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Abstract: We define the partition and n-point functions for a vertex operator algebra
on a genus two Riemann surface formed by sewing two tori together. We obtain closed
formulas for the genus two partition function for the Heisenberg free bosonic string
and for any pair of simple Heisenberg modules. We prove that the partition function
is holomorphic in the sewing parameters on a given suitable domain and describe its
modular properties for the Heisenberg and lattice vertex operator algebras and a con-
tinuous orbifolding of the rank two fermion vertex operator super algebra. We compute
the genus two Heisenberg vector n-point function and show that the Virasoro vector one
point function satisfies a genus two Ward identity for these theories.
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1. Introduction

One of the most striking features of Vertex Operator Algebras (VOAs) or chiral confor-
mal field theory is the occurrence of elliptic functions and modular forms, manifested

� Supported by the NSF, NSA, and the Committee on Research at the University of California, Santa Cruz.
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in the form of n -point correlation trace functions. This phenomenon has been present
in string theory since the earliest days e.g. [GSW,P]. In mathematics it dates from the
Conway-Norton conjectures [CN] proved by Borcherds ([B1,B2]), and Zhu’s important
paper [Z1]. Physically, we are dealing with probability amplitudes corresponding to a
complex torus (compact Riemann surface of genus one) inflicted with n punctures cor-
responding to local fields (vertex operators). For a VOA V = ⊕Vn , the most familiar
correlation function is the 0-point function, also called the partition function or graded
dimension

Z (1)
V (q) = q−c/24

∑

n

dim Vnqn, (1)

(c is the central charge). An example which motivates much of the present paper is that
of a lattice theory VL associated to a positive-definite even lattice L . Then c is the rank
of L and

Z (1)
VL
(q) = θL(q)

η(q)c
, (2)

for the Dedekind eta function η(q) = q1/24 ∏
n(1 − qn) and θL(q) is the usual theta

function of L . Both θL(q) and η(q)c are (holomorphic) elliptic modular forms of weight
c/2 on a certain congruence subgroup of SL(2,Z), so that ZVL is an elliptic modular
function of weight zero on the same subgroup. It is widely expected that an analogous
result holds for any rational vertex operator algebra, namely that Z (1)

V (q) is a modular
function of weight zero on a congruence subgroup of SL(2,Z).

There are natural physical and mathematical reasons for wanting to extend this picture
to Riemann surfaces of higher genus. In particular, we want to know if there are natural
analogs of (1) and (2) for arbitrary rational vertex operator algebras and arbitrary genus,
in which genus g Siegel modular forms occur. This is considerably more challenging
than the case of genus one. Many, but not all, of the new difficulties that arise are already
present at genus two, and it is this case that we are concerned with in the present paper
and a companion paper [MT4]. Our goal, then, is this: given a vertex operator algebra V ,
to define the partition and n-point correlation function on a compact Riemann surface
of genus two which is associated to V , and study their convergence and automorphic
properties. An overview of aspects of this program is given in the Introduction to [MT2].
Brief discussions of some of our methods and results can also be found in [T,MT3 and
MT6].

The study of genus two (and higher) partition functions and correlation functions has
a long history in conformal field theory e.g. [EO,FS,DP,So1,So2,BK,Kn,GSW,P] and,
indeed, these ideas have heavily influenced our approach. Likewise, in pure mathemat-
ics, other approaches based on algebraic geometry have been been developed to describe
n-point correlation functions but not the partition function e.g. [TUY,KNTY,Z2,U]. Our
approach is constructively based only on the properties of a VOA in the spirit of Zhu’s
genus one theory [Z1] with no a priori assumptions made about the analytic or mod-
ular properties of partition or n-point functions. Rather, in our approach, these genus
two objects are formally defined and are then proved to be analytic and modular in
appropriate domains for the VOAs considered.

In our approach, we define the genus two partition and n-point functions in terms of
genus one data coming from the VOA V . There are two rather different ways to obtain a
compact Riemann surface of genus two from surfaces of genus one - one may sew two
separate tori together, or self-sew a torus (i.e. attach a handle). This is discussed at length
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in [MT2] where we refer to these two schemes as the ε- and ρ -formalism respectively. In
the present paper we concentrate solely on developing a theory of partition and n-point
correlation functions in the ε-formalism. We discuss the corresponding theory in the ρ
-formalism in a companion paper [MT4].

The ε-formalism developed in [MT2] is reviewed in Sect. 2 below. This is concerned
with expressing a differential 2-form ω(2) (the normalized differential of the second
kind) in terms of a pair of infinite matrices Ai , whose entries are quasi-modular forms
associated with the two sewn tori. This allows us to obtain explicit expressions for genus
two holomorphic one forms ν1, ν2 and the period matrix Ω in terms of this genus one
data. In particular, Ω is determined by a holomorphic map

Dε Fε−→ H2, (3)

where for g ≥ 1,Hg denotes the genus g Siegel upper half-space. Then Dε ⊆ H1 ×
H1 × C is the domain consisting of triples (τ1, τ2, ε) which correspond to a pair of
complex tori of modulus τ1, τ2 sewn together by identifying two annular regions via a
sewing parameter ε. This sewing produces a compact Riemann surface of genus two,
which assigns to each point of Dε the period matrix Ω of the sewn surface via the
map Fε .

In Sect. 3 we introduce some graph-theoretic technology which provides a convenient
way of describing ω(2), νi and Ω in terms of the ε-formalism. Similar graphical tech-
niques are employed later on as a means of computing the genus two partition function
and n-point functions for the free bosonic Heisenberg VOA and its modules.

Section 4 is a brief review of some necessary background on VOA theory and the
Li-Zamolodchikov or Li-Z metric. We assume throughout that the Li-Z metric is unique
and invertible (which follows if V is simple [Li]).

Section 5 develops a theory of n-point functions for VOAs on Riemann surfaces of
genus 0, 1 and 2 motivated by ideas in conformal field theory. The Zhu theory [Z1] of
genus one n-point functions is reformulated in this language in terms of the self-sewing
of a Riemann sphere to obtain a torus. We give a formal definition of genus two n-point
functions based on the given sewing formalism. We also emphasize the interpretation of
n-point functions in terms of formal differential forms.

The genus two partition function involves extending (3) to a diagram

Dε Fε−→ H2
↘ ↓

C

where the partition function maps Dε → C, and is defined purely in terms of genus
one data coming from V . Explicitly, the genus two partition function of V is a priori a
formal power series in the variables ε, q1, q2 (where as usual, q = e2π iτ , etc.) given by

Z (2)
V (τ1, τ2, ε) =

∑

n≥0

εn
∑

u∈V[n]
Z (1)

V (u, τ1)Z
(1)
V (ū, τ2). (4)

Here, Z (1)
V (u, τ ) is a genus one 1-point function with ū the Li-Z metric dual of u. The

precise meaning of (4) together with similar definitions for n-point functions, is given
in Sect. 5.

In Sects. 6 and 7 we investigate the case of the free bosonic Heisenberg VOA M and
the expression corresponding to (4) for a pair of simple M-modules. This later case is
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used to analyze lattice VOAs and the bosonized version of the rank two fermion Vertex
Operator Super Algebra. We find in all these cases that (4) is a holomorphic function on
Dε . It is natural to expect that this result holds in much wider generality. Section 6 is
devoted to the Heisenberg VOA M . In this case, holomorphy depends on an interesting
new formula for the genus two partition function. Namely, we prove (Theorem 5) by
reinterpreting (4) in terms of certain graphical expansion, that

Z (2)
M (τ1, τ2, ε) = Z (1)

M (τ1)Z
(1)
M (τ2)

det(I − A1 A2)1/2 . (5)

Here, the Ai are the infinite matrices of Sect. 2 and Z (1)
M (τi ) = 1/η(qi ). The infinite

determinant that occurs in (5) was introduced and discussed at length in [MT2]. The
results obtained there are important here, as are the explicit computations of genus one
1-point functions obtained in [MT1]. We also give in Sect. 6 a product formula for the
infinite determinant (Theorem 6) which depends on the graphical interpretation of the
entries of the Ai .

The domain Dε admits the group G0 = SL(2,Z)× SL(2,Z) as automorphisms (in
fact, there is a larger automorphism group G that contains G0 with index 2). We show
(cf. Theorem 8) that the partition function Z (2)

M (τ1, τ2, ε) is an automorphic form of
weight −1/2 on G. This is a bit imprecise in several ways: we have not explained here
what the automorphy factor is, and in fact this is an interesting point because it depends
on the map Fε . Similarly to the eta-function, there is a 24th root of unity, correspond-
ing to a character of G, that intervenes in the functional equation. These properties of
Z M (τ1, τ2, ε) justify the idea that it should be thought of as the genus two analog of
η(q)−1 in the ε-formalism.

We conclude Sect. 6 by computing, by means of the graphical technique, the genus
two n-point function for n Heisenberg vectors in terms of symmetric tensor products
of the differential 2-form ω(2) in Theorem 10. This allows us to also find the Virasoro
vector 1-point function in terms of the genus two projective connection.

Section 7 is concerned with the genus two n-point function associated with a pair
of Heisenberg simple modules. We obtain a closed formula for the partition function in
Theorem 11 and the Heisenberg vector n-point function in terms of symmetric tensor
products of ω(2) and νi in Theorem 13. We also derive a genus two Ward identity for the
Virasoro vector 1-point function in Proposition 10. We apply these results in Theorem
14 to the case of a lattice VOA VL to find a natural genus two generalization of (2),
namely

Z (2)
VL
(τ1, τ2, ε)

Z (2)
M (τ1, τ2, ε)

= θ
(2)
L (Ω), (6)

where θ
(2)
L (Ω) is the genus two Siegel theta function of the lattice L . Similarly, the

Virasoro 1-point function obeys a Ward identity. Finally, we consider the bosonized
version of a continuous orbifolding of the rank two fermion vertex super algebra to find
the partition function is expressed in terms of the genus two Riemann theta series.

2. Genus Two Riemann Surface from Two Sewn Tori

In this section we review some of the main results of [MT2] relevant to the present
work. We review one of the two separate constructions of a genus two Riemann surface
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discussed there based on a general sewing formalism due to Yamada [Y]. In this con-
struction, which we refer to as the ε-formalism, we parameterize a genus two Riemann
surface by sewing together two once-punctured tori. Then various genus two structures
such as the period matrix Ω can be determined in terms of genus one data. In particular,
Ω is described by an explicit formula which defines a holomorphic map from a specified
domain Dε into the genus two Siegel upper half plane H2. This map is equivariant under
a suitable subgroup of Sp(4,Z). We also review the convergence and holomorphy of an
infinite determinant that naturally arises and which plays a dominant rôle later on.

2.1. Some elliptic function theory. We begin with the definition of various modular and
elliptic functions that permeate this work [MT1,MT2]. We define

P2(τ, z) = ℘(τ, z) + E2(τ )

= 1

z2 +
∞∑

k=2

(k − 1)Ek(τ )z
k−2, (7)

where τ ∈ H1, the complex upper half-plane, and where ℘(τ, z) is the Weierstrass
function and Ek(τ ) is equal to 0 for k odd, and for k even is the Eisenstein series

Ek(τ ) = Ek(q) = − Bk

k! +
2

(k − 1)!
∑

n≥1

σk−1(n)q
n . (8)

Here and below, we take q = exp(2π iτ); σk−1(n) = ∑
d|n dk−1, and Bk is a kth

Bernoulli number e.g. [Se]. If k ≥ 4 then Ek(τ ) is a holomorphic modular form of
weight k on SL(2,Z), whereas E2(τ ) is a quasi-modular form [KZ,MT2]. We define
P1(τ, z) by

P1(τ, z) = 1

z
−
∑

k≥2

Ek(τ )z
k−1. (9)

Noting P2 = − d
dz P1 we define elliptic functions Pk(τ, z) for k ≥ 3,

Pk(τ, z) = (−1)k−1

(k − 1)!
dk−1

dzk−1 P1(τ, z). (10)

Define for k, l ≥ 1,

C(k, l) = C(k, l, τ ) = (−1)k+1 (k + l − 1)!
(k − 1)!(l − 1)! Ek+l(τ ), (11)

D(k, l, z) = D(k, l, τ, z) = (−1)k+1 (k + l − 1)!
(k − 1)!(l − 1)! Pk+l(τ, z). (12)

The Dedekind eta-function is defined by

η(τ) = q1/24
∞∏

n=1

(1 − qn). (13)
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2.2. The ε-formalism for sewing two tori. Consider a compact Riemann surface S of
genus 2 with canonical homology basis a1, a2, b1, b2. There exist two holomorphic
1-forms νi , i = 1, 2 which we may normalize by [FK]

∮

ai

ν j = 2π iδi j . (14)

These forms can also be defined via the unique singular bilinear two form ω(2), known
as the normalized differential of the second kind. It is defined by the following properties
[FK,Y]:

