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FREE BANACH SPACES

AND THE APPROXIMATION PROPERTIES

GILLES GODEFROY AND NARUTAKA OZAWA

(Communicated by Thomas Schlumprecht)

Abstract. We characterize the metric spaces whose free spaces have the
bounded approximation property through a Lipschitz analogue of the local
reflexivity principle. We show that there exist compact metric spaces whose
free spaces fail the approximation property.

1. Introduction

Let M be a pointed metric space, that is, a metric space equipped with a distin-
guished point denoted 0. We denote by Lip0(M) the Banach space of all real-valued
Lipschitz functions defined on M which vanish at 0, equipped with the natural Lip-
schitz norm

‖f‖L = sup
{ |f(x)− f(y)|

‖x− y‖ ; (x, y) ∈ M2, x �= y
}
.

For all x ∈ M , the Dirac measure δ(x) defines a continuous linear form on Lip0(M).
Equicontinuity shows that the closed unit ball of Lip0(M) is compact for pointwise
convergence on M , and thus the closed linear span of {δ(x) ; x ∈ M} in Lip0(M)∗

is an isometric predual of Lip0(M). This predual is called the Arens-Eells space
of M in [We] and (when M is a Banach space) the Lipschitz-free space over M in
[GK], denoted by F(M). We will use this notation and simply call F(M) the free
space over M . When M is separable, the Banach space F(M) is separable as well,
since the set {δ(x) ; x ∈ M} equipped with the distance induced by Lip0(M)∗ is
isometric to M .

The free spaces over separable metric spaces M constitute a fairly natural family
of separable Banach spaces, which are moreover very useful in non-linear geometry
of Banach spaces (see [Ka2]). However, they are far from being well-understood at
this point, and some basic questions remain unanswered. We recall that a Banach
space X has the approximation property (AP) if the identity idX of X is in the
closure of the finite rank operators on X for the topology of uniform convergence
on compact sets. The λ-bounded approximation property (λ-BAP) means that
there are approximating finite rank operators with norm less than λ, and (1-BAP)
is called the metric approximation property (MAP). This note is devoted to the
following problem: for which metric spaces M does the space F(M) have (AP), or
(BAP), or (MAP)? For motivating this query, recall that real-valued Lipschitz func-
tions defined on subsets of metric spaces extend with the same Lipschitz constant

Received by the editors January 4, 2012 and, in revised form, June 18, 2012.
2010 Mathematics Subject Classification. Primary 46B20; Secondary 46B28, 46B50.
Key words and phrases. Lipschitz free space, approximation property.

c©2014 American Mathematical Society

1681

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/proc/
http://www.ams.org/proc/
http://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2014-11933-2


1682 GILLES GODEFROY AND NARUTAKA OZAWA

through the usual inf-convolution formula. However, approximation properties for
free spaces are related to the existence of linear extension operators for Lipschitz
functions defined on subsets (see [Bo], and Proposition 6 below).

It is already known that some free spaces fail AP: indeed one of the main results
of [GK] asserts that if X is an arbitrary Banach space and λ ≥ 1, then X has λ-
BAP if and only if F(X) has λ-BAP. Since moreover any separable Banach space X
is isometric to a 1-complemented subspace of F(X) ([GK], Theorem 3.1), it follows
that F(X) fails AP when X does.

This note provides further examples of metric spaces whose free spaces fail AP.
We show in particular that some spaces F(K), with K compact metric spaces, fail
AP although MAP holds for “small” Cantor sets.

Section 2 gives a characterization of the λ-BAP for F(M) through weak*-approxi-
mation of Lipschitz functions from M into bidual spaces, somewhat similar to the
local reflexivity principle. In section 3, a method used in [GK] and localized in [DL]
is shown to provide the existence of compact convex sets K with F(K) failing AP.
Several open questions conclude the note.

2. Lipschitz local reflexivity

For metric spaces M and X, we denote by Lipλ(M,X) the set of λ-Lipschitz
maps from M into X. We assume that M is separable and X is complete. Fix a
dense sequence (xn)n in M and define a metric d on Lipλ(M,X) by

d(f, g) =
∞∑

n=1

min{d(f(xn), g(xn)), 2
−n}.

Then, d is a complete metric on Lipλ(M,X) whose topology coincides with the
pointwise convergence topology.

