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1 Introduction and summary

A fundamental aspect of the AdS/CFT correspondence [1–3] is that the isometries of

spacetime in the bulk must match global symmetries of the theory at the boundary. Indeed,

the symmetry group of AdSd+1, SO(d, 2), is precisely that of a conformal field theory in

d dimensions when d > 2. The case d = 2 is special in that the SO(2, 2) symmetry of

the dual theory is enhanced to an infinite number of local symmetries described by two

copies of the Virasoro algebra. As shown by Brown and Henneaux [4], these symmetries

are realized asymptotically in AdS3 by imposing Dirichlet boundary conditions where the

boundary metric is non-dynamical, i.e.

ds2
r→∞ = r2ds2

b , ds2
b = −dx+dx−, (1.1)

where ds2
b is the line element at the boundary and x± = t± φ are lightcone coordinates.

The boundary conditions found by Brown and Henneaux are the most general set of

Dirichlet boundary conditions that lead to finite charges in pure three-dimensional gravity

with a negative cosmological constant. It is possible to obtain new boundary conditions by

promoting the boundary metric to a dynamical variable and making its conjugate momen-

tum, the Brown-York stress-energy tensor, vanish [5]. This amounts to imposing Neumann

boundary conditions in the 3D theory,

ds2
b = −γijdxidxj , Tij =

4π

|γ|1/2
δSG
δγij

= 0. (1.2)

Here SG is the total gravitational action,1 γij is the metric at the boundary, and Tij is

the Brown-York stress-energy tensor [6, 7]. Making the boundary metric dynamical means

1SG contains the Gibbons-Hawking term and appropriate boundary counterterms necessary for finiteness

of the action and vanishing of the Brown-York tensor.
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Gauge Symmetry

Chiral lightcone Vir⊗ Û(1)

Conformal (Vir⊗ Û(1))2

Lightcone Vir⊗ ŜL(2,R)

Table 1. Symmetries of new AdS3 boundary conditions.

that we must now integrate over γij in the partition function of the dual theory. Thus, the

theory at the boundary is also a theory of gravity and the vanishing of the Brown-York

tensor in the bulk is a consequence of the equations of motion of γij . In particular, the

diffeomorphism invariance of the dual theory allows us to choose a gauge for the boundary

metric. Then the non-vanishing components of the Brown-York stress-energy tensor are to

be interpreted as constraints on the physical states of the dual theory.

Recently, new boundary conditions for AdS3 were introduced where the boundary

metric is in a chiral lightcone gauge [8],

ds2
b = −dx+

[
dx− + ρ(x+)dx+

]
, (1.3)

a conformal gauge [9],

ds2
b = −e2ϕ(x)dx+dx−, (1.4)

or a lightcone gauge [10],

ds2
b = −dx+

[
dx− + µ(x)dx+

]
. (1.5)

Along with these new boundary conditions come new asymptotic symmetries for AdS3 (see

table 1) where the Virasoro central charge is c = 3l/2G, l is the AdS radius and G is

Newton’s constant, while the Kac-Moody level is k = −c/6.2

In this paper we study in more detail the boundary conditions of refs. [9] and [10]. We

show that AdS3 with these boundary conditions is dual to 2D quantum gravity in either

the conformal or lightcone gauges. The dual theory is formally described by the partition

function

Z =

∫
DφaDγ̂ exp i

{
Sm+g[φa, γ̂] +

k

16π
Sp[γ̂]

}
, (1.6)

where φa represents the matter and ghost fields that result from gauge fixing and Sm+g is

the sum of their actions. The central charge of the matter and ghost systems is denoted

by cM 6= 0 which implies that the matter plus ghost theory, assumed to be conformally-

invariant at the classical level, has a non-vanishing Weyl anomaly. Here γ̂ represents the

gravitational degree of freedom that is not fixed by the diffeomorphism invariance of the

theory, i.e. γ̂ = ϕ in the conformal gauge and γ̂ = µ in the lightcone gauge.3

2However note that for the Û(1) symmetries it is always possible to change the value of the level by

normalization of the currents but not its sign. In particular for the boundary conditions of ref. [8] the

normalization depends on the background.
3Note that in the conformal gauge the action Sm+g[φa] does not depend on the conformal factor ϕ since

it couples to the trace of the stress-energy tensor which we have assumed to vanish at the classical level.
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The term denoted by Sp is the Polyakov action [11]

Sp =

∫ √
|γ|d2x

(
R

1

�
R+ λ

)
, (1.7)

where λ is a cosmological constant which will be set to zero in the remainder of this paper.4

In the conformal gauge this is possible only when the reference metric is flat, as in eq. (1.4),

since the Polyakov action reduces to the Liouville action where ϕ is conformally-coupled.