ω(2)(x, y) = (
1

(x − y)2
+ regular terms)dxdy (15)

for any local coordinates x, y, with normalization
∫

ai

ω(2)(x, ·) = 0, (16)

for i = 1, 2. Using the Riemann bilinear relations, one finds that

νi (x) =
∮

bi

ω(2)(x, ·), (17)

with νi normalized as in (14). The genus 2 period matrix Ω is then defined by

Ωi j = 1

2π i

∮

bi

ν j (18)

for i, j = 1, 2. One further finds that Ω ∈ H2, the Siegel upper half plane (Fig. 1).
We now review a general method due to Yamada [Y] and discussed at length in [MT2]

for calculating ω(2)(x, y), νi (x) and Ωi j on the genus two Riemann surface formed by
sewing together two tori Sa for a = 1, 2. We shall sometimes refer to S1 and S2 as
the left and right torus respectively. Consider an oriented torus Sa = C/Λa with lattice
Λa = 2π i(Zτa ⊕ Z) for τa ∈ H1. For local coordinate za ∈ C/Λa consider the closed
disk |za | ≤ ra which is contained in Sa provided ra <

1
2 D(qa), where

D(qa) = min
λ∈Λa ,λ�=0

|λ|,

is the minimal lattice distance. Introduce a complex sewing parameter ε, where |ε| ≤
r1r2 <

1
4 D(q1)D(q2) and excise the disk {za, |za | ≤ |ε|/rā} centered at za = 0 to form

a punctured torus

Ŝa = Sa\{za, |za | ≤ |ε|/rā}, (19)

where we use the convention

1 = 2, 2 = 1. (20)

Defining the annulus

Aa = {za, |ε|/rā ≤ |za | ≤ ra} ⊂ Ŝa, (21)
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Fig. 1. Sewing Two Tori

we identify A1 with A2 via the sewing relation

z1z2 = ε. (22)

The genus two Riemann surface is parameterized by the domain

Dε = {(τ1, τ2, ε) ∈ H1×H1×C | |ε| < 1

4
D(q1)D(q2)}. (23)

We next introduce the infinite dimensional matrix Aa(τa, ε) = (Aa(k, l, τa, ε)) for
k, l ≥ 1, where

Aa(k, l, τa, ε) = ε(k+l)/2

√
kl

C(k, l, τa). (24)

The matrices A1, A2 play a dominant role both here and in our later discussion of the
free bosonic VOA and its modules on a genus two Riemann surface. In particular, the
matrix I − A1 A2 and det(I − A1 A2) (where I denotes the infinite identity matrix) play
an important role where det(I − A1 A2) is defined by

log det(I − A1 A2) = Tr log(I − A1 A2)

= −
∑

n≥1

1

n
Tr((A1 A2)

n). (25)

One finds

Theorem 1. (a) (op. cit., Proposition 1) The infinite matrix

(I − A1 A2)
−1 =

∑

n≥0

(A1 A2)
n, (26)

is convergent for (τ1, τ2, ε) ∈ Dε .
(b) (op. cit., Theorem 2 & Proposition 3) det(I − A1 A2) is non-vanishing and holo-

morphic for (τ1, τ2, ε) ∈ Dε . ��
The bilinear two form ω(2)(x, y), the holomorphic one forms νi (x) and the period

matrix Ωi j are given in terms of the matrices Aa and holomorphic one forms on the
punctured torus Ŝa given by

aa(k, x) = √
kεk/2 Pk+1(τa, x)dx . (27)

Letting aa(x), aT
a (x) denote the infinite row, respectively column vector with elements

(27) we have:
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Theorem 2. (op. cit., Lemma 2, Proposition 1, Theorem 4)

ω(2)(x, y)=
{

P2(τa, x−y)dxdy + aa(x)Aā(I − Aa Aā)
−1aT

a (y), x, y ∈ Ŝa,

−aa(x)(I − Aā Aa)
−1aT

ā (y), x ∈ Ŝa, y ∈ Ŝā .

(28)

��
Applying (17) we then find (op. cit., Theorem 4)

νa(x) =
{

dx + ε1/2(aa(x)Aā(I − Aa Aā)
−1)(1), x ∈ Ŝa,

−ε1/2(aā(x)(I − Aa Aā)
−1)(1), x ∈ Ŝā,

(29)

where (1) refers to the (1)-entry of a vector. Furthermore applying (18) we have

Theorem 3. (op. cit., Theorem 4) The ε-formalism determines a holomorphic map

Fε : Dε → H2,

(τ1, τ2, ε) �→ Ω(τ1, τ2, ε), (30)

where Ω = Ω(τ1, τ2, ε) is given by

2π iΩ11 = 2π iτ1 + ε(A2(I − A1 A2)
−1)(1, 1), (31)

2π iΩ22 = 2π iτ2 + ε(A1(I − A2 A1)
−1)(1, 1), (32)

2π iΩ12 = −ε(I − A1 A2)
−1(1, 1). (33)

Here (1, 1) refers to the (1, 1)-entry of a matrix. ��
Dε is preserved under the action of G � (SL(2,Z) × SL(2,Z)) � Z2, the direct

product of two copies of SL(2,Z) (the left and right torus modular groups) which are
interchanged upon conjugation by an involution β as follows:

γ1.(τ1, τ2, ε) = (
a1τ1 + b1

c1τ1 + d1
, τ2,

ε

c1τ1 + d1
),

γ2.(τ1, τ2, ε) = (τ1,
a2τ2 + b2

c2τ2 + d2
,

ε

c2τ2 + d2
), (34)

β.(τ1, τ2, ε) = (τ2, τ1, ε),

for (γ1, γ2) ∈ SL(2,Z) × SL(2,Z) with γi =
(

ai bi
ci di

)
. There is a natural injection

G → Sp(4,Z) in which the two SL(2,Z) subgroups are mapped to

Γ1 =

⎧
⎪⎨

⎪⎩

⎡

⎢⎣

a1 0 b1 0
0 1 0 0
c1 0 d1 0
0 0 0 1

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
, Γ2 =

⎧
⎪⎨

⎪⎩

⎡

⎢⎣

1 0 0 0
0 a2 0 b2
0 0 1 0
0 c2 0 d2

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
, (35)

and the involution is mapped to

β =
⎡

⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎦. (36)



Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces I 681

Fig. 2. Chequered Cycle

Thus as a subgroup of Sp(4,Z), G also has a natural action on the Siegel upper half

plane H2, where for γ =
(

A B
C D

)
∈ Sp(4,Z),

γ.Ω= (AΩ + B)(CΩ + D)−1. (37)

One then finds

Theorem 4. (op. cit., Theorem 5) Fε is equivariant with respect to the action of G, i.e.
there is a commutative diagram for γ ∈ G,

Dε Fε→ H2
γ ↓ ↓ γ

Dε Fε→ H2

��

3. Graphical Expansions

3.1. Rotationless and Chequered Cycles. We set up some notation and discuss certain
types of labeled graphs. These arise directly from consideration of the terms that appear
in the expressions for ω(2)(x, y), νi (x) and Ωi j reviewed in the last section, and will
later play an important rôle in the analysis of genus two partition functions for vertex
operator algebras.

We introduce the notion of a chequered cycle as a (clockwise) oriented, labeled poly-
gon L with 2n nodes for some integer n ≥ 0, and nodes labeled by arbitrary positive
integers. Moreover, edges carry a label 1 or 2 which alternate as one moves around the
polygon (Fig. 2). A chequered cycle is said to be rotationless when its graph admits no
non-trivial rotations where a rotation is an orientation-preserving automorphism of the
graph which preserves the node labels. (See the Appendix for more details.)

We call a node with label 1 distinguished if its abutting edges are of type
2−→ 1• 1−→.

Set

R = {isomorphism classes of rotationless chequered cycles},
R21 = {isomorphism classes of rotationless chequered cycles

with a distinguished node},
L21 = {isomorphism classes of chequered cycles with a

unique distinguished node}.

(38)
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Fig. 3. Chequered necklace

Let S be a commutative ring and S[t] the polynomial ring with coefficients in S. Let
M1 and M2 be infinite matrices with (k, l)-entries

Ma(k, l) = tk+l sa(k, l) (39)

for a = 1, 2 and k, l ≥ 1, where sa(k, l) ∈ S. Given this data, we define a map, or
weight function,

ζ : {chequered cycles} −→ S[t]

as follows: if L is a chequered cycle then L has edges E labeled as
k• a−→ l•. Then set

ζ(E) = Ma(k, l) and

ζ(L) =
∏

ζ(E), (40)

where the product is taken over all edges of L .
It is useful to also introduce a variation on the theme of chequered cycles namely

oriented chequered necklaces. These are connected graphs with n ≥ 3 nodes, (n − 2) of
which have valency 2 and two of which have valency 1 (these latter are the end nodes)
together with an orientation, say from left to right. There is also a degenerate necklace
N0 with a single node and no edges. As before, nodes are labeled with arbitrary positive
integers and edges are labeled with an index 1 or 2 which alternate along the necklace.
For such a necklace N , we define the weight function ζ(N ) as a product of edge weights
as in (40), with ζ(N0) = 1.

Among all chequered necklaces there is a distinguished set for which both end nodes
are labeled by 1. There are four types of such chequered necklaces, which may be further
distinguished by the labels of the two edges at the extreme left and right. Using the con-
vention (20) we say that the chequered necklace of Fig. 3 is of type ab for a, b ∈ {1, 2},
and set

Nab = {isomorphism classes of oriented chequered

necklaces of type ab}, (41)

ζab =
∑

N∈Nab

ζ(N ). (42)

3.2. Necklace graphical expansions for ω(2), νi and Ωi j . We now apply the formalism
of the previous Subsection to the expressions for ω(2)(x, y), νi (x) and Ωi j in the ε

-formalism reviewed in Sect. 2. We begin with the period matrix Ωi j . Here the ring S
is taken to be the product S1 × S2, where for a = 1, 2, Sa is the ring of quasi-modular
forms C[E2(τa), E4(τa), E6(τa)], and t = ε1/2. The matrices Ma are taken to be the
Aa defined in (24). Thus

sa(k, l) = C(k, l, τa)√
kl

, (43)
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and for the edge E labeled as
k• a−→ l• we have

ζ(E) = Aa(k, l). (44)

Recalling the notation (42), we find

Proposition 1. ([MT2], Prop. 4) For a = 1, 2,

Ωaa = τa +
ε

2π i
ζāā,

Ωaā = − ε

2π i
ζāa . ��

Furthermore, in the notation of Sect. 3.1 we have

Proposition 2.

ζ12 = ζ21 =
∏

L∈R21

(1 − ζ(L))−1. (45)

Beyond the intrinsic interest of this product formula, our main use of it will be to provide
an alternate proof of Theorem 8 below. We therefore relegate the proof of Proposition 13
to the Appendix.

We can similarly obtain necklace graphical expansions for the bilinear formω(2)(x, y)
and the holomorphic one forms νi (x). We introduce further distinguished valence one
nodes labeled by 1, x for x ∈ Ŝa , the punctured torus (19). The set of edges {E} is
augmented by edges with weights defined by:

ζ(
1,x• a−→ 1,y• ) = P2(τa, x − y), x, y ∈ Ŝa,

ζ(
1,x• a−→ k•) = ζ(

k• a−→ 1,x• ) = √
kεk/2 Pk+1(τa, x), x ∈ Ŝa,

(46)

for elliptic functions (10).
Similarly to (41) we consider chequered necklaces where one or both end points are

1, x-type labeled nodes. We thus define for x ∈ Ŝa and y ∈ Ŝb three isomorphism clas-
ses of oriented chequered necklaces denoted N x,1

ab , N 1,y
ab and N x,y

ab with the following
respective configurations

{1,x• a−→ i• . . . j• b−→ 1•}, (47)

{1• a−→ i• . . . j• b−→ 1,y• }, (48)

{1,x• a−→ i• . . . j• b−→ 1,y• }. (49)

Let ζ x,1
ab , ζ 1,y

ab and ζ x,y
ab denote the respective sum of the weights for each class. Compar-

ing to (28) and (29) and applying (17) we find the following graphical expansions for
the bilinear form ω(2)(x, y) and the holomorphic one forms νi (x):

Proposition 3. For a = 1, 2,

ω(2)(x, y) =
{
ζ

x,y
aa dxdy, x, y ∈ Ŝa,

−ζ x,y
aā dxdy, x ∈ Ŝa, y ∈ Ŝā,

(50)

νa(x) =
{
(1 + ε1/2ζ

x,1
aa )dx, x ∈ Ŝa,

−ε1/2ζ
x,1
āa dx, x ∈ Ŝā .

