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Free Boundaries and Finite Elements

in One Dimension

By William W. Hager and Gilbert Strang*

Abstract. Two problems in control theory, one with state constraints and the other with

control constraints, have been approximated by the finite element method. This discre-

tization has been applied to both the primal and the dual formulation, in order to make

a number of observations and comparisons:

1. The rate of convergence as the grid interval h is decreased, for polynomial ele-

ments of different degrees.

2. The presence or absence of a boundary layer in the error, concentrated at the

"contact points" where the constraints change between binding and nonbinding.

3. The advantages of simpler constraints in the dual formulation, and the disadvan-

tages of replacing strict convexity by ordinary convexity.

4. The numerical efficiency of each possible variation in achieving an approximate

solution of reasonable accuracy.

We concluded that in our model problems, linear elements and the dual method

provide the most efficient combination.

1. Introduction. Apparently no one is sure of the best way to approximate a con-

tinuous problem in quadratic programming.   We decided to experiment with the finite

element method, and to start with one-dimensional problems, even though this is not

the setting in which finite elements have become famous.  They are not regarded as op-

timal for two-point boundary value problems, and very probably this is still true when

there are inequality constraints, although these constraints so alter the problem that all

the accepted opinions (including also the arguments favorable to finite elements) have

to be reconsidered.

We have chosen two special cases of the following quadratic problem in control

theory:
I  rl

r{\ Minimize-J   x(t)TQx(t) 4 u(t)TRu(f)dt

subject to x(t) = Ax(t) 4Bu(t),x(0) = *0, Kxx(t)  4 bs < 0, Kcu(t) 4 bc  < 0.

We write h for the finite element grid interval, (xh, uh) for the "Ritz-Trefftz approxi-

mation" to the dual problem, and (**, u*) for the solution to the continuous problem.

Hager has previously proved [1] that the errors uh - u* and xh - **, measured in L ,

are bounded by ch312 for piecewise polynomial spaces.  And unless grid points are

moved especially close to every "free boundary" where the constraint becomes binding

(we shall call these contact points) this estimate is optimal [2].
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FREE BOUNDARIES AND FINITE ELEMENTS 1021

Using techniques similar to those in [1], the same error bounds can be proved for

the primal problem when the control « is restricted to a subspace.  On the other hand,

for the case where A = Q = 0 and B = R — 1, Strang [3] notes a similar bound for the

Hl error when the approximate state is required to be a piecewise polynomial.

This paper examines the control error uh - u* in more detail.   It is shown to ex-

hibit a boundary layer, with most of the error concentrated at the contact points.  This

behavior occurred even if the approximating space possessed more continuity than the

exact solution to the problem. The rate of decay of the error in the boundary layer de-

pended on the ratio of diagonal to off-diagonal elements in the Hessian matrix corre-

sponding to the cost function. When the state rather than the control was restricted to

a subspace, the Hessian matrix lost diagonal dominance and the boundary layer faded

away.

Finally, we measured the efficiency of each algorithm by the number of multipli-

cations required to reduce the error to a given magnitude.  The dual method using

piecewise linear elements proved to be the most practical.  This method also enjoys an

important programming advantage over the primal approach: the constraints are simpler.

2. Problem Description. The following two problems were studied :

Minimize   %/¿«(r)2 dt

subject to x(t) = u(t), x(0) = 0,

(S) x(t) > sin(rri) + a,

a = jtVJ/12 - 5,

Minimize    ^/¿«(i)2 dt

subject to x(t) = u(t), *(0) = 0,

(C) *(1) = b = 1/6 + sßh,

u(t) > üxx(nt).

The problem (S) has a state constraint, (C) has a control constraint, and u and * are

real valued.

The solution to (S) is given by us(t) = 6a 4 3 for 0 < t < 1/6, u2(t) = n cos(rri)

for 1/6 < t < 1/2, and us(t) = 0 for t > 1/2.  On [0, .5], this is identical to the solu-

tion of the obstacle problem where *(1) also vanishes.   Removing the constraint at the

right end makes us vanish after the peak of the obstacle at r = 1/2. The problem (C) is sim-

ilar in structure to the variational formulation of a problem in plasticity theory in

which a sphere is subjected to external pressure loading; « would represent the stress

rate.  The constant b was chosen so that the solution to (C) is uc(t) = 112 for

0 < t < 1/6 or 5/6 < t < 1 and uc(t) = sixx(itt) for 1/6 < t < 5/6.