Let Z be a Banach subspace of Y and denote the quotient map by Q : Y → Y/Z.
We say Z is an M-ideal with an approximate unit, or an M-iwau for short, if there are
nets of operators φi : Y → Z and ψi : Y → Y such that φi(z) → z for every z ∈ Z,
Q◦ψi = Q for all i, φi+ψi → idY pointwise, and ‖φi(x)+ψi(y)‖ ≤ max{‖x‖, ‖y‖}
for all x, y ∈ Y and i. We note that ψi → 0 on Z and ‖Q(y)‖ = lim ‖ψi(y)‖.

Example A. LetX be a separable Banach space andXn be an increasing sequence
of finite-dimensional subspaces whose union is dense. We define

Y = {(xn)n ∈ (
∏

Xn)∞ ; the sequence (xn)n is convergent in X}.

Then, Y is a Banach space with MAP with the metric surjection Q : Y → X given
by the limit. The subspace kerQ is an M-iwau, with φk((xn)n) = (x1, . . . , xk,
0, 0, . . .).

Example B. Every closed two-sided ideal I in a C∗-algebra is an M-iwau.

Lemma 1 (cf. [Ar], Theorem 6). Let Z ⊂ Y be an M-iwau and M be a separable
metric space. Then, for every λ ≥ 1 the set

{Q ◦ f ; f ∈ Lipλ(M,Y )} ⊂ Lipλ(M,Y/Z)

is closed under the pointwise convergence topology.

Proof. Let (fn)n be a sequence in Lipλ(M,Y ) such that Q ◦ fn converge to F ∈
Lipλ(M,Y/Z). To prove that F lifts, we may assume that d(Q◦fn, Q◦fn+1) < 2−n.
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We will recursively construct gn such that Q ◦ gn = Q ◦ fn and d(gn, gn+1) < 2−n.
Then, the sequence (gn)n converges and its limit is a lift of F . For gn+1, we define

gn+1,i = φi ◦ gn + ψi ◦ fn+1.

Then, gn+1,i ∈ Lipλ(M,Y ), Q ◦ gn+1,i = Q ◦ fn+1 and

lim
i
d(gn, gn+1,i) = lim

i
d(ψi ◦ gn, ψi ◦ fn+1) = d(Q ◦ gn, Q ◦ fn+1) < 2−n.

Thus, there is an i such that gn+1 := gn+1,i works. �

Theorem 2. Let M be a separable metric space and λ ≥ 1. Then, the free space
F(M) has the λ-BAP if and only if M has the following property: For any Banach

space Y and any f ∈ Lip1(M,Y ∗∗), there is a net in Lipλ(M,Y ) which converges
to f in the pointwise-weak∗ topology.

Proof. Suppose F(M) has the λ-BAP and f ∈ Lip1(M,Y ∗∗) is given. Then, f

extends to a linear contraction f̂ : F(M) → Y ∗∗. Since F(M) has λ-BAP, the local
reflexivity principle yields a net of operators Ti : F(M) → Y with norm ≤ λ which

weak* converges to f̂ pointwise. Restricting it to M , we obtain a desired net.
Conversely, suppose M satisfies the property stated in Theorem 2. We apply the

construction described in Example A to F(M) and obtain Q : Y → F(M). Since
Z = kerQ is an M-ideal, one has a canonical identification Y ∗∗ = Z∗∗ ⊕∞ F(M)∗∗.

In particular, M ↪→ Y ∗∗ naturally. By assumption, there is a net fi ∈ Lipλ(M,Y )

which approximates the above inclusion. Since Q ◦ fi ∈ Lipλ(M,F(M)) converge
to idM in the point-weak topology, by taking convex combinations if necessary, we
may assume that they converge in the point-norm topology. Thus by Lemma 1,
idM : M ↪→ F(M) lifts to a function f ∈ Lipλ(M,Y ). The function f extends to

f̂ : F(M) → Y , which is a lift of idF(M). Since Y has MAP, F(M) has λ-BAP. �

Corollary 3. A separable Banach space X has λ-BAP if and only if for any Banach
space Y and any f ∈ Lip1(X,Y ∗∗), there is a net in Lipλ(X,Y ) which converges
to f in the pointwise-weak∗ topology.