(51)
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4. Vertex Operator Algebras and the Li-Zamolodchikov Metric

4.1. Vertex operator algebras. We review some relevant aspects of vertex operator alge-
bras ([FHL,FLM,Ka,LL,MN,MT6]). A vertex operator algebra (VOA) is a quadruple
(V,Y, 1, ω) consisting of a Z-graded complex vector space V = ⊕

n∈Z
Vn , a linear map

Y : V → (End V )[[z, z−1]], for formal parameter z, and a pair of distinguished vectors
(states): the vacuum 1 ∈ V0, and the conformal vector ω ∈ V2. For each state v ∈ V the
image under the Y map is the vertex operator

Y (v, z) =
∑

n∈Z

v(n)z−n−1, (52)

with modes v(n) ∈ EndV , where Resz=0z−1Y (v, z)1 = v(−1)1 = v. Vertex operators
satisfy the Jacobi identity or equivalently, operator locality or Borcherds’s identity for
the modes (loc. cit.).

The vertex operator for the conformal vector ω is defined as

Y (w, z) =
∑

n∈Z

L(n)z−n−2.

The modes L(n) satisfy the Virasoro algebra of central charge c:

[L(m), L(n)] = (m − n)L(m + n) + (m3 − m)
c

12
δm,−n .

We define the homogeneous space of weight k to be Vk = {v ∈ V |L(0)v = kv}, where
we write wt(v) = k for v in Vk . Then as an operator on V we have

v(n) : Vm → Vm+k−n−1.

In particular, the zero mode o(v) = v(wt(v)− 1) is a linear operator on Vm . A state v is
said to be quasi-primary if L(1)v = 0 and primary if additionally L(2)v = 0.

The subalgebra {L(−1), L(0), L(1)} generates a natural action on vertex operators
associated with SL(2,C) Möbius transformations on z ([B1,DGM,FHL,Ka]). In par-
ticular, we note the inversion z �→ 1/z for which

Y (v, z) �→ Y †(v, z) = Y (ezL(1)(− 1

z2 )
L(0)v,

1

z
). (53)

Y †(v, z) is the adjoint vertex operator [FHL]. Under the dilatation z �→ az we have

Y (v, z) �→ aL(0)Y (v, z)a−L(0) = Y (aL(0)v, az). (54)

We also note ([BPZ,Z2]) that under a general origin-preserving conformal map z �→
w = φ(z),

Y (v, z) �→ Y ((φ′(z))L(0)v, w), (55)

for any primary vector v.
We consider some particular VOAs, namely Heisenberg free boson and lattice VOAs.

Consider an l-dimensional complex vector space (i.e., abelian Lie algebra) H equipped
with a non-degenerate, symmetric, bilinear form ( , ) and a distinguished orthonormal



Free Bosonic Vertex Operator Algebras on Genus Two Riemann Surfaces I 685

basis a1, a2, . . . al . The corresponding affine Lie algebra is the Heisenberg Lie algebra
Ĥ = H ⊗ C[t, t−1] ⊕ Ck with brackets [k, Ĥ] = 0 and

[ai ⊗ tm, a j ⊗ tn] = mδi, jδm,−nk. (56)

Corresponding to an element λ in the dual space H∗ we consider the Fock space defined
by the induced (Verma) module

M (λ) = U (Ĥ)⊗U (H⊗C[t]⊕Ck) C,

where C is the 1-dimensional space annihilated by H ⊗ tC[t] and on which k acts as
the identity and H ⊗ t0 via the character λ; U denotes the universal enveloping algebra.
There is a canonical identification of linear spaces

M (λ) = S(H ⊗ t−1
C[t−1]),

where S denotes the (graded) symmetric algebra. The Heisenberg free boson VOA Ml

corresponds to the case λ = 0. The Fock states

v = a1(−1)e1 .a1(−2)e2 . . . a1(−n)en . . . al(−1) f1 .al(−2) f2 . . . al(−p) f p .1, (57)

for non-negative integers ei , . . . , f j form a basis of Ml with ai (n) ≡ ai ⊗ tn . The vac-
uum 1 is canonically identified with the identity of M0 = C, while the weight 1 subspace
M1 may be naturally identified with H. Ml is a simple VOA of central charge l.

Next we consider the case of a lattice vertex operator algebra VL associated to a
positive-definite even lattice L (cf. [B1,FLM]). Thus L is a free abelian group of rank
l equipped with a positive definite, integral bilinear form ( , ) : L ⊗ L → Z such that
(α, α) is even for α ∈ L . Let H be the space C⊗Z L equipped with the C-linear extension
of ( , ) to H ⊗ H and let Ml be the corresponding Heisenberg VOA. The Fock space of
the lattice theory may be described by the linear space

VL = Ml ⊗ C[L] =
∑

α∈L

Ml ⊗ eα, (58)

where C[L] denotes the group algebra of L with canonical basis eα , α ∈ L . Ml may be
identified with the subspace Ml ⊗ e0 of VL , in which case Ml is a subVOA of VL and
the rightmost equation of (58) then displays the decomposition of VL into irreducible
Ml -modules. VL is a simple VOA of central charge l. Each 1 ⊗ eα ∈ VL is a primary
state of weight 1

2 (α, α) with vertex operator (loc. cit.)

Y (1 ⊗ eα, z) = Y−(1 ⊗ eα, z)Y+(1 ⊗ eα, z)eαzα,

Y±(1 ⊗ eα, z) = exp(∓
∑

n>0

α(±n)

n
z∓n).

(59)

The operators eα ∈ C[L] obey

eαeβ = ε(α, β)eα+β (60)

for 2-cocycle ε(α, β) satisfying ε(α, β)ε(β, α) = (−1)(α,β).
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4.2. The Li-Zamolodchikov metric. A bilinear form 〈 , 〉 : V × V −→C is called invari-
ant in case the following identity holds for all a, b, c ∈ V ([FHL]):

〈Y (a, z)b, c〉 = 〈b,Y †(a, z)c〉, (61)

with Y †(a, z) the adjoint operator (53).

Remark 1. Note that

〈a, b〉 = Resw=0w
−1Resz=0z−1〈Y (a, w)1,Y (b, z)1〉

= Resw=0w
−1Resz=0z−1〈1,Y †(a, w)Y (b, z)1〉

= “〈1,Y (a, z = ∞)Y (b, z = 0)1〉”, (62)

with w = 1/z, following (53). Thus the invariant bilinear form is equivalent to what is
known as the (chiral) Zamolodchikov metric in Conformal Field Theory ([BPZ,P]).

First note that any invariant bilinear form on V is necessarily symmetric by a theorem
of [FHL]. Generally a VOA may have no non-zero invariant bilinear form, even if it is
well-behaved in other ways. Examples where V is rational can be found in [DM]. Results
of Li [Li] guarantee that if V0 is spanned by the vacuum vector 1 then the following
hold: (a) V has at most one nonzero invariant bilinear form up to scalars; (b) if V has
a nonzero invariant bilinear form 〈 , 〉 then the radical Rad〈 , 〉 is the unique maximal
ideal of V , and in particular V is simple if, and only if, 〈 , 〉 is non-degenerate. In this
case, V is self-dual in the sense that V is isomorphic to the contragredient module V ′ as
a V -module. Conversely, if V is a self-dual VOA then it has a nondegenerate invariant
bilinear form. All of the VOAs that occur in this paper satisfy these conditions, i.e.,
they are simple and self-dual with V0 = C1. Then if we normalize so that 〈1, 1〉 = 1
then 〈 , 〉 is unique and nondegenerate. We refer to this particular bilinear form as the
Li-Zamolodchikov metric on V , or LiZ-metric for short.

Remark 2. Uniqueness entails that the LiZ-metric on the tensor product V1 ⊗ V2 of a
pair of simple VOAs satisfying the appropriate conditions is just the tensor product of
the LiZ metrics on V1 and V2.

If a is a homogeneous, quasi-primary state, the component form of (61) reads

〈a(n)b, c〉 = (−1)wt(a)〈b, a(2wt(a)− n − 2)c〉. (63)

In particular, since the conformal vector ω is quasi-primary of weight 2 we may take ω
in place of a in (63) and obtain

〈L(n)b, c〉 = 〈b, L(−n)c〉. (64)

The case n = 0 of (64) shows that the homogeneous spaces Vn, Vm are orthogonal if
n �= m. Taking u = 1 and using a = a(−1)1 in (63) yields

〈a, b〉 = (−1)wt(a)〈1, a(2wt(a)− 1)b〉, (65)

for a quasi-primary, and this affords a practical way to compute the LiZ-metric.
Consider the rank one Heisenberg (free boson) VOA M = M1 generated by a weight

one state a with (a, a) = 1. Then 〈a, a〉 = −〈1, a(1)a(−1)1〉 = −1. Using (56), it is
straightforward to verify that in general the Fock basis consisting of vectors of the form

v = a(−1)e1 . . . a(−p)ep .1, (66)
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for non-negative integers {ei } is orthogonal with respect to the LiZ-metric, and that

〈v, v〉 =
∏

1≤i≤p

(−i)ei ei !. (67)

This result generalizes in an obvious way for a rank l free boson VOA Ml with Fock
basis (57) following Remark 2.

5. Partition and n-Point Functions for Vertex Operator Algebras on a Riemann
Surface

In this section we consider the partition and n-point functions for a VOA on a Riemann
surface of genus zero, one or two. Our definitions are based on sewing schemes for the
given Riemann surface in terms of one or more surfaces of lower genus and are motivated
by ideas in conformal field theory especially [FS,So1,P]. We assume throughout that V
has a non-degenerate LiZ metric 〈 , 〉. Then for any V basis {u(a)}, we may define the
dual basis {ū(a)} with respect to the LiZ metric where

〈u(a), ū(b)〉 = δab. (68)

5.1. Genus zero case. We begin with the definition of the genus zero n-point function
given by:

Z (0)
V (v1, z1; . . . vn, zn) = 〈1,Y (v1, z1) . . . Y (vn, zn)1〉, (69)

for v1, . . . vn ∈ V . In particular, the genus zero partition (or 0-point) function is Z (0)
V =

〈1, 1〉 = 1. The genus zero n-point function is a rational function of z1, . . . zn , which we
refer to as the insertion points, with possible poles at zi = z j , i �= j determined from
the locality of the vertex operators. Thus we may consider z1, . . . zn ∈ C ∪ {∞}, the
Riemann sphere, with Z (0)

V (v1, z1; . . . ; vn, zn) evaluated for |z1| > |z2| > · · · > |zn|
(e.g. [FHL,Z2,GG]). The n-point function has a canonical geometric interpretation for
primary vectors vi of L(0) weight wt(vi ). Then Z (0)

V (v1, z1; . . . ; vn, zn) parameterizes
a global meromorphic differential form on the Riemann sphere,

F (0)
V (v1, . . . vn) = Z (0)

V (v1, z1; . . . ; vn, zn)
∏

1≤i≤n

(dzi )
wt(vi ). (70)

It follows from (55) that F (0)
V is conformally invariant. This is the starting point of vari-

ous algebraic-geometric approaches to n-point functions at higher genera e.g. [TUY,Z2].
However, it is important to note that the n-point function is intrinsically defined by its
meromorphic pole structure in these approaches. Thus the partition or 0-point function
is an undetermined overall normalization factor which is conventionally chosen to be
unity (op. cit.).

It is instructive to consider F (0)
V in the context of a trivial sewing of two Riemann

spheres parameterized by z1 and z2 to form another Riemann sphere as follows. For
ra > 0, a = 1, 2, and a complex parameter ε satisfying |ε| ≤ r1r2, excise the open disks
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|za | < |ε|r−1
ā (recall convention (20)) and identify the annular regions ra ≥ |za | ≥

|ε|r−1
ā via the sewing relation

z1z2 = ε. (71)

Consider Z (0)
V (v1, x1; . . . vn, xn) for quasi-primary vi with r1 ≥ |xi | ≥ |ε|r−1

2 and let
yi = ε/xi . Then for 0 ≤ k ≤ n − 1 we find from (68) that

Y (vk+1, xk+1) . . . Y (vn, xn)1

=
∑

r≥0

∑

u∈Vr

〈ū,Y (vk+1, xk+1) . . . Y (vn, xn)1〉u, (72)

where the inner sum is taken over any basis for Vr . Thus

Z (0)
V (v1, x1; . . . vn, xn)

=
∑

r≥0

∑

u∈Vr

〈1,Y (v1, x1) . . . Y (vk, xk)u〉〈ū,Y (vk+1, xk+1) . . . Y (vn, xn)1〉.

But

〈1,Y (v1, x1) . . . Y (vk, xk)u〉 = Resz1=0z−1
1 Z (0)

V (v1, x1; . . . vk, xk; u, z1),

and

〈ū,Y (vk+1, xk+1) . . . Y (vn, xn)1〉
= 〈1,Y †(vn, xn) . . . Y

†(vk+1, xk+1)ū〉
= 〈1, εL(0)Y †(vn, xn)ε

−L(0) . . . εL(0)Y †(vk+1, xk+1)ε
−L(0)εL(0)ū〉

= εr Resz2=0z−1
2 Z (0)

V (vn, yn; . . . vk+1, yk+1; ū, z2)
∏

k+1≤i≤n

(− ε

x2
i

)wt(vi ).