The Polyakov action is required for consistency of the theory [12–15]. It guarantees that

the Ward identities of the theory, which are sensitive to anomalous contributions from the

measure, are realized at the classical level. In particular, it guarantees that the stress-

energy tensor Tµν is covariantly conserved and that its trace reproduces the Weyl anomaly.

Then

0 = Tµν ≡
4π
√
γ

δS

δγµν
, (1.8)

where S = Sm+g + (k/16π)Sp, yields the equations of motion for γµν , that are also the

constraints on the physical states of the theory. Consistency of eq. (1.8) at the quantum

level, where the measures of φa and γ̂ contribute to the expectation value of Tµµ , requires

that the total central charge of the matter, ghost, and Polyakov actions vanishes. In the

semiclassical limit where cM is large the central charge of the Polyakov action is cp = 6k

where k = −cM/6 is the parameter in front of the Polyakov action. At the quantum

level both of these quantities receive corrections of O(1) such that the total central charge

ctotal = cM + cp always vanishes.

Thus, a consistent set of free boundary conditions for AdS3 requires a vanishing central

charge for the Virasoro algebra. We will show that a proper identification of the generator

of Virasoro transformations yields the desired result.5 Thus, if we denote by Qε the charge

corresponding to the asymptotic Killing vector ε, the commutator of Virasoro charges reads

i[Qε, Qσ] = Qε′σ−εσ′ . (1.9)

We will show that the charges generating the Virasoro and Kac-Moody transformations

match those of the dual theory at the boundary. In particular, the charge responsible for

(left-moving) Virasoro transformations is given by

Q[ε] = − 1

2π

∫
dφε(x+)

[
L(x+) + Ts(x

+)
]
, (1.10)

and a similar expression exists for the right-moving charge found in the boundary condi-

tions of ref. [9]. In eq. (1.10) we identify L with the expectation value of the left-moving

generator of Virasoro transformations on a state of the matter and ghost systems, while Ts

4Therefore, we will confine our analysis to boundaries with the topology of either the cylinder or the

torus.
5In the conformal gauge this result was first obtained in ref. [9] but its interpretation was not considered

there. Instead, the Brown-Henneaux central charge was recovered by shifting the generators of Virasoro

transformations. We now understand this as a consequence of untwisting the twisted Sugawara tensor.
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corresponds to the twisted Sugawara tensor of the Kac-Moody algebra. In the semiclassical

limit probed by semiclassical gravity in the bulk the twisted Sugawara tensor is given by

Ts =
1

2k
ηabJaJb + ∂+J0, (1.11)

where Ja are the currents and ηab is the Cartan-Killing metric of the corresponding current

algebra. In the lightcone gauge this result is consistent with the constraints imposed on

the T++ and T+− components of the stress-energy tensor, since the latter reads

0 = T+− ∝ J−. (1.12)

This implies that J− is an operator of weight zero under Virasoro transformations.

Note that it is always possible to shift L by a left-moving function of the gravitational

degrees of freedom. Thus, the appearance of a twisted Sugawara tensor in eq. (1.11), as

opposed to the standard Sugawara tensor, may seem artificial even though it is consistent

with the transformation of the Kac-Moody currents and the current algebra. The ambiguity

is fixed by matching the Brown-York tensor with the stress-energy tensor of the dual theory

at the boundary. This determines the subleading components of the metric and fixes the

form of the Virasoro charges. Alternatively, we can proceed without making any reference

to the dual theory by computing the Brown-York stress-energy tensor off-shell in a sense

that shall be made precise in section 2.