This follows immediately from Theorem 2 since X has λ-BAP if and only if F(X)
has this same property ([GK], Theorem 5.3). Note that we can replace “Lipschitz
maps” by “linear operators” in Corollary 3 and reach the same conclusion. In this
case, our argument boils down to a method due to Ando ([An]; also see [HWW],
section II.2).

3. Some free spaces failing AP

We first prove:

Theorem 4. Let X be a separable Banach space, and let C be a closed convex set
containing 0 such that span[C] = X. Then X is isometric to a 1-complemented
subspace of F(C).

Proof. The proof relies on a modification from [DL] (see Lemma 2.1 in that paper)
of the proof of ([GK], Theorem 3.1). We first recall that since every real-valued
Lipschitz map on C extends a Lipschitz map onX with the same Lipschitz constant,
the canonical injection from C into X extends to an isometric injection from F(C)
into F(X) (see [GK], Lemma 2.3). Thus we simply consider F(C) as a subspace of
F(X).
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Let (xi)i≥1 be a linearly independent sequence of vectors in C/2 such that
span[{xi ; i ≥ 1}] = X and ‖xi‖ = 2−i for all i. We let E = span[{xi ; i ≥ 1}]. We
denote by H = [0, 1]N the Hilbert cube, by t = (tj)j a generic element of H, and
by λ the product of the Lebesgue measures on each factor of H. Of course, λ is a
probability measure on H. Moreover, for any n ∈ N, we denote Hn = [0, 1]N\{n}

and λn the similar probability measure on Hn.
We denote R : E → F(X) as the unique linear map which satisfies for all n ≥ 1

and all f ∈ Lip0(X),

R(xn)(f) =

∫
Hn

[
f(xn +

∑
j �=n

tjxj)− f(
∑
j �=n

tjxj)
]
dλn(t).

It is clear that the map R actually takes its values in the subspace F(C) of F(X).
If f is Gâteaux-differentiable, then Fubini’s theorem shows that

R(x)(f) =

∫
H

〈{∇f}(
∑
j

tjxj), x〉 dλ(t),

and thus |R(x)(f)| ≤ ‖x‖ ‖f‖L. Since the subset of the unit ball of Lip0(X) con-
sisting of functions which are Gâteaux-differentiable is uniformly dense in this unit
ball (see [BL], Corollary 6.43), it follows that ‖R‖ ≤ 1. Since E is dense in X,
the map R extends to a linear operator of norm 1 from X to F(C), which we still
denote by R.

If β denotes the canonical quotient map from F(X) onto X (see [GK], Lem-
ma 2.4), we have βR = IdX , and thus R(X) is a subspace of F(C) isometric to X
and 1-complemented by the projection Rβ. �

The main corollary of this result is the following.

Corollary 5. There exists a compact metric space K such that F(K) fails AP.

Proof. Let X be a separable Banach space failing AP. It is classical and easily
seen that there is a compact convex set K containing 0 such that span[K] = X.
By Theorem 4, the space F(K) contains a complemented subspace failing AP, and
thus F(K) itself fails AP. �
Example C. This result emphasizes the need to decide for which metric spaces M
- and in particular for which compact metric spaces - the corresponding free space
has AP. It is well-known that MAP holds when K is an interval of the real line
since then F(K) is isometric to L1 and, more generally, if M is any subset of the
real line since then F(M) is 1-complemented in L1. If C is a closed convex subset
of the Hilbert space �2, then F(C) has MAP. Indeed C is a 1-Lipschitz retract of �2,
and thus F(C) is 1-complemented in F(�2) which has MAP by ([GK], Theorem 5.3).
A metric space M is isometric to a subset of a metric tree T if and only if F(M)
embeds isometrically into L1 ([Go]). It follows from [Mat] that for any such M the
space F(M) has BAP. Finally, it is shown in [LP] among other things that for any
n ≥ 1 the space F(Rn) has a basis and that F(M) has (BAP) for any doubling
metric space M .

We now observe that “small” Cantor sets yield to free spaces with MAP.