The last equation holds since for quasiprimary states vi , the Mö bius transformation
x �→ y = ε/x induces

Y (vi , xi ) �→ εL(0)Y †(vi , xi )ε
−L(0) = (− ε

x2
i

)wt(vi )Y (vi , yi ). (73)

Thus we find:

Proposition 4. For homogeneous quasiprimary states vi with the sewing scheme (71),
we have

F (0)
V (v1, . . . , vn)

=
∑

r≥0

εr
∑

u∈Vr

Resz1=0z−1
1 Z (0)

V (v1, x1; . . . vk, xk; u, z1),

Resz2=0z−1
2 Z (0)

V (vn, yn; . . . vk+1, yk+1; ū, z2)
∏

1≤i≤k

(dxi )
wt(vi )

∏

k+1≤i≤n

(dyi )
wt(vi ),

for any k, 0 ≤ k ≤ n − 1, i.e. the RHS is independent of the choice of Riemann sphere
on which the insertion point of each state vi lies. ��
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5.2. Genus one case. We now consider genus one n-point functions defined in terms
of a self-sewing of a Riemann sphere where punctures are located at the origin and the
point at infinity [MT2]. Choose local coordinates z1 = z in the neighborhood of the
origin and z2 = 1/z′ for z′ in the neighborhood of the point at infinity. For a = 1, 2
and ra > 0, identify the annular regions |q|r−1

ā ≤ |za | ≤ ra for complex q satisfying
|q| ≤ r1r2 via the sewing relation z1z2 = q, i.e. z = qz′. Then it is straightforward to
show that the annuli do not intersect for |q| < 1, and that q = exp(2π iτ), where τ is
the torus modular parameter (e.g. [MT2], Prop. 8).

We define the genus one partition function by

Z (1)
V (q) = Z (1)

V (τ )

= q−c/24
∑

n≥0

qn
∑

u∈Vn

Resz2=0z−1
2 Resz1=0z−1

1 〈1,Y †(u, z2)Y (ū, z1)1〉, (74)

where the inner sum is taken over any basis for Vn . The external factor of q−c/24 is
introduced in the usual way to enhance the modular properties of Z (1)

V (q) [Z1]. From
(62) and (68 ) it follows that

Z (1)
V (τ ) =

∑

n≥0

dim Vnqn−c/24 = TrV (q
L(0)−c/24), (75)

the standard graded trace definition.
The genus one n-point function might similarly be defined by

∑

r≥0

qr−c/24
∑

u∈Vr

Resz2=0z−1
2 Resz1=0z−1

1 〈1,Y †(u, z2)Y (v1, x1) . . . Y (vn, xn)Y (ū, z1)1〉

= TrV (Y (v1, x1) . . . Y (vn, xn)q
L(0)−c/24). (76)

However, it is natural to consider the conformal map x = qz ≡ exp(z) in order to describe
the elliptic properties of the n-point function [Z1]. Since from (55), for a primary state
v, Y (v,w) → Y (q L(0)

z v, qz) under this conformal map, we are led to the following
definition of the genus one n-point function (op. cit.):

Z (1)
V (v1, z1; . . . vn, zn; τ)
= TrV (Y (q

L(0)
z1

v1, qz1) . . . Y (q
L(0)
zn

vn, qzn )q
L(0)−c/24), (77)

which agrees with (76) for homogeneous primary states vi . Furthermore, for primary
vi of weight wt(vi ), Z (1)

V parameterizes a global meromorphic differential form on the
torus

F (1)
V (v1, . . . vn; τ) = Z (1)

V (v1, z1; . . . vn, zn; τ)
∏

1≤i≤n

(dzi )
wt(vi ). (78)

Zhu introduced ([Z1]) a second VOA (V,Y [, ], 1, ω̃) which is isomorphic to
(V,Y (, ), 1, ω). It has vertex operators

Y [v, z] =
∑

n∈Z

v[n]z−n−1 = Y (q L(0)
z v, qz − 1), (79)
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and conformal vector ω̃ = ω − c
24 1. Let

Y [ω̃, z] =
∑

n∈Z

L[n]z−n−2, (80)

and write wt[v] = k if L[0]v = kv, V[k] = {v ∈ V |wt[v] = k}. Only primary vectors
are homogeneous with respect to both L(0) and L[0] , in which case wt(v) = wt[v].
Similarly, we define the square bracket LiZ metric 〈 , 〉sq which is invariant with respect
to the square bracket adjoint.

We denote 1-point functions by

Z (1)
V (v, τ ) = Z (1)

V (v, z; τ) = TrV (o(v)q
L(0)−c/24). (81)

(Z (1)
V (v, τ ) is necessarily z independent.) Any n-point function can be expressed in terms

of 1-point functions ([MT1], Lemma 3.1) as follows:

Z (1)
V (v1, z1; . . . vn, zn; τ)
= Z (1)

V (Y [v1, z1] . . . Y [vn−1, zn−1]Y [vn, zn]1, τ ) (82)

= Z (1)
V (Y [v1, z1n] . . . Y [vn−1, zn−1n]vn, τ ), (83)

where zin = zi − zn .
We may consider a trivial sewing of a torus with local coordinate z1 to a Riemann

sphere with local coordinate z2 by identifying the annuli ra ≥ |za | ≥ |ε|r−1
ā via the

sewing relation z1z2 = ε. Consider Z (1)
V (v1, x1; . . . vn, xn) for quasi-primary vi of L[0]

weight wt[vi ], with r1 ≥ |xi | ≥ |ε|r−1
2 , and let yi = ε/xi . Using (82), and employing

the square bracket version of (72) with square bracket LiZ metric 〈 , 〉sq, we have

Z (1)
V (v1, x1; . . . vn, xn; τ)
=
∑

r≥0

∑

u∈V[r ]
Z (1)

V (Y [v1, x1] . . . Y [vk, xk]u; τ)〈ū,Y [vk+1, xk+1] . . . Y [vn, xn]1〉sq,

where the inner sum is taken over any basis {u} of V[r ], and {ū} is the dual basis with
respect to 〈 , 〉sq. Now

Z (1)
V (Y [v1, x1] . . . Y [vk, xk]u; τ) = Resz1=0z−1

1 Z (1)
V (v1, x1; . . . vk, xk; u, z1; τ).

Using the isomorphism between the round and square bracket formalisms, we find as
before that

〈ū,Y [vk+1, xk+1] . . . Y [vn, xn]1〉sq

= εr Resz2=0z−1
2 Z (0)

V (vn, yn; . . . vk+1, yk+1; ū, z2)
∏

k+1≤i≤n

(− ε

x2
i

)wt[vi ].

We thus obtain a natural analogue of Proposition 4:
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Proposition 5. For square bracket homogeneous quasiprimary states vi with the above
sewing scheme, then we have

F (1)
V (v1, . . . , vn; τ)
=
∑

r≥0

εr
∑

u∈V[r ]
Resz1=0z−1

1 Z (1)
V (v1, x1; . . . vk, xk; u, z1; τ),

Resz2=0z−1
2 Z (0)

V (vn, yn; . . . vk+1, yk+1; ū, z2)
∏

1≤i≤k

(dxi )
wt[vi ] ∏

k+1≤i≤n

(dyi )
wt[vi ],

and is independent of k = 0, 1, . . . n − 1, where the inner sum is taken over any basis
{u} for V[r ], {ū} is the dual basis with respect to 〈 , 〉sq. ��

We note that all the above definitions can be naturally extended for any V -module
N with vertex operators YN (v, x), where the trace in (83) is taken over N and o(v) is
replaced by oN (v) the Virasoro level preserving part of YN (v, x).

5.3. Genus two case. Motivated by Proposition 5, we now discuss the formal defini-
tion of the genus two n-point function associated with the genus two ε-sewing scheme
reviewed in Sect. 2.2. Recall that we sew together a pair of punctured tori Ŝa of (19) with
modular parameters τa for a = 1, 2 via the sewing relation (22). We define the genus
two n-point function for v1, . . . vk inserted at x1, . . . , xk ∈ Ŝ1 and vk+1, . . . vn inserted
at yk+1, . . . , yn ∈ Ŝ2 for k = 0, 1, . . . n − 1 by

Z (2)
V (v1, x1; . . . vk, xk |vk+1, yk+1; . . . vn, yn; τ1, τ2, ε)

=
∑

r≥0

εr
∑

u∈V[r ]
Resz1=0z−1

1 Z (1)
V (v1, x1; . . . vk, xk; u, z1; τ1)

· Resz2=0z−1
2 Z (1)

V (vn, yn; . . . vk+1, yk+1; ū, z2; τ2),

=
∑

r≥0

εr
∑

u∈V[r ]
Z (1)

V (Y [v1, x1] . . . Y [vk, xk]u, z1; τ1)

· Z (1)
V (Y [vn, yn] . . . Y [vk+1, yk+1]ū, z2; τ2), (84)

where the inner sum is taken over any basis V[r ] and ū is the dual of u with respect to
〈, 〉sq. The last expression in (84) follows from (83).

Remark 3. Following Remark 2 it is clear that the genus two n-point function on the
tensor product V1 ⊗ V2 of a pair of simple VOAs is just the product of n-point functions
on V1 and V2.

In this paper we mainly concentrate on the genus two partition function (i.e. the
0-point function) given by

Z (2)
V (τ1, τ2, ε) =

∑

n≥0

εn
∑

u∈V[n]
Z (1)

V (u, τ1)Z
(1)
V (ū, τ2). (85)

Some examples of n-point functions will also be computed. A general discussion of
all genus two n-point functions for the Heisenberg VOA and its modules will appear
elsewhere [MT5].
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Clearly the definition of the n-point function (84) depends on the choice of punc-
tured torus on which the insertion points lie. However, by defining an associated formal
differential form, we find the following genus two analogue of Propositions 4 and 5:

Proposition 6. For xi ∈ Ŝ1 and yi ∈ Ŝ2 with xi yi = ε and square bracket homogeneous
quasiprimary states vi , the formal differential form

F (2)
V (v1, . . . , vn; τ1, τ2, ε)

≡ Z (2)
V (v1, x1; . . . vk, xk |vk+1, yk+1; . . . vn, yn; τ1, τ2, ε)

·
∏

1≤i≤k

(dxi )
wt[vi ] ∏

k+1≤i≤n

(dyi )
wt[vi ], (86)

is independent of k = 0, 1, . . . n − 1.

Proof. Consider the left torus contribution in the summand of (84) and expand Y [vk , xk]u
in a square bracket homogeneous basis:

Z (1)
V (Y [v1, x1] . . . Y [vk, xk]u; τ1)

=
∑

s≥0

∑

w∈V[s]
Z (1)

V (Y [v1, x1] . . . Y [vk−1, xk−1]w; τ1)〈w̄,Y [vk, xk]u〉sq.

But for quasi-primary vk and using (73) we find

εr 〈w̄,Y [vk, xk]u〉sq = 〈εL[0]Y †[vk, xk]w̄, u〉sq = εs(− ε

x2
k

)wt[vk ]〈Y [vk, yk]w̄, u〉sq,

where xk yk = ε. Noting that
∑

r≥0

∑

u∈V[r ]
Z (1)

V (Y [vn, yn] . . . Y [vk+1, yk+1]ū; τ2)〈u,Y [vk, yk]w̄〉sq

= Z (1)
V (Y [vn, yn] . . . Y [vk+1, yk+1]Y [vk, yk]w̄; τ2),

we therefore find that

Z (2)
V (v1, x1; . . . vk, xk |vk+1, yk+1; . . . vn, yn; τ1, τ2, ε)

= (− ε

x2
k

)wt[vk ]Z (2)
V (v1, x1; . . . vk−1, xk−1|vk, yk; . . . vn, yn; τ1, τ2, ε).

Hence

Z (2)
V (v1, x1; . . . vk, xk |vk+1, yk+1; . . . vn, yn; τ1, τ2, ε)

·
∏

1≤i≤k

(dxi )
wt[vi ] ∏

k+1≤i≤n

(dyi )
wt[vi ]

= Z (2)
V (v1, x1; . . . vk−1, xk−1|vk, yk; . . . vn, yn; τ1, τ2, ε)

·
∏

1≤i≤k−1

(dxi )
wt[vi ] ∏

k≤i≤n

(dyi )
wt[vi ].

The result follows by repeated application of this identity. ��
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Remark 4. If Z (2)
V (τ1, τ2, ε) is convergent on Dε , we conjecture that for primary states

v1, . . . vn then F (2)
V (v1, . . . , vn; τ1, τ2, ε) is a genus two global meromorphic form with

possible poles only at coincident insertion points.