It is interesting to note that both L and Ts generate two independent Virasoro alge-

bras, which suggests that L and the Kac-Moody currents Ja commute in the dual theory.

We show that it is possible to recover this result in the bulk by requiring that the transfor-

mation of the subleading components of the metric is consistent with the transformation

of the leading components ϕ and µ. We then find that, under Kac-Moody transformations

parametrized by Λ(x),

δΛL = 0, (1.13)

which implies that [L, Ja] = [L, Ts] = 0. On the other hand under Virasoro transformations

parametrized by ε(x+) we have

δεL = 2ε′L+ εL′ +
c

12
ε′′′, (1.14)

where c = 3l/2G. Thus, we find that in the semiclassical limit the central charge of the

matter plus ghost systems is given by the Brown-Henneaux central charge,

cM = 3l/2G, (1.15)

and, using eq. (1.9), that the central charge of the Polyakov action is given by

cp = −cM , (1.16)

which is consistent with the dual theory at the boundary.

Further evidence for the correspondence between AdS3 with free boundary conditions

and 2D quantum gravity is obtained by studying the asymptotic behavior of a massive
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scalar field in these backgrounds. We find that under Virasoro transformations the weights

of scalar operators vanish, in contrast with the case of AdS3 with Brown-Henneaux bound-

ary conditions. This result is consistent with the fact that the constraint equations (1.8)

restrict all physical states to be singlets under Virasoro transformations. Likewise, it is

not difficult to show that the Kac-Moody weights λ of scalar operators are equal to their

conformal weights h in the absence of gravity. This result agrees with that found in

refs. [11, 13, 14] in the semiclassical limit where k is large,

λ = h+
λ(1− λ)

k + 2
. (1.17)

The remainder of this paper is devoted to justifying these statements. We begin in

section 2 with the boundary conditions of ref. [9] where the boundary metric is in the

conformal gauge. There we show that the Brown-York stress-energy tensor, currents, and

central charges match the corresponding quantities of the theory at the boundary. The

lessons learned in the conformal gauge are then applied to the lightcone gauge. In section 3

we introduce a slight modification of the boundary conditions given in ref. [10] and find

the corresponding Brown-York tensor, currents, and central charges. In section 4 we study

general properties of conformal field theories in the lightcone gauge and show that the

quantities computed in the bulk match those of the theory at the boundary. We present

our conclusions in section 5.

2 Conformal gauge

2.1 Boundary conditions and conserved charges

Let us begin with the boundary conditions of ref. [9] where the boundary metric is in the

conformal gauge and the asymptotic symmetry group consists of two independent copies

of Vir⊗ Û(1). The boundary conditions are given by

grr = r−2 +O(r−4), g+− = −e2ϕ(x)r2/2 +O(r0),

gr± = O(r−3), g±± = O(r0), (2.1)

and correspond to a generalization of Brown-Henneaux boundary conditions [4]. As dis-

cussed in ref. [9], a well-defined variational principle where ϕ is allowed to vary requires

∂+∂−ϕ = 0, (2.2)

which is equivalent to the vanishing of the trace of the Brown-York stress-energy tensor. In

contrast with ref. [9] we do not impose eq. (2.2) as a boundary condition but as an equation

of motion. Furthermore, since we perform our analysis off-shell, i.e. with arbitrary ϕ, we

can unambiguously determine the subleading components of the metric.

The most general solution obeying these boundary conditions may be written using

Fefferman-Graham coordinates,

ds2 = gabdx
adxb =

dr2

r2
+
(
r2g(0)

µν + g(2)
µν + r−2g(4)

µν

)
dxµdxν , (2.3)
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where g
(0)
µν = γµν is the boundary metric (1.4). The subleading components of the metric

are determined by (see for example ref. [16])

g(2)
µν = −1

2

(
g(0)
µνR

(0) − Tµν
)
, g(4)

µν =
1

4
g(2)
µρ g

ρσ
(0)g

(2)
σν , (2.4)

where terms with a (0) index are computed using the boundary metric g
(0)
µν . The Brown-York

stress-energy tensor Tµν is covariantly conserved and its trace reproduces the conformal

anomaly up to a normalization,

∇µ(0)Tµν = 0, gµν(0)Tµν = R(0). (2.5)

The solution to these equations is given by

T++ = −12

c
L(x+)− 2

(
∂+ϕ∂+ϕ− ∂2

+ϕ
)
,

T−− = −12

c
L̄(x−)− 2

(
∂−ϕ∂−ϕ− ∂2

−ϕ
)
,

T+− = −2∂+∂−ϕ,

(2.6)

where the coefficient c = 3l/2G is chosen in hindsight and L, L̄ are arbitrary functions.