Proposition 6. Let K be a compact metric space such that there exist a sequence
(εn)n tending to 0, a real number ρ < 1/2 and finite εn-separated subsets Nn of K
which are ρεn-dense in K. Then F(K) has MAP.
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Proof. It follows from ([Bo], Theorem 4) that if M is a separable metric space and
(Mn)n is an increasing sequence of finite subsets of M whose union is dense in
M , then F(M) has BAP if and only if there is a uniformly bounded sequence of
linear operators En : Lip(Mn) → Lip(M) such that if Rn denotes the restriction
operator to Mn, then for every f ∈ Lip(M) the sequence fn = EnRn(f) converges
pointwise to f . Our assumptions imply the existence of λ-Lipschitz retractions
Pn from K onto Nn, with λ = (1 − 2ρ)−1, and then En(f) = f ◦ Pn shows that
F(K) has BAP. To conclude the proof, we observe that in the notation of ([We],
Definition 3.2.1), the little Lipschitz space lip0(K) uniformly separates the points
in K (use the characteristic functions of the balls of radius ρεn centered at points
in Nn), and thus by ([We], Theorem 3.3.3) the space F(K) is isometric to the dual
space of lip0(K). Now Grothendieck’s theorem shows that F(K) has MAP since it
is a separable dual with BAP. �

We refer to [Ka1] for more on little Lipschitz spaces and the “snowflaking”
operation. On the other hand, Corollary 5 provides a negative result. It should be
noted that the existence of finite nested metric spaces with no “good” extension
operator for Lipschitz functions is known (see Lemma 10.5 in [BB]). This is obtained
below from Corollary 5 by abstract nonsense. Conversely, it would be interesting
to exhibit spaces failing (AP) from combinatorial considerations on finite metric
spaces.

Proposition 7. For any λ ≥ 1, there exist a finite metric space Hλ and a subset
Gλ of Hλ such that if E : Lip(Gλ) → Lip(Hλ) is a linear operator such that RE =
idLip(Gλ) (where R is the operator of restriction to Gλ), then ‖E‖ ≥ λ.

Proof. Let K be a compact metric space such that F(K) fails AP and let (Gn)n be
an increasing sequence of finite subsets ofK whose union is dense inK. Assume that
Proposition 7 fails for some λ0 ∈ R and thus that extension operators with norm
bounded by λ0 exist for all pairs (G,H) of finite metric spaces with G ⊂ H. For
any given n, we can apply this to (Gn, Gk) with k ≥ n and use a diagonal argument
to get an operator En : Lip(Gn) → Lip(K) with RnEn = idLip(Gn) (where Rn is
the operator of restriction to Gn) and ‖En‖ ≤ λ0. The operator En is conjugate to
a projection from F(K) onto F(Gn), and it follows that F(K) has λ0-BAP (with a
sequence of projections), contradicting our assumption on K. �

Our work leads to a number of natural questions. We conclude this note by
stating some of them. The first one is due to N. J. Kalton (see [Ka3], Problem 1):

Question 1. Let M be an arbitrary uniformly discrete metric space; that is, there
exists θ > 0 such that d(x, y) ≥ θ for all x �= y in M . Does F(M) have the
BAP? Note that AP holds by ([Ka1], Proposition 4.4). Proposition 7 shows that
a simple step-by-step approach could not suffice. A positive answer to Question 1
would imply that every separable Banach space X is approximable; that is, the
identity idX is pointwise limit of an equi-uniformly continuous sequence of maps
with relatively compact range. Note that by ([Ka3], Theorem 4.6) it is indeed so
for X and X∗ when X∗ is separable. On the other hand, a negative answer to
Question 1 would provide an equivalent norm on �1 failing MAP, and this would
solve two classical problems in approximation theory ([Ca], Problems 3.12 and 3.8).

Question 2. Is there a countable compact space K such that F(K) fails (AP)?
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Question 3. Let X be a separable Banach space. Does there exist a compact
convex subset K of X containing 0 such that span[K] = X and moreover K is a
Lipschitz retract of X? Note that when it is so, X has BAP if and only if F(K)
has BAP. The answer to this question is positive when X has an unconditional
basis: indeed if all the coordinates of x ∈ X are strictly positive, the order interval
[−x, x] = K works since truncation by x shows that K is a Lipschitz retract.

Question 4. According to ([GK], Definition 5.2), a separable Banach space X has
λ-Lipschitz BAP if idX is the pointwise limit of a sequence Fn of λ-Lipschitz maps
with finite-dimensional range, and this property is shown in [GK] to be equivalent
with the usual λ-BAP. Is it possible to dispense with the assumption that the Fn’s
have finite-dimensional range and still reach the conclusion? Corollary 5 suggests
that this improvement should not be straightforward.
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