Finally, note that all the above definitions can be naturally extended for any pair of
V -modules N1, N2, where the left (right) 1-point function in (84) is considered for N1
(respectively N2).

6. The Heisenberg VOA

In this section we compute closed formulas for the genus two partition function for the
rank one Heisenberg VOA M and compute the n-point function for n Heisenberg vectors
and the Virasoro vector 1-point function. We also discuss the modular properties of the
partition function in some detail.

6.1. The genus two partition function Z (2)
M (τ1, τ2, ε). We wish to establish a closed for-

mula for the genus two partition function Z (2)
M (τ1, τ2, ε) of (85) in terms of the infinite

matrices A1, A2 introduced in (24) of Sect. 2. Recalling the definition (25) we have:

Theorem 5. Let M be the vertex operator algebra of one free boson. Then

Z (2)
M (τ1, τ2, ε) = Z (1)

M (τ1)Z
(1)
M (τ2)(det(I − A1 A2))

−1/2, (87)

where Z (1)
M (τ ) = 1/η(τ).

Remark 5. From Remark 3 it follows that the genus two partition function for l free
bosons Ml is just the l th power of (87).

Proof of Theorem. The genus two partition function Z (2)
M (τ1, τ2, ε) of (85) is V basis

independent. We choose the standard Fock vectors (in the square bracket formulation)

v = a[−1]e1 . . . a[−p]ep 1. (88)

Of course, these Fock vectors correspond in a natural 1-1 manner with unrestricted par-
titions, the state v (88) corresponding to a partition λ = {1e1 . . . pep } with |λ| = ∑

i ei
elements of n = ∑

1≤i≤p iei . We sometimes write v = v(λ) to indicate this correspon-
dence. Furthermore, following (67),

v(λ) = (−1)|λ|
⎛

⎝
∏

1≤i≤p

iei ei !
⎞

⎠ v̄(λ).

Thus with this diagonal basis we have

Z (2)
M (τ1, τ2, ε) =

∑

λ={i ei }

(−1)|λ|∏
i i ei ei !ε

∑
iei Z (1)

M (v(λ), τ1)Z
(1)
M (v(λ), τ2). (89)
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Fig. 4. Two complete matchings

As discussed at length in [MT1], the partition λ may be thought of as a labeled set
Φ = Φλ with ei elements labeled i . One of the main results of [MT1] (loc.cit. Corollary 1
and Eq. (53)) is that for even |λ|,

Z (1)
M (v(λ), τ ) = Z (1)

M (τ )
∑

φ∈F(Φλ)

Γ (φ), (90)

with

Γ (φ, τ) = Γ (φ) =
∏

(r,s)

C(r, s, τ ), (91)

for C of (11), whereφ ranges over the elements of F(Φλ) (the fixed-point-free involutions
inΣ(Φλ)) and (r, s) ranges over the orbits of φ onΦλ. If |λ| is odd then Z (1)

M (v(λ), τ ) =
0. With this notation, (89) reads

Z (2)
M (τ1, τ2, ε) = Z (1)

M (τ1)Z
(1)
M (τ2)

∑

λ={i ei }

E(λ)∏
i i ei ei !ε

∑
iei , (92)

where λ ranges over all even |λ| unrestricted partitions and where we have set

E(λ) =
∑

φ,ψ∈F(Φλ)

Γ1(φ)Γ2(ψ), (93)

Γi (φ) = Γ (φ, τi ). (94)

We now analyze the nature of the expression E(λ) more closely. This will lead us to
the connection between Z (2)(τ1, τ2, ε) and the chequered cycles discussed in Sect. 3.1.
The idea is to use the technique employed in the proof of Proposition 4 of [MT1]. If we
fix for a moment a partition λ then a pair of fixed-point-free involutions φ,ψ correspond
(loc.cit.) to a pair of complete matchings μφ,μψ on the labeled set Φλ which we may
represent pictorially as Fig. 4.

Here,μφ is the matching with edges labeled 1,μψ the matching with edges labeled 2,
and where we denote the (labeled) elements of Φλ by {r1, s1, . . . , rb, sb}={s1, t1, . . . ,
sb, tb}. From this data we may create a chequered cycle in a natural way: starting with
some node ofΦλ, apply the involutions φ,ψ successively and repeatedly until the initial
node is reached, using the complete matchings to generate a chequered cycle. The result-
ing chequered cycle corresponds to an orbit of 〈ψφ〉 considered as a cyclic subgroup of
Σ(Φλ). Repeat this process for each such orbit to obtain a chequered diagram D con-
sisting of the union of the chequered cycles corresponding to all of the orbits of 〈ψφ〉 on
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Fig. 5. Chequered diagram

Φλ. To illustrate, for the partition λ = {12.2.32.5} with matchings μφ = (13)(15)(23)
and μψ = (11)(35)(23), the corresponding chequered diagram is shown in Fig. 5

Two chequered diagrams are isomorphic if there is a bijection on the nodes which
preserves edges and labels of nodes and edges. If λ = {1e1 . . . pep }, then Σ(Φλ) acts
on the chequered diagrams which have Φλ as an underlying set of labeled nodes. The
Automorphism subgroup Aut(D), consisting of the elements of Σ(Φλ) which preserves
node labels, is isomorphic to Σe1 ×· · ·×Σep . It induces all isomorphisms among these
chequered diagrams. Of course |Aut(D)| = ∏

1≤i≤p ei !. We have almost established the
first step in the proof of Theorem 5, namely

Proposition 7. We have

Z (2)
M (τ1, τ2, ε) = Z (1)

M (τ1)Z
(1)
M (τ2)

∑

D

γ (D)

|Aut(D)| , (95)

where D ranges over isomorphism classes of chequered configurations and

γ (D) = E(λ)∏
i i ei

ε
∑

iei . (96)

Proposition 7 follows from what we have said together with (92). It is only necessary
to point out that because the label subgroup induces all isomorphisms of chequered dia-
grams, when we sum over isomorphism classes of such diagrams in (92) the term

∏
i ei !

must be replaced by |Aut(D)|. ��
Recalling the weights (40), we define

ζ(D) = ΠEζ(E),

where the product is taken over the edges E of D and ζ(E) is as in (44).

Lemma 1. For all D we have

ζ(D) = γ (D). (97)

Proof. Let D be determined by a partition λ = {1e1 . . . pep } and a pair of involutions
φ,ψ ∈ F(Φλ), and let (a, b), (r, s) range over the orbits of φ resp. ψ on Φλ. Then we
find

E(λ)∏
i i ei

ε
∑

iei =
∏

(a,b) C(a, b, τ1)
∏

(r,s) C(r, s, τ2)∏
i i ei

ε
∑

iei

=
∏

(ab)

ε(a+b)/2

√
ab

C(a, b, τ1)
∏

(rs)

ε(r+s)/2

√
rs

C(r, s, τ2)

=
∏

(ab)

A1(a, b)
∏

(rs)

A2(r, s) = ζ(D).

��
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We may represent a chequered diagram formally as a product

D =
∏

i

Lmi
i (98)

in case D is the disjoint union of unoriented chequered cycles Li with multiplicity
mi . Then Aut(D) is isomorphic to the direct product of the groups Aut(Lmi

i ) of order∣∣Aut(Lmi
i )

∣∣ = |Aut(Li )|mi mi ! so that

|Aut(D)| =
∏

i

|Aut(Lmi
i )|mi !.

Noting that the expression ζ(D) is multiplicative over disjoint unions of diagrams, we
calculate

∑

D

ζ(D)

|Aut(D)| =
∏

L

∑

k≥0

ζ(L)k

|Aut(L)|kk!

=
∏

L

exp

(
ζ(L)

|Aut(L)|
)

= exp

(
∑

L

ζ(L)

|Aut(L)|

)
,

where L ranges over isomorphism classes of unoriented chequered cycles. Now Aut(L)
is either a dihedral group of order 2r or a cyclic group of order r for some r ≥ 1, depend-
ing on whether L admits a reflection symmetry or not. If we now orient our cycles, say
in a clockwise direction, then we can replace the previous sum over L by a sum over the
set of (isomorphism classes of) oriented chequered cycles O to obtain

∑

D

ζ(D)

|Aut(D)| = exp

(
1

2

∑

M∈O

ζ(M)

|Aut(M)|

)
. (99)

Let O2n ⊂ O be denoted the set of oriented chequered cycles with 2n nodes. Then
we have

Lemma 2.

Tr((A1 A2)
n) =

∑

M∈O2n

n

|Aut(M)|ζ(M). (100)

Proof. The contribution A1(i1, i2)A2(i2, i3) . . . A2(i2n, i1) to the left-hand-side of (100)
is equal to the weight ζ(M) for some M ∈ O2n with vertices i1, i2, . . . i2n . Let σ =(

i1 . . . ik . . . i2n
i3 . . . ik+2 . . . i2

)
denote the order n permutation of the indices which generates

rotations of M . Then Aut(M) = 〈σm〉 for some m = n/|Aut(M)|. Now sum over all ik
to compute Tr((A1 A2)

n), noting that for inequivalent M the weight ζ(M) occurs with
multiplicity m. The lemma follows. ��
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We may now complete the proof of Theorem 5. From (99) and (100) we obtain

∑

D

ζ(D)

|Aut(D)| = exp

(
1

2
Tr(

∑

n

1

n
(A1 A2)

n)

)

= exp(−1

2
Tr(log(1 − A1 A2)))

= det(exp(−1

2
(log(1 − A1 A2))))

= (det(1 − A1 A2))
−1/2.

��
We may also obtain a product formula for Z (2)

M (τ1, τ2, ε) as follows. Recalling the
notation (38), for each oriented chequered cycle M , Aut(M) is a cyclic group of order
r for some r ≥ 1. Furthermore it is evident that there is a rotationless chequered cycle
N with ζ(M) = ζ(N )r . Indeed, N may be obtained by taking a suitable consecutive
sequence of n/r nodes of M , where n is the total number of nodes of M . We thus see
that

∑

M∈O

ζ(M)

|Aut(M)| =
∑

N∈R

∑

r≥1

ζ(N )r

r

= −
∑

N∈R
log(1 − ζ(N )).

Then (99) implies

det(1 − A1 A2) =
∏

N∈R
(1 − ζ(N )), (101)

and thus we obtain

Theorem 6. Let M be the vertex operator algebra of one free boson. Then

Z (2)
M (τ1, τ2, ε) = Z (1)

M (τ1)Z
(1)
M (τ2)∏

N∈R(1 − ζ(N ))1/2 . (102)

6.2. Holomorphic and modular invariance properties. In Sect. 2.2 we reviewed the
genus two ε-sewing formalism and introduced the domain Dε parameterizing the genus
two surface. An immediate consequence of Theorem 5 and Theorem 1(b) is the
following:

Theorem 7. Z (2)
M (τ1, τ2, ε) is holomorphic on the domain Dε . ��

We next consider the automorphic properties of the genus two partition function with
respect to the group G reviewed in Sect. 2.2. For two free bosons the genus one partition
function is

Z (1)
M2(τ ) = 1

η(τ)2
. (103)
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Let χ be the character of SL(2,Z) defined by its action on η(τ)−2, i.e.

η(γ τ)−2 = χ(γ )η(τ)−2(cτ + d)−1, (104)

where γ =
(

a b
c d

)
∈ SL(2,Z). Recall (e.g. [Se]) that χ(γ ) is a twelfth root of unity.

For a function f (τ ) on H1, k ∈ Z and γ ∈ SL(2,Z), we define

f (τ )|kγ = f (γ τ) (cτ + d)−k, (105)

so that

Z (1)
M2(τ )|−1γ = χ(γ )Z (1)

M2(τ ). (106)

The genus two partition function for two free bosons is

Z (2)
M2(τ1, τ2, ε) = 1

η(τ1)2η(τ2)2 det(I − A1 A2)
. (107)

Analogously to (105), we define

f (τ1, τ2, ε)|kγ = f (γ (τ1, τ2, ε)) det(CΩ + D)−k . (108)

Here, the action of γ on the right-hand-side is as in (35). We have abused notation by
adopting the following conventions in (108), which we continue to use below:

Ω = Fε(τ1, τ2, ε), γ =
(

A B
C D

)
∈ Sp(4,Z), (109)

where Fε is as in Theorem 3, and γ is identified with an element of Sp(4,Z) via
(35)-(36). Note that (108) defines a right action of G on functions f (τ1, τ2, ε). We will
establish the natural extension of (106) to the genus 2 case. To describe this, introduce
the character χ(2) of G defined by

χ(2)(γ1γ2β
m) = (−1)mχ(γ1γ2), γi ∈ Γi , i = 1, 2,

(notation as in (35), (36)). Thus χ(2) takes values which are twelfth roots of unity, and
we have

Theorem 8. If γ ∈ G then

Z (2)
M2(τ1, τ2, ε)|−1γ = χ(2)(γ )Z (2)

M2(τ1, τ2, ε).