Using Tµν it is straightforward to compute the subleading components of the metric g
(2)
µν ,

g
(4)
µν and the classical phase space of solutions consistent with the boundary conditions.

A well-defined variational principle where the conformal factor ϕ is allowed to fluctuate

requires T+− = 0 which we interpret as the equation of motion (2.2).

These boundary conditions support a [Vir⊗Û(1)]L⊗[Vir⊗Û(1))]R asymptotic symme-

try group [9] with central charge ctotal = 0 for the Virasoro algebras and level k = −c/6 for

the Kac-Moody algebras. The left-moving generators of Virasoro and Kac-Moody trans-

formations are respectively given by [9]

ξ[ε] = ε(x+)∂+, ζ[λ] = −rλ(x+)

2
∂r +

e−2ϕ∂+λ(x+)

2r2
∂−, (2.7)

while the right-moving generators are

ξ̄[ε̄] = ε̄(x−)∂−, ζ̄[λ̄] = −rλ̄(x−)

2
∂r +

e−2ϕ∂−λ̄(x−)

2r2
∂−. (2.8)

The charges associated with these symmetries may be computed by standard methods [17–

20]. For three-dimensional gravity the infinitesimal charge corresponding to the asymptotic

Killing vector ξ is given by

δQξ[h, g] =
1

16πG

∫
∂Σ

√
|g|dxαεαµνkµν , (2.9)

where hµν = δgµν , ∂Σ is a complete spacelike surface on the boundary, and kµν is given by

kµν = ξµ∇νh− ξµ∇ρhρν + ξρ∇µhρν +
1

2
h∇µξν − 1

2
hµρ∇ρξν +

1

2
hµρ∇νξρ. (2.10)
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For the solution characterized by eq. (2.6), the charges are conserved, finite, and inte-

grable only when ϕ obeys the equation of motion (2.2), in agreement with the results of

ref. [9]. The left and right-moving Kac-Moody charges are respectively given by

Uλ = − 1

2π

∫
dφλ(x+)J(x+), J = k∂+ϕ, (2.11)

U λ̄ = − 1

2π

∫
dφλ̄(x−)J̄(x−), J̄ = k∂−ϕ. (2.12)

These currents generate two independent, centrally-extended Û(1) algebras

i[Uα, Uβ] = −k η
4π

∫
dφ
(
α′β − αβ′

)
, i[U ᾱ, U β̄] = −k η

4π

∫
dφ
(
ᾱ′β̄ − ᾱβ̄′

)
, (2.13)

where η = −1/2 fixes the normalization of Û(1) and the level is k = −c/6.6 These results

imply the following OPEs〈
T{J(x+)J(0)}

〉
=

k η

(x+)2
,

〈
T{J̄(x−)J̄(0)}

〉
=

k η

(x−)2
, (2.14)

where T is the time-ordered product.7 From these expressions the transformations of the

currents can be deduced. Alternatively, we can obtain this result from the transformation

of ϕ under the action of the Killing vector ψ,

δψϕ = −e−2ϕ (Lψg)(0)
+− , (2.15)

where Lψ is the Lie derivative corresponding to ψ. For the generators of Kac-Moody

transformations we have

δλϕ = −λ
2
, δλ̄ϕ = − λ̄

2
, (2.16)

which is consistent with the transformation of J and J̄ obtained from eq. (2.14).