According to the theory developed in [4], the Lagrangian duals of (S) and (C)

are:

Maximize -^/¿iXO2 dt 4 /¿(sin(rri) + a)dv,

subject to vil) = 0, v nondecreasing,

Maximize /¿ [- M(v(t) - q)2 4 \Af) sin(nt)] dt - bq,

^     ' subject to \At) >0, q unconstrained.
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Piecewise        Convergence    Convergence Convergence

Polynomials    Rate in L2      Rate at t = 1/3    Rate at t = 0

Constants

Continuous
linear

Continuous
Quadratic

Continuous
Cubic

Cubic
Hermite

Table I. Convergence of uh - «* in Problem (DS)

The variable q is a real number.  One reason for studying these two problems was to

analyze the effect of losing strict concavity in the cost functional; in general, the dual

problem is only concave even though the primal problem is strictly convex.  In our case

(DS) is strictly concave and (DC) is only concave.  The solutions are related to «s and

uc, the solutions to (S) and (C) respectively, by vs = ~us, vc~qc = uc, and qc = - 1/2.

These relations also hold for the approximations uhc, i£, qhc, uhs, and \)hs generated by

the Ritz-Trefftz method.

The finite element approximation replaces a continuous problem by a discrete

one; « or v is restricted to lie in a finite-dimensional subspace.  The following subspaces

were analyzed: piecewise constant functions, continuous piecewise linear, quadratic, and

cubic polynomials, and the Hermite cubic polynomials-for which both function value

and slope are continuous at the grid points.

3. Convergence Results. In [1] it was observed that the L2 norm of the error

uh - u depended on the distance between a contact point and the nearest grid point.

In order to eliminate this dependence from the error, the grid points were always cho-

sen so that the contact points occurred very near the center of a grid interval.

Note that in problem (DS), if is constrained to be nondecreasing.  For piecewise

constant and linear spaces, this constraint is easily maintained by the requirement

^Ofc) ~ ^(h + i) ** 0 and f°r piecewise quadratic functions, by the constraints

3vh(tk) - 4J(tk+v.) 4 vh(tk+l) < 0 and -vH(tk) 4 AlPíf^) - 3vh(tk+l) < 0 for

k an integer. For higher order spaces, however, the constraint v" > 0 imposes a nonlinear

condition on the nodal parameters.  Hence the computations could be simplified if the

monotonicity requirement could be replaced by xf(tk) - vh(tk+l) < 0 at the mesh

points.   A study of the structure of the necessary conditions for (DS) revealed that this

replacement can be made without destroying the order of the convergence.

An analogous result also held for the finite element approximations to the other

problems analyzed herein. In each case, the continuous linear constraint leads to a non-

1.0 ~1 1.95

1.5 ~2 2.05

1.5 ~ 3 1.98

1.5 ~ 4 1.98

1.5 ~4 1.98
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-LOG,„[h|

FIGURE 1. Problem (DS): Error at t = 1/3 as a Function of h

Error

FIGURE 2. Pointwise Error for (DS) Using Hermite Cubics: h = 1/51

linear condition in the finite-dimensional problem.  However, there is no loss in rate of

convergence by replacing the nonlinear constraint with a linear restriction on the nodal

parameters.  In problem (S), above, the constraint ¡QUh(s) ds > sixi(nt) + a is replaced

by f0kuh(s) ds > sin(7rrfc) + a for k = 0, . . . , N, where [tk] are evenly spaced on

[0, 1] and the dimension of the subspace containing uh is N 4 1.  Similarly, the con-

straint vh(t)>0 in (DC) is replaced by i/1^) > 0; and in another formulation of (S)

given below, the constraint xh(t) > (sin(Trr) + a) is replaced by xh(tk) > (sin(7Tik) + a).

(a) The State Constrained Problem. The state constrained problem was first solved

using the dual approach and the convergence results are given in Table I.

It was observed that the convergence rate for u^(0) - vs(0) was 0(h2) for all the spaces

except the piecewise constants.  A plot of the convergence data for three of the spaces
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Error
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FIGURE 3. Pointwise Error for (DS) Using Linear Elements: h = 1/51

listed in Table I is given in Fig. 1.  For the quadratic and the cubic spaces, the grid in-

terval must be on the order of 1/300 before the pointwise error reaches the asymptotic

range.  Figures 2 and 3 plot the pointwise error in the finite element approximation

using Hermite cubic and piecewise linear elements.  Note that the Hermite cubics have

a continuous derivative and the error in the approximation exhibits a boundary layer,

with most of the error concentrated at the contact points t = 1/6 and t = 1/2 where

the derivative of the exact solution is discontinuous.