Corollary 1. For the rank 24 Heisenberg VOA M24 we have

Z (2)
M24(τ1, τ2, ε)|−12γ = Z (2)

M24(τ1, τ2, ε),

for γ ∈ G.
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Proof. We will give two different proofs of this result. Using the convention (109), we
have to show that

Z (2)
M2(γ (τ1, τ2, ε)) det(CΩ + D) = χ(2)(γ )Z (2)

M2(τ1, τ2, ε) (110)

for γ ∈ G, and it is enough to do this for a generating set of G. If γ = β then the result
is clear since det(CΩ + D) = χ(2)(β) = −1 and β exchanges τ1 and τ2. So we may
assume that γ = (γ1, γ2) ∈ Γ1 × Γ2.

Our first proof utilizes the determinant formula (87) as follows. For γ1 ∈ Γ1, define
A′

a(k, l, τa, ε) = Aa(k, l, γ1τa,
ε

c1τ1+d1
) following (35). We find from Sect. 4.4 of

[MT2] that

I − A′
1 A′

2 = I − A1 A2 − κΔA2

= (I − κS).(I − A1 A2),

where Δ(k, l) = δk1δl1, κ = − ε
2π i

c1
c1τ1+d1

and S(k, l) = δk1(A2(I − A1 A2)
−1)(1, l).

Since det(I − A1 A2) and det(I − A′
1 A′

2) are convergent on Dε we find

det(I − A′
1 A′

2) = det(I − κS) det(I − A1 A2).

But det(I − κS) = 1 − κS(1, 1) = c1Ω11+d1
c1τ1+d1

which implies (110) for γ1 ∈ Γ1. A similar
proof applies for γ2 ∈ Γ2.

The second proof uses Proposition 2 together with (45), which tell us that

Z (2)
M2(τ1, τ2, ε) = −2π iΩ12

εη(τ1)2η(τ2)2

∏

R′
(1 − ζ(L))−1, (111)

where R′ = R\R21. Now in general a term ζ(L) will not be invariant under the action
of γ . This is because of the presence of quasi-modular terms Aa(1, 1) arising from
E2(τa). But it is clear from (35) and the definition (11) of C(k, l, τ ) together with its
modular-invariance properties that if L ∈ R′ then such terms are absent and ζ(L) is
invariant. So the product term in (111) is invariant under the action of γ .

Next, we see from (35) that the expression εη(τ1)
2η(τ2)

2 is invariant under the action
of γ up to a scalar χ(γ1)χ(γ2) = χ(2)(γ ). This reduces the proof of (110) to showing
that

(γ1, γ2) : Ω12 �→ Ω12 det(CΩ + D)−1,

and this is implicit in (37) upon applying Theorem 4. This completes the second proof
of Theorem 8. ��

Remark 6. An unusual feature of the formulas in Theorem 8 and Corollary 1 is that the
definition of the automorphy factor det(CΩ + D) requires the map Fε : Dε → H2.
Thus although the automorphy factor resembles that of a Siegel modular form on H2,
the partition function is not a function on H2 but rather on Dε .
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6.3. Some genus two n-point functions. In this section we calculate some examples of
genus two n-point functions for the rank one Heisenberg VOA M . A general analysis of
all such functions will appear elsewhere [MT5]. We consider here the examples of the
n-point function for the Heisenberg vector a and the 1-point function for the Virasoro
vector ω̃. We find that the formal differential form (86) associated with the Heisenberg
n-point function is described in terms of the global symmetric two form ω(2) [TUY],
whereas the Virasoro 1-point function is described by the genus two projective connec-
tion [Gu]. These results illustrate the general conjecture made in Remark 4.

We first consider the example of the Heisenberg vector 1-point function where a
is inserted at x on the left torus (say). Since Z (1)

M (Y [a, x]v; τ) = 0 for a Fock vector

v = v(λ) for even |λ| and Z (1)
M (v; τ) = 0 for odd |λ| [MT1] we find from (84) that

Z (2)
M (a, x |τ1, τ2, ε) = 0.

Consider next the 2-point function for two Heisenberg vectors inserted on the left
torus at x1, x2 ∈ Ŝ1 with

Z (2)
M (a, x1; a, x2|τ1, τ2, ε) =

∑

r≥0

εr
∑

v∈M[r ]
Z (1)

M (Y [a, x1]Y [a, x2]v; τ1)Z
(1)
M (v̄; τ2).

(112)

Following (86) of Proposition 6, we consider the associated formal differential form
F (2)(a, a; τ1, τ2, ε) for (112) and find that it is determined by the bilinear form ω(2)

of (15):

Theorem 9. The genus two Heisenberg vector 2-point function is

F (2)
M (a, a; τ1, τ2, ε) = ω(2)Z (2)

M (τ1, τ2, ε). (113)

Proof. The proof proceeds along the same lines as Theorem 5. As before, we let v(λ)
denote a Heisenberg Fock vector (88) determined by an unrestricted partition λ =
{1e1 . . . pep } with label set Φλ. Define a label set for the three vectors a, a, v(λ) given
by Φ = Φ1 ∪ Φ2 ∪ Φ3 for Φ1, Φ2 = {1} and Φ3 = Φλ and let F(Φ) denote the set
of fixed point free involutions on Φ. For φ = . . . (rs) . . . ∈ F(Φ), let Γ1(x1, x2, φ) =∏

(r,s) γ (r, s), where for r ∈ Φi and s ∈ Φ j ,

γ (r, s) =
⎧
⎨

⎩

D(1, 1, x1 − x2, τ1) = P2(τ1, x1 − x2), i = 1; j = 2
D(1, s, xi , τ1) = s Ps+1(τ1, xi ), i = 1, 2; j = 3
C(r, s, τ1), i, j = 3,

(114)

for C, D of (11) and (12). Then following Corollary 1 of [MT1] we find for even |λ| that

Z (1)
M (Y [a, x1]Y [a, x2]v(λ), τ1) = Z (1)

M (τ1)
∑

φ∈F(Φ)

Γ1(x1, x2, φ).

Recalling that F (2)(a, a; τ1, τ2, ε) = Z (2)
M (a, x1; a, x2|τ1, τ2, ε)dx1dx2 we then obtain

the following analogue of (92):

F (2)(a, a; τ1, τ2, ε) = Z (1)
M (τ1)Z

(1)
M (τ2)

∑

λ={i ei }

E(x1, x2, λ)∏
i i ei ei ! ε

∑
iei dx1dx2, (115)
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where

E(x1, x2, λ) =
∑

φ∈F(Φ), ψ∈F(Φλ)

Γ1(x1, x2, φ)Γ2(ψ),

with Γ2(ψ) as before.
The expression (115) can be interpreted as a sum of weights ζ(D) associated with iso-

morphism classes of chequered configurations D where, in this case, each configuration
includes two distinguished valence one nodes of type 1, xi (see Sect. 3.2) corresponding
to the label sets Φ1, Φ2 = {1}. As before, ζ(D) = ∏

E ζ(E) for standard chequered
edges E (44) augmented by the contributions for edges connected to the two valence
one nodes with weights as in (46) (for a = 1). Then we find, as in Proposition 7, that

F (2)(a, a; τ1, τ2, ε) = Z (1)
M (τ1)Z

(1)
M (τ2)

∑

D

ζ(D)∏
i ei !dx1dx2.

Each D can be decomposed into exactly one necklace configuration N of type N x1,x2
11 of

(49) connecting the two distinguished nodes and a standard configuration D̂ of the type
appearing in Subsect. 6.1 so that ζ(D) = ζ(N )ζ(D̂). Furthermore, if λ′ = {1e′

1 . . . pe′
p }

is the subset of λ that labels D̂ then the necklace contribution ζ(N ) occurs with multi-
plicity

∏
i

ei !
e′

i ! = |Aut(D)|
|Aut(D̂)| . It follows that

F (2)(a, a; τ1, τ2, ε) = Z (1)
M (τ1)Z

(1)
M (τ2)

∑

D̂

ζ(D̂)

|Aut(D̂)|
∑

N∈N x1,x2
11

ζ(N )dx1dx2

= Z (2)
M (τ1, τ2, ε)ζ

x1,x2
11 dx1dx2

= Z (2)
M (τ1, τ2, ε)ω

(2)(x1, x2),

using (50) of Proposition 3. Applying Proposition 6, the same two form arises for the
other possible insertions of two Heisenberg vectors. Alternatively, a similar explicit cal-
culation can be carried out in each case leading to the expressions for ω(2) described
by (50). ��

In a similar fashion one can generally show that the n-point function for n
Heisenberg vectors vanishes for n odd and for n even is determined by the global sym-
metric meromorphic n form given by the symmetric (tensor) product

Symnω
(2) =

∑

ψ

∏

(r,s)

ω(2)(xr , xs), (116)

where the sum is taken over the set of fixed point free involutions ψ = . . . (rs) . . . of
the labels {1, . . . , n}. Then one finds

Theorem 10. The genus two Heisenberg vector n-point function is given by the global
symmetric meromorphic n-form

F (2)
M (a, . . . , a; τ1, τ2, ε) = Symnω

(2)Z (2)
M (τ1, τ2, ε). (117)
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Theorem 10 is in agreement with earlier results in [TUY] based on an assumed
analytic structure for the ratio F (2)

M (a, . . . , a; τ1, τ2, ε)/Z (2)
M (τ1, τ2, ε).

Using the associativity property of a VOA, the genus two Heisenberg n -point function
(117) is a generator of all genus two n -point functions for M in an analogous way to that
described for genus one in [MT1]. This will be further developed elsewhere [MT5]. We
illustrate this by computing the 1-point function for the Virasoro vector ω̃ = 1

2 a[−1]a.
This is determined by the genus two projective connection defined by e.g. [Gu]

s(2)(x) = 6 lim
x→y

(
ω(2)(x, y)− dxdy

(x − y)2

)
. (118)

We then find

Proposition 8. The genus two 1-point function for the Virasoro vector ω̃ is

F (2)
M (ω̃; τ1, τ2, ε) = 1

12
s(2)Z (2)

M (τ1, τ2, ε). (119)

Proof. Using the associativity property of a VOA we have [MT1]

Z (1)
M (Y [a, x1]Y [a, x2]v; τ1) = Z (1)

M (Y [Y [a, x1 − x2]a, x2]v; τ1)

= Z (1)
M (v; τ1)

(x1 − x2)2
+ 2Z (1)

M (Y [ω̃, x2]v; τ1) + · · · .
Hence using the Heisenberg 2-point function (112) we find

F (2)(ω; τ1, τ2, ε) = lim
x1→x2

1

2

(
Z (2)

M (a, x1; a, x2|τ1, τ2, ε)− Z (2)
M (τ1, τ2, ε)

(x1 − x2)2

)
dx1dx2

= 1

12
s(2)(x1)Z

(2)
M (τ1, τ2, ε).

��
Notice that F (2)(ω; τ1, τ2, ε) is not a global differential 2-form since s(2)(x) trans-

forms under a general conformal transformation φ(x) ([Gu]) as

s(2)(φ(x)) = s(2)(x)− {φ; x}dx2, (120)

where {φ; x} = φ′′′
φ′ − 3

2

(
φ′′
φ′
)2

is the usual Schwarzian derivative. This property

of the Virasoro 1-point function has previously been discussed many times in the
physics and mathematics literature based on a variety of stronger assumptions e.g.
[EO,TUY,FS,U,Z2].

7. Heisenberg Modules, Lattice VOAs and Theta Series

In this section we generalize the methods of Sect. 6 to compute the genus two partition
function for a pair of Heisenberg modules. We consider the genus two n-point function
for the Heisenberg vector and the Virasoro 1-point function. We apply these results to
obtain closed formulas for the genus two partition function for a lattice VOA VL (in
terms of the genus two Siegel theta function for L) and the ‘twisted’ genus two partition
function for the Z -lattice VOA (in terms of the genus two Riemann theta function with
characters). We finally derive a genus two Ward identity for the Virasoro 1-point function
for these theories.
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7.1. Heisenberg modules. In this section we discuss the genus two partition function
for a pair of simple Heisenberg modules M ⊗ eα1 and M ⊗ eα2 for α1, α2 ∈ C. The
partition function is then

Z (2)
α1,α2

(τ1, τ2, ε) =
∑

n≥0

εn
∑

u∈M[n]
Z (1)

M⊗eα1 (u, τ1)Z
(1)
M⊗eα2 (ū, τ2), (121)

where u ranges over any basis for M[n]. An explicit formula for Z (1)
M⊗eα (u, τ ) was given

in [MT1] (Corollary 3 and Theorem 1). We are going to use these results, together with
graphical techniques similar to those employed for free bosons in Sect. 6 to establish a
closed formula for (121). Letting α.Ω.α = ∑

i, j=1,2 αiΩi jα j , where Ωi j is the genus
two period matrix we find

Theorem 11. We have

Z (2)
α1,α2

(τ1, τ2, ε) = eiπα.Ω.αZ (2)
M (τ1, τ2, ε). (122)

Z (2)
α1,α2(τ1, τ2, ε) is holomorphic on the domain Dε .