Let us now consider the Virasoro charges. Using eq. (2.9) we find

Qε = − 1

2π

∫
dφε(x+)[L(x+) + Ts(x

+)], Ts = −k(∂+ϕ∂+ϕ− ∂2
+ϕ), (2.17)

Q̄ε̄ = − 1

2π

∫
dφε̄(x−)[L̄(x−) + T s(x

−)], T s = −k(∂−ϕ∂−ϕ− ∂2
−ϕ), (2.18)

where we recognize Ts and T s as the twisted Sugawara tensors of the left and right-moving

Kac-Moody algebras. That is,

Ts =
η−1

2k
J2 + ∂+J, T s =

η−1

2k
J̄2 + ∂−J̄ . (2.19)

6Note that the central extension can always be set to k = −1 by normalization of the currents. Here

we have chosen a factor of 1/2 in η so that these Kac-Moody symmetries share the same level with the

Kac-Moody symmetries found in the lightcone gauge.
7In the remainder of this paper we adopt the standard convention where the OPE A(x)A(0) is understood

to hold within the expectation value of a time-ordered product of a string of operators.
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In the dual theory these currents correspond to the left and right-moving components of

the stress-energy tensor of the Polyakov action, while L and L̄ are identified with the

expectation value of the of the stress-energy tensor of the matter and ghost systems. The

central charge cM of the latter can be determined from the anomalous transformation of L

and L̄ under Virasoro reparametrizations. This can be obtained from the transformation

of the subleading components of the metric as in refs. [7, 21],

δψg
(2)
µν = (Lψg)(2)

µν . (2.20)

Since g
(2)
µν depends on L, L̄ and ϕ, on the left-hand side of this expression we use the

transformation of ϕ given by eq. (2.15). For the generators of Virasoro transformations

the leading components transform as

δεϕ = ε∂+ϕ+
1

2
ε′, δε̄ϕ = ε̄∂−ϕ+

1

2
ε̄′. (2.21)

Then, using eq. (2.20) we find that L and L̄ transform anomalously

δεL = 2ε′L+ εL′ +
c

12
ε′′′, δε̄L̄ = 2ε̄′L̄+ ε̄L̄′ +

c

12
ε̄′′′, (2.22)

where c = 3l/2G is the Brown-Henneaux central charge. Thus, the central charge of the

matter and ghost systems in the dual theory at the boundary is cM = 3l/2G.

On the other hand the central charge of the twisted Sugawara tensors, denoted here

by cp, is entirely determined by the Kac-Moody algebras and given by [22]

cp = 1 + 6k. (2.23)

In the semiclassical limit probed by the bulk this reduces to cp = −c. We can check this

result directly from the commutator of Virasoro charges

i[Qα, Qβ] = Qα′β−αβ′ , i[Q̄ᾱ, Q̄β̄] = Q̄ᾱ′β̄−ᾱβ̄′ , (2.24)

which confirms that the total central charge ctotal = cM + cp vanishes. These expressions

can also be used to check that Ts and T s transform as tensors of weight (2,0) and (0,2),

respectively, as expected from the current algebra,8

Ts(x
+)Ts(0) =

−c/2
(x+)4 +

2Ts(0)

(x+)2 +
∂+Ts(0)

x+
, (2.25)

T s(x
−)T s(0) =

−c/2
(x−)4 +

2T s(0)

(x−)2 +
∂−T s(0)

x−
. (2.26)

Alternatively, we can find the central charge of the matter and ghost system by com-

puting the commutators associated with the Killing vectors [9]

ξ̃[ε] = ξ[ε] + ζ[ε′], ˜̄ξ[ε̄] = ξ̄[ε̄] + ζ̄[ε̄′], (2.27)

8Here we have assumed that L and L̄ commute with the Kac-Moody currents; this is confirmed below.
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which are none other than the asymptotic Killing vectors of AdS3 with Brown-Henneaux

boundary conditions. For these Killing vectors the commutators of charges are given by

eq. (2.24) with central extension c̃total = 3l/2G. This is a consequence of the fact that ξ̃

and ˜̄ξ untwist the Sugawara tensors in eqs. (2.17) and (2.18). Hence cp = 1 and in the

semiclassical limit c̃total = cM = 3l/2G.

Finally let us consider the commutators between Virasoro and Kac-Moody charges.