The L2 convergence rates given in Table I are exactly as expected, since [2]

proved that the convergence estimates in the L2 norm were tight.  The convergence

rate for luj(0) - 1^(0)1, on the other hand, can be rigorously proved by adding together

the equalities in the Kuhn-Tucker conditions corresponding to the derivative with re-

spect to the nodal variables on the interval [0, 1/6].

The interesting behavior in Table I and Figures 1, 2, and 3 is the convergence

rate away from the boundary layer (at t = 1/3 for example).  The reason for the decay

in the error as we leave the contact points is that the diagonal elements in the Hessian

matrix corresponding to the cost function in (DS) are much larger than the off-diagonal

elements. .This is illustrated for the piecewise linear space: Let dk = v^(tk) - vs(tk)

where tk is the kth grid time.  If e denotes the vector consisting of the components of

d that correspond to grid points inside the interval [1/6, 1/2], then by a Taylor expan-

sion, it can be shown that e satisfies

(2) He = (0(h), Oih2), Oih2), ..., Oih2), OQi))T,

where H is a matrix with 2/3 along the main diagonal and 1/6 for its super- and sub-

diagonal entries.

Decompose the vector on the right side of (2) into three terms: OQi)p 4 Oih)q 4

OQi2)r where pT = (1,0,0, . . . , 0), qT = (0, 0, . . . , 0, 1), and rT = (0, 1,1,...,
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1, 0).  Hence the solution to (2) is the sum of three terms: e   + e   + er. We shall

compute

(3) II//"1 II = max( 11^11/ll/Yy II)

in the maximum norm, or /„, norm.   Let \\y\\ = 1, and yk = 1 for some k.  Since

IjV-1 < 1 for all /, we have

\\Hy\\ >
1 M2 X-   l

6^-i +3^ + 6^ + 1
>\-\=\   and    II//-MK3.

j      o      J

Thus \\er\\<Oih2)\\r\\ II//"1 II = Oih2).

Now solve for the e   term by Gaussian elimination.  As the sub-diagonal ele-

ments in H are eliminated, the fcth row converges to

(4) .622 ek 4 A67ek + 1=0.

If H is of order m, the last row is .622 em = 0(h).  Solving by back-substitution,

(5) |efeU.269lejt+i,= ^_0(A).

Thus the contribution of e   4 e   to the total error e decreases roughly by a factor of

.268 on each grid interval as one moves away from the first and last component of e.

The thickness of the boundary layer is approximated by the smallest k such that

(.268)fc/(.622) ~ h.  When 50 grid intervals are used and h = .02, then k ~ 3, which

agrees with Fig. 3.

A similar analysis holds for the other piecewise polynomial spaces.  At each stage

in the elimination of the lower triangular terms in H, we divide a row by a diagonal

element and multiply by an off-diagonal element.  For the piecewise linear space the

ratio of diagonal to off-diagonal elements is .25, which agrees well with the decay of

.268.  A proof of this decay property for the solution of a diagonally dominant linear

system can be found in the appendix.

Next the problem (S) was rewritten, eliminating the control u and leaving an "ob-

stacle problem" for the state *:

(S') Minimize  I    x(t)2 dt subject to *(0) = 0,   x(t) > sixAjtt) 4 a.
J o

The solution was exact at the grid points in the binding constraint region while the er-

ror in slope on the interval [0, 1/6] was 0(h2) for all the subspaces studied: continuous

piecewise linear, quadratic, cubic, and quintic spaces.  Some of the convergence data is

plotted in Figs. 4 and 5. Two questions arise: Why didn't the error exhibit a boundary

layer, and why is the convergence second order even in piecewise linear spaces? The sec-

ond order convergence resulted from a fortunate combination of circumstances; the con-

straints are simple and the exact solution on [0,1/6] lies in the piecewise linear subspace.

By changing the cost functional slightly (for example, with a linear term as in (DS)), or by

making the constraints a little more complicated (see below), the convergence in deriv-

ative will only be 0(h) for piecewise linear spaces and at best 0(h3'2) for higher order

spaces.

The loss of the boundary layer resulted from the loss of diagonal dominance in

the Hessian matrix corresponding to the cost functional.   For example, the Hessian ma-
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-1-1-1-i-r«
1.5 1.7 1.9 2.1 2.3 2.5

-LOG10lh)

FIGURE 4. Problem (S'): Error x* - x" on [0, 1/6)

Error

FIGURE 5. Piecewise Linear Approximation of (S) with h = 1/141

trix corresponding to the piecewise linear subspace has 2's on the diagonal and - l's

for sub- and super-diagonal elements.