Remark 7. This is a natural generalization of the genus one partition function relation
Z (1)

M⊗eα (τ ) = qα
2/2 Z (1)

M (τ ).

Proof. Consider the Fock basis vectors v = v(λ) (cf. (88)) identified with partitions
λ = {i ei } as in Sect. 6. Recall that λ defines a labeled set Φλ with ei nodes labeled i . It
is useful to re-state Corollary 3 of [MT1] in the following form:

Z (1)
M⊗eα (v, τ ) = Z (1)

M (τ )qα
2/2

∑

φ

Γλ,α(φ). (123)

Here, φ ranges over the set of involutions

Inv1(Φλ) = {φ ∈ Inv(Φλ)| p ∈ Fix(φ) ⇒ p has label 1}. (124)

In words, φ is an involution in the symmetric group Σ(Φλ) such that all fixed-points of
φ carry the label 1. Note that this includes the fixed-point-free involutions, which were
the only involutions which played a role in the case of free bosons. The main differ-
ence between the free bosonic VOA and its modules is the need to include additional
involutions in the latter case. In particular, we note that permutations with |λ| odd can
contribute in this case for λ = {i ei } with e1 odd. Finally,

Γλ,α(φ, τ ) = Γλ,α(φ) =
∏

Ξ

Γ (Ξ), (125)

where Ξ ranges over the orbits (of length ≤ 2) of φ acting on Φλ and

Γ (Ξ) =
{

C(r, s, τ ), if Ξ = {r, s},
α, if Ξ = {1}. (126)

From (143)-(125) we get

Z (2)
α1,α2

(τ1, τ2, ε)

= Z (1)
M (τ1)Z

(1)
M (τ2)

∑

λ={i ei }

(−1)|λ|Eα1,α2(λ)∏
i i ei ei ! q

α2
1/2

1 q
α2

2/2
2 ε

∑
iei , (127)
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where

Eα1,α2(λ) =
∑

φ,ψ∈Inv1(Φλ)

Γλ,α1(φ, τ1)Γλ,α2(ψ, τ2). (128)

(Compare with Eqs. (92)–(93).)
Now we follow the proof of Proposition 7 to obtain an expression analogous to (95),

namely

Z (2)
α1,α2

(τ1, τ2, ε) = Z (1)
M (τ1)Z

(1)
M (τ2)

∑

D

γ 0
α1,α2

(D)

|Aut(D)| q
α2

1/2
1 q

α2
2/2

2 , (129)

the meaning of which we now enlarge upon. Compared to (95), the chequered diagrams
D which occur in (129) are more general than before, in that they reflect the fact that the
relevant involutions may now have fixed-points. Thus D is the union of its connected
(as yet unoriented) components which are either chequered cycles as before or else che-
quered necklaces (see Sect. 3.2 ). Necklaces arise from orbits of the group 〈ψφ〉 on Φλ

in which one of the nodes in the orbit is a fixed-point of φ or ψ . In that case the orbit
will generally contain two such nodes which comprise the end nodes of the necklace.
Note that these end nodes necessarily carry the label 1 (cf. (124)). There is degeneracy
when both φ and ψ fix the node, in which case the degenerate necklace is obtained.

Similarly to (96), the term γ 0
α1,α2

(D) in (129) is given by

γ 0
α1,α2

(D) = (−1)|λ|
∏

Ξ1
Γ (Ξ1)

∏
Ξ2
Γ (Ξ2)∏

i i ei
ε
∑

iei , (130)

where Ξ1, Ξ2 range over the orbits of φ,ψ respectively on Φλ. As usual the summands
in (129) are multiplicative over connected components of the chequered diagram. This
applies, in particular, to the chequered cycles which occur, and these are independent of
the lattice elements. As a result, (129) factors as a product of two expressions, the first
a sum over diagrams consisting only of chequered cycles and the second a sum over
diagrams consisting only of chequered necklaces. However, the first expression corre-
sponds precisely to the genus two partition function for the free boson (Proposition 7).
We thus obtain

Z (2)
α1,α2(τ1, τ2, ε)

Z (2)
M (τ1, τ2, ε)

=
∑

DN

γ 0
α1,α2

(DN )

|Aut(DN )| q
α2

1/2
1 q

α2
2/2

2 , (131)

where here DN ranges over all chequered diagrams all of whose connected components
are chequered necklaces. So Theorem 11 is reduced to establishing

Proposition 9. We have

eiπα.Ω.α =
∑

DN

γ 0
α1,α2

(DN )

|Aut(DN )| q
α2

1/2
1 q

α2
2/2

2 . (132)

We may apply the argument of (98) et. seq. to the inner sum in (132) to write it as an
exponential expression

exp{iπ(α2
1τ1 + α2

2τ2) +
∑

N

γ 0
α1,α2

(N )

|Aut(N )| }, (133)

where N ranges over all unoriented chequered necklaces.
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Recall the isomorphism class Nab of oriented chequered necklaces of type ab as
displayed in Fig. 3 of Sect. 3.2. Then (133) can be written as

exp{iπ(α2
1τ1 + α2

2τ2) +
1

2

∑

a,b∈{1,2}

∑

Nab

γ 0
α1,α2

(Nab)}, (134)

where here N ranges over oriented chequered necklaces of type ab.
From (126) and (130) we see that the contribution of the end nodes to γ 0

α1,α2
(N ) is

equal to εαāαb̄ for a type ab necklace. The remaining edge factors of γ 0
α1,α2

(N ) have
product γ (N ) = ζ(N ) by Lemma 1. Finally, necklaces of type 11 and 22 arise from
Fock vectors with an even number |λ| of permutation symbols whereas necklaces of
type 12 and 21 arise from Fock vectors for odd |λ| leading to a further −1 contribution
in (130) in these cases. Overall we find that

∑

Nab

γ 0
α1,α2

(Nab) = (−1)a+bεαāαb̄ζab,

recalling ζab = ∑
N∈Nab

ζ(N ). Hence (134) may be re-expressed as

exp{α
2
1

2
(2π iτ1 + εζ22) +

α2
2

2
(2π iτ2 + εζ11)− α1α2εζ21}, (135)

where ζ12 = ζ21. Expression (135) reproduces (145) on applying Proposition 1.
Finally we note from Theorems 3 and 7 that Z (2)

α1,α2(τ1, τ2, ε) is holomorphic on the
domain Dε . This completes the proof of Theorem 11. ��

7.2. Some genus two n-point functions. In this section we consider the genus two
n-point functions for the Heisenberg vector a and the 1-point function for the Viras-
oro vector ω̃ for a pair of Heisenberg modules M ⊗ eαi . We again express each n-point
function in terms of the associated formal differential form following (86) of Proposi-
tion 6. The results generalize those of Sect. 6.3. They are established by making use of
similar methods, so that detailed proofs will not be given.

We first consider the example of the Heisenberg vector a inserted on the left torus
(say). Then F (2)

α1,α2(a; τ1, τ2, ε) = Z (2)
α1,α2(a, x1|τ1, τ2, ε)dx1 is the corresponding dif-

ferential form. Defining να = α1ν1 + α2ν2, for holomorphic 1-forms νi , we find

Theorem 12. The Heisenberg vector 1-point function for a pair of modules M⊗eα1 , M⊗
eα2 is

F (2)
α1,α2

(a; τ1, τ2, ε) = ναZ (2)
α1,α2

(τ1, τ2, ε). (136)

Proof. The proof proceeds along the same lines as Theorems 9 and 11. We find that

F (2)
α1,α2

(a; τ1, τ2, ε) = Z (1)
M (τ1)Z

(1)
M (τ2)

∑

D

ζ(D)∏
i ei !dx1,

where the sum is taken over isomorphism classes of chequered configurations D where,
in this case, each configuration includes one distinguished valence one node of type
1, x1. Each D can be decomposed into exactly one necklace configuration of type N x1,1

11
of (47), standard configurations of the type appearing in Theorem 5 and necklace con-
tributions of type Nab of (41) as in Theorem 11. The result then follows on applying the
graphical expansion for νi (x1) of (51). ��
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In a similar fashion one can generalize Theorem 10 concerning the n-point function
for n Heisenberg vectors. This is determined by the global symmetric meromorphic n
form given by a symmetric (tensor) product of να and ω(2) defined by

Symn

(
ω(2), να

)
=
∑

ψ

∏

(r,s)

ω(2)(xr , xs)
∏

(t)

να(xt ), (137)

where the sum is taken over the set of involutions ψ = . . . (rs) . . . (t) . . . of the labels
{1, . . . , n}. Then one finds

Theorem 13. The genus two Heisenberg vector n-point function for a pair of modules
M ⊗ eα1 , M ⊗ eα2 is given by the global symmetric meromorphic n-form

F (2)
α1,α2

(a, . . . , a; τ1, τ2, ε) = Symn

(
ω(2), να

)
Z (2)
α1,α2

. (138)

Theorem 13 is a natural generalization of Corollary 4 of [MT1] concerning genus
one n-point functions for a Heisenberg module.

Similarly to Proposition 8 it follows that

Proposition 10. The genus two 1-point function for a pair of modules M ⊗eα1 , M ⊗eα2

for the Virasoro vector ω̃ is

F (2)
α1,α2

(ω̃; τ1, τ2, ε) =
(

1

2
ν2
α +

1

12
s(2)

)
Z (2)
α1,α2

(τ1, τ2, ε). (139)

Finally, let us introduce the differential operator [Fa,U]

D = 1

2π i

∑

1≤i≤ j≤2

νiν j
∂

∂Ωi j
. (140)

D maps differentiable functions on H2 to the space of holomorphic 2-forms (spanned
by ν2

1 , ν
2
2 , ν1ν2) and is Sp(4,Z) invariant. It follows from Theorem 11 that (139) can be

rewritten as a Ward identity

F (2)
α1,α2

(ω̃; τ1, τ2, ε) = Z (2)
M (τ1, τ2, ε)

(
D +

1

12
s(2)

)
eiπα.Ω.α. (141)

Remark 8. In theoretical physics, a conformal Ward identity is an identity between differ-
ent correlation functions following from conformal invariance e.g. [EO,DFMS]. Thus
in (141) the Virasoro 1-point function is related to the normalized partition function
Z (2)
α1,α2/Z (2)

M = eiπα.Ω.α .

7.3. Lattice VOAs. Let L be an even lattice of dimension l with VL the corresponding
lattice VOA. The underlying Fock space is

VL = Ml ⊗ C[L] = ⊕α∈L Ml ⊗ eα, (142)

where Ml is the corresponding rank l Heisenberg free boson theory. We follow Sect. 4.1
and [MT1] concerning further notation for lattice theories.
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The general shape of Z (2)
VL
(τ1, τ2, ε) is as in (85). Note that the modes of a state u ⊗eα

map Ml ⊗ eβ to Ml ⊗ eα+β . Thus if α �= 0 then Z (1)
VL
(u ⊗ eα, τ ) vanishes, and as a result

we see that

Z (2)
VL
(τ1, τ2, ε) =

∑

n≥0

εn
∑

u∈Ml[n]

Z (1)
VL
(u, τ1)Z

(1)
VL
(ū, τ2)

=
∑

α,β∈L

∑

n≥0

εn
∑

u∈Ml[n]

Z (1)
Ml⊗eα

(u, τ1)Z
(1)
Ml⊗eβ

(ū, τ2). (143)

Here, u ranges over any basis for Ml[n]. Viewing Ml ⊗ eα as a simple module for Ml we
may employ Theorem 11 for each component to obtain

Theorem 14. We have

Z (2)
VL
(τ1, τ2, ε) = Z (2)

Ml (τ1, τ2, ε)θ
(2)
L (Ω), (144)

where θ(2)L (Ω) is the (genus two) Siegel theta function associated to L (e.g. [Fr])

θ
(2)
L (Ω) =

∑

α,β∈L

exp(π i((α, α)Ω11 + 2(α, β)Ω12 + (β, β)Ω22)). (145)

We can similarly compute n-point functions for n Heisenberg vectors a1, . . . al using
Theorem 13. We can also employ Proposition 10 and the Ward identity (141) to obtain
the 1-point function for the Virasoro vector ω̃ = 1

2

∑
i ai [−1]ai as follows:

Proposition 11. The Virasoro 1-point function for a lattice VOA satisfies a genus two
Ward identity

F (2)
VL
(ω̃; τ1, τ2, ε) = Z (2)

Ml (τ1, τ2, ε)

(
D +

l

12
s(2)

)
θ
(2)
L (Ω). (146)

The Ward identity (146) is reminiscent of some earlier results in physics and mathemat-
ics, e.g. [EO,KNTY].

