variants that relax or

strengthen the rights and conditions the GPL

lays out. Visit www.opensource.org or www.

creativecommons.org for general information

on how to create these licenses.

F ree and open source software develop-

ment practices give rise to a new view

of how complex software systems can

be constructed, deployed, and evolved. FOSS

projects don’t adhere to traditional software

engineering life-cycle principles from modern

textbooks. They rely on lean electronic com-

munication media, virtual project manage-

ment, and version management mechanisms

to coordinate globally dispersed development

efforts. They coevolve with their development

communities, which reinvent and transfer

software technologies as part of their team-

building process. Practices to propagate FOSS

technology and culture are intertwined and

mutually situated to benefit motivated partici-

pants and contributors.

So, software engineering managers and de-

velopers working in traditional proprietary,

closed-source, centrally managed, and colo-

cated software development centers might rec-

ognize that viable alternatives exist to the prac-

tices and principles they’ve been following.

These FOSS processes offer new directions for

developing complex software systems.

J a n u a r y / F e b r u a r y 2 0 0 4 I E E E S O F T W A R E 6 5

Figure 6. A first-person

shooter game (Unreal

Tournament) that’s

been modified and

transformed into a 3D

virtual environment for

socializing and virtual

dancing with in-game

avatars. (figure cour-

tesy of Martin C. Martin)

Acknowledgments
Grants IIS-0083075, ITR-0205679, ITR-0205724,

and ITR-0350754 from the US National Science Foun-
dation supported this research. Andrew Henderson and
James Neighbors commented on an earlier draft.

References
1. C. DiBona, S. Ockman, and M. Stone, Open Sources:

Voices from the Open Source Revolution, O’Reilly and
Associates, 1999.

2. S. Williams, Free as in Freedom: Richard Stallman’s Cru-
sade for Free Software, O’Reilly and Associates, 2002.

3. A. Mockus, R.T. Fielding, and J. Herbsleb, “Two Case
Studies of Open Source Software Development: Apache
and Mozilla,” ACM Trans. Software Eng. and Method-
ology, vol. 11, no. 3, July 2002, pp. 309–346.

4. W. Scacchi, “Understanding the Requirements for De-
veloping Open Source Software Systems,” IEE Proc.—
Software, vol. 149, no. 1, Feb. 2002, pp. 24–39.

5. Y. Yamauchi et al., “Collaboration with Lean Media:
How Open-Source Software Succeeds,” Proc. Computer
Supported Cooperative Work Conf. (CSCW 00), ACM
Press, pp. 329–338.

6. A. Hars and S. Ou, “Working for Free? Motivations for

Participating in Open-Source Software Projects,” Int’l J.
Electronic Commerce, vol. 6, no. 3, Spring 2002, pp.
25–39.

7. S. Viller and I. Sommerville, “Ethnographically In-
formed Analysis for Software Engineers,” Int’l. J.
Human–Computer Studies, vol. 53, no. 1, July 2000,
pp. 169–196.

8. C. Cleveland, “The Past, Present, and Future of PC
Mod Development,” Game Developer, vol. 8, no. 2,
Feb. 2001, pp. 46–49.

9. R.T. Fielding, “Shared Leadership in the Apache Project,”
Comm. ACM, vol. 42, no. 4, Apr. 1999, pp. 42–43.

10. K. Fogel, Open Source Development with CVS, Corio-
lis Press, 1999.

11. D. Truex, R. Baskerville, and H. Klein, “Growing Sys-
tems in an Emergent Organization,” Comm. ACM, vol.
42, no. 8, Aug. 1999, pp. 117–123.

12. M.M. Lehman, “Programs, Life Cycles, and Laws of
Software Evolution,” Proc. IEEE, vol. 68, no. 9, Sept.
1980, pp. 1060–1078.

13. J. Noll and W. Scacchi, “Supporting Software Develop-
ment in Virtual Enterprises,” J. Digital Information, vol.
1, no. 4, Jan. 1999, http://jodi.ecs.soton.ac.uk/Articles/
v01/i04/Noll.

14. A.J. Kim, Community-Building on the Web: Secret
Strategies for Successful Online Communities, Peachpit
Press, 2000.

15. L. Lessig, CODE and Other Laws of Cyberspace, Basic
Books, 1999.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

6 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Author

Walt Scacchi is a senior research computer scientist and research faculty member at the
Institute for Software Research and director of research for the Laboratory for Game Culture
and Technology, both at the University of California, Irvine. His research interests include open
source software development, software process engineering, computer game culture and tech-
nology, and organizational studies of system development. He received his PhD in information
and computer science from UC Irvine. He is a member of the AAAI, ACM, and IEEE. Contact
him at the Institute for Software Research, Univ. of California, Irvine, Irvine, CA 92697-3425;
wscacchi@ics.uci.edu; www.isr.uci.edu/open-source-research.html.

HAVE YOU EVER HAD AN EXPERIENCE

in constructing software that gave you un-
expected insights into the larger problem
of software engineering and development
of high-quality software? If so, IEEE Soft-

ware encourages you to submit your ex-
periences, insights, and observations so
that others can also benefit from them.

We are looking for articles that en-
courage a better understanding of the
commonality between programming in
the small and programming in the large,
and especially ones that explore the
larger implications of hands-on software
construction experiences.

Submissions are accepted at any time.

C A L L

F O R

A R T I C L E S Software Construction
POSSIBLE TOPICS INCLUDE BUT ARE NOT

LIMITED TO THE FOLLOWING:

• Coding for high-availability applications

• Coding for compatibility and extensibility

• Coding for network interoperability

• Effective use of standards by programmers

• Lessons learned from game programming

• Techniques for writing virus-proof software

• Agents: When, where, and how to use them

• PDAs and the future of “wearable” software

• Is “agile” programming fragile programming?

• Prestructuring versus restructuring of code

• Integration of testing and construction

• Aspect-oriented programming

• Impacts of language choice on application
cost, stability, and durability