By choosing an appropriate subspace, however, the diagonal dominance can be re-

stored.  One possibility is to expand * or u, rather than *, in a piecewise polynomial

subspace.  The quadratic part of the cost function becomes exactly the same as for (DS),

and the boundary layer reappears.  Unfortunately, the constraint JqX(s) ds > sin ttt 4 a

is no longer in band form, and the quadratic programming algorithm consumes much

more time.  The efficiency of all these methods for solving the state constrained prob-

lem is discussed in Section 5.

(b) The Control Constrained Problem. The convergence rates for problem (DC)

using the finite element method are given in Table II, and the error using a piecewise

linear subspace is plotted in Fig. 6.  The primary difference between the convergence

behavior for (DC) and (DS) is that the error is 0(h2) for all polynomial spaces beyond

the piecewise constants on the interior [1/6, 5/6], where the control constraint is bind-

ing, and the dual constraint is nonbinding.   Recall that in (DS), the error was concen-

trated in a boundary layer on the edges of this nonbinding region.  As shown below,

the reason for the slower convergence in (DC) away from the contact points is that the

cost functional is only semidefinite instead of negative definite.
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Piecewise        Convergence   Convergence Convergence

Polynomials    Rate in L2      Rate at t = 1/2    Rate at t = 0

Constants

Continuous
Linear

Continuous
Quadratic

1.0

1.5

1.5

1.1

2.0

2.0

1.0

2.0

2.0

Table II. Convergence Rate for uh - u* in Problem (DC)

FIGURE 6. Pointwise Error in (DC) with Linear Elements: h = 1/33

Again consider the space of piecewise linear polynomials and let e be the vector

consisting of components uc(f •) - v^(tj) corresponding to grid points inside the interval

[1/6, 5/6].  Also define f=qc-qh,.  By a Taylor series expansion of vc, the following

relations hold:

(6) He-gf= 0(h)p 4 0(h)q 4 0(h2)r,

(7) hgTe-f=0(h2),

where H, p, q, and r were defined earlier and g   = (1, 1, . . . , 1).   Solving (6) for e

and inserting the result into (7) yields:

(8) (hgTH-xg - 1)/ = 0(h2) 4 hgTH'1 [0(h)p 4 0(h)q 4 0(h2)r].

It was shown above that II//"1 II < 3.  Therefore, \gTH~1p\ < llpll^ \\H~lg\\lai < 3 and

\gTH~lr\ < IgVi,. ÍH-liilm < (Î/^II/Z-MI^IWI^ = 3/h;

and the right side of (8) is 0(h2).  By direct computation (or rigorously by a Gaussian

elimination argument) it can be shown that hgTH~lg is bounded away from 1 and

hence /= 0(h2) from (8).  Thus by (6),

(9) e = H-igf4H~1[0(h)p 4 0(h)q 4 0(h2)r],
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where \\H~1g\\ < 3, \\H~lr\\ < 3, and as shown above H~lp and H~lq yield an error

term which decays by .269 over each grid interval as one moves toward the middle of

the vector e.  Hence these "middle components" of e are 0(h2).

Now suppose that higher order polynomials are employed.  The error on the right

side of (7) is given by

(10) JoV(O-»>c(0]tf,

where v1 is the interpolate of vc in the piecewise quadratic subspace.  Since i3c(l/6) and

i3c(5/6) are discontinuous, (10) is at best 0(h2) for all piecewise polynomial spaces un-

less grid points are placed exactly at t = 1/6 and t = 5/6.  Thus/= qc - qhc = 0(h2),

and hence by (9),gf contributes 0(h2) to all components of e.  The error then is

Oih2) everywhere in the nonbinding region.

4. Numerical Algorithm. These problems were solved by both gradient projection

and conjugate gradient projection.  From the numerical experiments, the conjugate gra-

dient algorithm appeared to be very efficient both in determining the binding constraints

and in solving the quadratic programming problem in the tangent plane corresponding

to these constraints.

In projecting the gradient or conjugate gradient onto the tangent plane corre-

sponding to the binding constraints, our approach was to determine the projection ma-

trix (-/ + AT(AAT)~1A); A is the matrix consisting of the rows of binding constraints.

Note that if the rows of A are taken in the natural order, AAT is a band matrix in

problem (DS) and is the identity matrix in (DC) and (S').  Thus AAT can be stored in

Cholesky's factored form LDLT.  Also note that for the Hermite space, with r - 1 con-

tinuous derivatives, we may group all rows of A which are identical after a translation

and obtain at most r groups of rows.  Thus AAT does not have to be determined by

column-row multiplication, but a 2r x 2r table can be computed initially for the prod-

ucts of rows in the r different groups; when an element of AAT is needed in the LDLT

factorization routine, it is accessed by a simple "look up" procedure.