We briefly discuss the holomorphic and automorphic properties of Z (2)
VL
(τ1, τ2, ε) and

F (2)
L (ω̃; τ1, τ2, ε). There is more that one can say here, but a fuller discussion must wait

for another time [MT5]. The function θ(2)L (Ω) is a Siegel modular form of weight l/2
([Fr]) for some subgroup of Sp(4,Z), in particular it is holomorphic on the Siegel upper
half-space H2. From Theorems 3, 7 and 14, we deduce

Theorem 15. Z (2)
VL
(τ1, τ2, ε) is holomorphic on the domain Dε . ��

We can obtain the automorphic properties of Z (2)
VL
(τ1, τ2, ε) in the same way using

that for θ(2)L (Ω) together with Theorem 8. Rather than do this explicitly, let us introduce
a variation of the partition function, namely the normalized partition function

Ẑ (2)
VL
(τ1, τ2, ε) = Z (2)

VL
(τ1, τ2, ε)

Z (2)
Ml (τ1, τ2, ε)

. (147)
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Bearing in mind the convention (109), what (144) says is that there is a commuting
diagram of holomorphic maps

Dε Fε−→ H2

Ẑ (2)
VL

↘ ↙ θ
(2)
L

C

. (148)

Furthermore, the G-actions on the two functions in question are compatible. More
precisely, if γ ∈ G then we have

Ẑ (2)
VL
(τ1, τ2, ε)|l/2 γ = Ẑ (2)

VL
(γ (τ1, τ2, ε)) det(CΩ + D)−l/2

= θ
(2)
L (Fε(γ (τ1, τ2, ε))) det(CΩ + D)−l/2 (from (148))

= θ
(2)
L (γ (Fε(τ1, τ2, ε))) det(CΩ + D)−l/2 (from Theorem 4)

= θ
(2)
L (γΩ) det(CΩ + D)−l/2 (from (109))

= θ
(2)
L (Ω)|l/2 γ. (149)

For example, if the lattice L is unimodular as well as even then θ
(2)
L is a Siegel

modular form of weight l/2 on the full group Sp(4,Z). Then (149) informs us that

Ẑ (2)
VL
(τ1, τ2, ε)|l/2γ = Ẑ (2)

VL
(τ1, τ2, ε), γ ∈ G,

i.e. Ẑ (2)
VL
(τ1, τ2, ε) is automorphic of weight l/2 with respect to the group G.

Similar remarks may be made about the normalized Virasoro 1-point function defined
by

F̂ (2)
VL
(ω̃; τ1, τ2, ε) = F (2)

VL
(ω̃; τ1, τ2, ε)

Z (2)
Ml (τ1, τ2, ε)

, (150)

which obeys the Ward identity

F̂ (2)
VL
(ω̃; τ1, τ2, ε) =

(
D +

l

12
s(2)

)
Ẑ (2)

VL
(τ1, τ2, ε). (151)

Using the modular transformation properties of the projective connection (e.g. [Fa,U])
one finds that (151) enjoys the same modular properties as Ẑ (2)

VL
(τ1, τ2, ε) i.e.

Proposition 12. The normalized Virasoro 1-point function for a lattice VOA obeys

F̂ (2)
VL
(ω̃; τ1, τ2, ε)|l/2γ =

(
D +

l

12
s(2)

)(
Ẑ (2)

VL
(τ1, τ2, ε)|l/2γ

)
, (152)

for γ ∈ G.
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7.4. Rank two fermion vertex super algebra and the genus two riemann theta series.
As a last application of Theorem 11, we briefly consider the rank two fermion Vertex
Operator Super Algebra (VOSA) V = V (H, + 1

2 )
2. V can be decomposed in terms

of a Heisenberg subVOA generated by a Heisenberg state a and irreducible modules
M ⊗ em for m ∈ Z e.g. [Ka]. One can construct orbifold n-point functions for a pair
g, h of commuting V automorphisms generated by a(0) [MTZ]. In particular, consider
the 1-point function (which is non-vanishing only for u ∈ M) for a g-twisted sector for
g = e−2π iλa(0) together with an automorphism h = e2π iμa(0) (for real λ,μ ) which can
be expressed as (op. cit.)

Z (1)
V ((g, h); u, τ ) = TrV (ho(u)q L(0)+λ2/2+λa(0)−1/24)

=
∑

m∈Z

e2π imμTrM⊗em+λ(o(u)q L(0)−1/24), (153)

utilizing the Heisenberg decomposition. In particular, the orbifold partition function is
expressed in terms of the Jacobi theta series

Z (1)
V ((g, h); τ) = e−2π iλμ

η(τ)
ϑ

[
λ

μ

]
(τ ),

ϑ

[
λ

μ

]
(τ ) =

∑

m∈Z

eiπ(m+λ)2τ+2π i(m+λ)μ.

(154)

Similarly to (121), it is natural to define the genus two orbifold partition function for
a pair of gi -twisted sectors together with commuting automorphisms hi parameterized
by λi , μi for i = 1, 2 with

Z (2)
V ((gi , hi ); τ1, τ2, ε) =

∑

n≥0

εn
∑

u∈M[n]
Z (1)

V ((g1, h1); u, τ1)Z
(1)
V ((g2, h2); ū, τ2),

(155)

where u ranges over any basis for M[n]. A more detailed description of this and an
alternative fermionic VOSA approach to this will be described elsewhere [TZ]. Here we
decompose the genus one 1-point functions of (155) in terms of Heisenberg modules
M ⊗ emi +λi to find, in the notation of (121), that

Z (2)
V ((gi , hi ); τ1, τ2, ε) =

∑

m∈Z2

e2π im.μZ (2)
m1+λ1,m2+λ2

(τ1, τ2, ε), (156)

where here λ = (λ1, λ2), μ = (μ1, μ2) ∈ R
2 and m = (m1,m2) ∈ Z

2. Theorem 11
implies

Theorem 16. We have

Z (2)
V ((gi , hi ); τ1, τ2, ε) = e−2π iλ.μZ (2)

M (τ1, τ2, ε)θ
(2)

[
λ

μ

]
(Ω), (157)

for genus two Riemann theta function (e.g. [Mu])

θ(2)
[
λ

μ

]
(Ω) =

∑

m∈Z2

eiπ(m+λ).Ω.(m+λ)+2π i(m+λ).μ. (158)

As already described for lattice VOAs, one can similarly obtain a Ward identity for
the Virasoro 1-point function analogous to (146) and (151) and analyze the modular
properties of (157) and the Virasoro 1-point function under the action of G.
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8. Appendix - A Product Formula

Here we continue the discussion initiated in Subsect. 3.1, with a view to proving Propo-
sition 2. Consider a set of independent (non-commuting) variables xi indexed by the ele-
ments of a finite set I = {1, . . . , N }. The set of all distinct monomials xi1 . . . xin (n ≥ 0)
may be considered as a basis for the tensor algebra associated with an N dimensional
vector space. Call n the degree of the monomial xi1 . . . xin .

Let ρ = ρn be the standard cyclic permutation which acts on monomials of degree
n via ρ : xi1 . . . xin �→ xin xi1 . . . xin−1 . The rotation group of a given monomial x =
xi1 . . . xin is the subgroup of 〈ρn〉 that leaves x invariant. Call x rotationless in case its
rotation group is trivial. Let us say that two monomials x, y of degree n are equivalent in
case y = ρr

n(x) for some r ∈ Z , and denote the corresponding equivalence class by (x).
We call these cycles. Note that equivalent monomials have the same rotation group, so
we may meaningfully refer to the rotation group of a cycle. In particular, a rotationless
cycle is a cycle whose representative monomials are themselves rotationless. Let Cn be
the set of inequivalent cycles of degree n.

It is convenient to identify a cycle (xi1 . . . xin ) with a cyclic labeled graph, that is,
a graph with n vertices labeled xi1 , . . . , xin and with edges xi1 xi2 , . . . , xin xi1 . We will
sometimes afflict the graph with one of the two possible orientations.

Let M(I ) be the (multiplicative semigroup generated by) the rotationless cycles in
the symbols xi , i ∈ I . There is an injection

ι :
⋃

n≥0

Cn −→ M(I ) (159)

defined as follows. If (x) ∈ Cn has rotation group of order r then r |n and there is a ro-
tationless monomial y such that x = yr . We then map (x) �→ (y)r . It is readily verified
that this is well-defined. In this way, each cycle is mapped to a power of a rotationless
cycle in M(I ). A typical element of M(I ) is uniquely expressible in the form

p f1
1 p f2

2 . . . p fk
k , (160)

where p1, . . . , pk are distinct rotationless cycles and f1, . . . , fk are non-negative inte-
gers. We call (160) the reduced form of an element in M(I ). A general element of M(I )
is then essentially a labeled graph, each of whose connected components are rotationless
labeled cycles as discussed in Subsect. 3.1.

Now consider a second finite set T together with a map

F : T −→ I. (161)

Thus elements of I label elements of T via the map F . F induces a natural map

F : Σ(T ) −→ M(I )

from the symmetric group Σ(T ) as follows. For an element τ ∈ Σ(T ), write τ as a
product of disjoint cycles τ = σ1.σ2 . . .. We set F(τ ) = F(σ1)F(σ2) . . ., so it suffices
to define F(σ ) for a cycle σ = (s1s2 . . .) with s1, s2, . . . ∈ T . In this case we set

F(σ ) = ι((xF(s1)xF(s2) . . .)),

where ι is as in (159). When written in the form (160), we call F(τ ) the reduced F-form
of τ .
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For i ∈ I , let si = |F−1(i)| be the number of elements in T with label i . So the
number of elements in T is equal to

∑
i∈I si . We say that two elements τ1, τ2 ∈ Σ(T )

are F-equivalent if they have the same reduced F-form, i.e. F(τ1) = F(τ2). We will
show that each equivalence class contains the same number of elements. Precisely,

Lemma 3. Each F-equivalence class contains precisely
∏

i∈I si elements. In particular,
the number of F-equivalence classes is |T |!/∏i∈I si .

Proof. An element τ ∈ Σ(T ) may be represented uniquely as
(

0 1 · · · M
τ(0) τ (1) · · · τ(M)

)

so that

F(τ ) =
(

F(0) F(1) · · · F(M)

F(τ (0)) F(τ (1)) · · · F(τ (M))

)

with an obvious notation. Exactly si of the τ( j) satisfy

F(τ ( j)) = xi

so that there are
∏

i∈I si choices of τ which have a given image under F . The lemma
follows. ��

The next results employs notation introduced in Subsects. 3.1 and 3.2.

Lemma 4. We have

(I − M1 M2)
−1(1, 1) = (1 −

∑

L∈L21

ζ(L))−1. (162)

As before, the left-hand-side of (162) means
∑

n≥0(M1 M2)
n(1, 1). It is a certain power

series with entries being quasi-modular forms.

Proof of Lemma. We have

(M1 M2)
n(1, 1) =

∑
M1(1, k1)M2(k1, k2) . . . M2(k2n−1, 1), (163)

where the sum ranges over all choices of positive integers k1, . . . , k2n−1. Such a choice
corresponds to a (isomorphism class of) chequered cycle L with 2n nodes and with at
least one distinguished node, so that the left-hand-side of (162) is equal to

∑

L

ζ(L)

summed over all such L . We can formally write L as a product L = L1L2 . . . L p,where
each Li ∈ L21. This indicates that L has p distinguished nodes and that the Li are the
edges of L between consecutive distinguished nodes, which can be naturally thought of
as chequered cycles in L21. Note that in the representation of L as such a product, the
Li do not commute unless they are equal, moreover ζ is multiplicative. Then

(I − M1 M2)
−1(1, 1) =

∑

Li ∈L21

ζ(L1 . . . L p) = (1 −
∑

L∈L21

ζ(L))−1,

as required. ��
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Proposition 13. We have

(I − M1 M2)
−1(1, 1) =

∏

L∈R21

(1 − ζ(L))−1. (164)

Proof. By Lemma 4 we have

(I − M1 M2)
−1(1, 1) =

∑
m(e1, . . . , ek)ζ(L1)

e1 . . . ζ(Lk)
ek , (165)

where the sum ranges over distinct elements L1, . . . Lk of L21 and all k-tuples of non-
negative integers e1, . . . , ek , and where the multiplicity is

m(e1, . . . , ek) = (
∑

i ei )!∏
i (ei !) .

Let S be the set consisting of ei copies of Li , 1 ≤ i ≤ k, let I be the integers between 1
and k, and let F : S −→ I be the obvious labelling map. A reduced F-form is then an
element of M(I ), where the variables xi are now the Li . The free generators of M(I ),
i.e. rotationless cycles in the xi , are naturally identified precisely with the elements of
R21 , and Lemma 3 implies that each element of M(I ) corresponds to just one term
under the summation in (165). Equation (164) follows immediately from this and the
multiplicativity of ζ , and the proposition is proved. ��
Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial
License which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited.
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