Care should be taken not to introduce unnecessary constraints.  For example, the

space of Hermite cubics has dimension 2N 4 1, with h = l/N and i>j(l) = 0.  There-

fore, no more than 2N 4 1 monotone constraints of the form v^itk) - v^itk+i) < 0

can be binding at one time without some subset of the constraints being dependent.

And when some rows of A are dependent, the projection matrix is not given by the

simple form above since AAT is no longer invertible.

5. Conclusions. We want to compare the efficiency of the finite element proce-

dures described above for the state constrained problem.  Once the binding constraint

set has been determined in the quadratic programming problem generated by the finite

element method, the number of conjugate gradient iterations required to solve the qua-

dratic programming problem in the tangent plane of the binding constraint set is essen-

tially the number of variables in the quadratic program.  Similarly, the cost of each it-

eration can be estimated by counting the number of multiplications required.  The

"complexity" of a quadratic programming problem will mean the number of multiplica-

tions required to solve the program once the binding constraint set is determined.  Fig-

ures 7, 8, and 9, respectively, plot the errors as a function of the logarithm of the com-
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QUADRATICS

HERMITE CUBICS

LOG ¡complexity)

FIGURE 7. The L   Error in (DS) as a Function of Complexity

QUADRATICS

HERMITE CUBICS

LOG (complexity)

FIGURE 8. Problem (DS): Error at t - 1/3

plexity, as follows: Fig. 7 gives the L2 error in (DS), Fig. 8 the error at t = 1/3 (the

farthest point from the contacts), and Fig. 9 the error at t = 1/6 in * using the finite

element approximation of the control in (S), the state in (S'), and the dual variable in

(DS).
In terms of the L2 error, the piecewise linear space was the most efficient for all

grid intervals.   Recall that convergence in the L2 norm was first order for the piecewise

constants and Oih312) for higher order spaces.  The increase to 3/2 with linear elements

was worth the extra computation involved.
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QUADRATICS (S)

~T~

LOG (complexity)

1~

FIGURE 9. The Error in x at t = 1/6 for the State Constrained Problem

In Fig. 8, recall that t = 1/3 is inside the boundary layer and the full convergence

rate can be achieved.  That rate continues to increase with the degree of the piecewise

polynomials.  On the other hand, the figure shows that when the desired accuracy is

less than 10~4, the piecewise linear space is still the most efficient; only for very high

accuracy will the higher degree spaces be superior.   The reason lies in the slow approach

of the convergence plots in Fig. 1 to the asymptotic range.

Finally, it is seen in Fig. 9 that the piecewise linear elements and the dual ap-

proach provide the most efficient estimate of xs at t = 1/6.  Note, however, that the ef-

ficiency plot for (S) appearing in Fig. 9 is based on the error at t = 1/6 and not the er-

ror inside the boundary layer.  Inside that layer, the efficiency of quadratic elements is

very close to the efficiency of the linear elements in (DS).

Appendix: Decay of the Solution to Diagonally Dominant Linear Systems. We

now formally state and prove the decay property mentioned in Section 3 for the solu-

tion of a diagonally dominant linear system.

Theorem.  Suppose E is a matrix with E„ = 0 for \i - j\ > A.  Let ;0 E

{1,2, ... ,n),let f be the vector with all entries zero except for entry jQ which con-

tains a one, and assume that E,
1010

1 and

El£U/l£U<r<l for all i.

Then the solution to the linear system Ew = f satisfies lvv-1 < rm +1/(1 - r) for all in-

tegers m > - 1 and j such that \j - j0\> mA.

Proof. Defining N = D~liD - E) where D is the diagonal of E, the equation

Ew = / can be rewritten in the form (/ - N)w = D~~lf = f where / is the identity ma-

trix and the last equality follows since D¡ f   = E, ¡   = 1 and /■ = 0 for / =£/„.  Let

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FREE BOUNDARIES AND FINITE ELEMENTS 1031

II • II denote the /„, norm and recall that the /„, norm of a matrix is the maximum abso-

lute row sum; then the diagonal dominance condition in the theorem's statement im-

plies that iWII < r < 1.  Thus

OO OO ffj— 1 oo

iI-NTl=]V,Nk    and    w = Ya Nkf =  \T Nkf 4  ^ Nkf = %m 4 vm.
k=0 k=0 k=0 k=m

Notice that
oo oo

l(T?m)/l < Ilî7mll < £ H/Vllkll/ll « Z) r* - rm,d ~r).
k = m k = m

Furthermore (£m); = 0 for l/-/0l > (m - 1)A since Ntj = 0 for I/-/I > A.  Thus the

bound on w- = (%m).- + (rf")i in the theorem follows immediately.
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