These are given by

i[Qε, Uλ] = −Uελ′ −
k

4π

∫
dφ ελ′′, i[Q̄ε̄, U λ̄] = −U ε̄λ̄′ −

k

4π

∫
dφ ε̄λ̄′′ (2.28)

and agree with the commutators given in ref. [9]. Using the expressions for the Virasoro

and Kac-Moody charges it is easy to check that these commutators follow from the OPEs

Ts(x
+)J(0) =

k

(x+)3 +
J(0)

(x+)2 +
∂+J(0)

x+
,

T s(x
−)J̄(0) =

k

(x−)3 +
J̄(0)

(x−)2 +
∂−J̄(0)

x−
,

(2.29)

which imply that L, L̄ commute with the generators of Kac-Moody transformations. This

result can also be checked by inspection of the subleading components of the metric. Using

eq. (2.20) and the Kac-Moody Killing vectors ζ[λ] (2.7) and ζ̄[λ̄] (2.8) we find that

δλL = 0, δλ̄L̄ = 0. (2.30)

We have thus identified the currents generating the Virasoro and Kac-Moody trans-

formations and showed that the OPEs deduced from the commutator of charges yield a

consistent algebra. In the next section we show that these currents match those of the dual

theory at the boundary.

2.2 Dual theory of gravity

Let us now consider the dual theory which is described by

Z =

∫
DφaDϕ exp i

{
Sm+g[φa] +

k

16π
Sp[ϕ]

}
, (2.31)

where k = −cM/6 and cM is the central charge of the matter and ghost systems described

by Sm+g. This action is assumed to be conformally invariant at the classical level but since

cM 6= 0 the measures of the matter and ghost fields φa contribute to the quantum anomaly.

The Polyakov action can be more conveniently written as

Sp = 2

∫ √
|γ|
{

1

2
∂µψ∂

µψ −Rψ
}
, (2.32)

where we must substitute the expression for ψ given by �ψ = −R. In other words, eq. (2.32)

reproduces the Polyakov action when computed on-shell. For the conformal gauge we have

ψ = 2ϕ and the Polyakov action reduces to the action of a timelike scalar field.9 For more

9Recall that in our conventions the boundary metric reads ds2b = e2ϕ
(
−dt2 + dx2

)
.
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general reference metrics neither the conformal coupling nor the cosmological constant term

vanish.

It is easy to show that the stress-energy tensor is given by

T++ = t++ − k
(
∂+ϕ∂+ϕ− ∂2

+ϕ
)
, (2.33)

T−− = t−− − k
(
∂−ϕ∂−ϕ− ∂2

−ϕ
)
, (2.34)

T+− = −k∂+∂−ϕ, (2.35)

where tµν is the stress-energy tensor of the matter and ghost fields. This is in perfect

agreement with the Brown-York stress-energy tensor given in eq. (2.6) after normalization

by a factor of k/2. Thus L and L̄ are to be identified with the expectation values of

the t++ and t−− components of the stress-energy tensor of the matter and ghost systems.

In particular, their central charge can be determined in the bulk from the anomalous

transformation of L and L̄ and is given by cM = 3l/2G in the semiclassical approximation.

Since the Polyakov action reduces to that of a free scalar field, the action is shift-

invariant. When the cosmological constant does not vanish this shift symmetry is still

present when accompanied by a Weyl rescaling of the reference metric. Indeed, one can

think of ϕ as a Stückelberg field that restores the Weyl invariance of the matter plus ghost

theory, despite the fact that cM does not vanish. The Noether currents corresponding to

the shift in ϕ parametrized by eq. (2.16) are given by

J− = k∂+ϕ, J+ = 0, (2.36)

J̄− = 0, J̄+ = k∂−ϕ, (2.37)

where the upper indices denote spacetime indices and we have assumed that the matter

plus ghost action is Weyl invariant. These currents match the Û(1) Kac-Moody currents

found in the bulk, eqs. (2.11), (2.12). Furthermore, it is not difficult to show that the OPEs

given in eq. (2.14) and deduced from the commutators of Kac-Moody charges, agree with

the OPEs obtained in the dual theory from quantization of ϕ, whose OPE is given by

ϕ(x)ϕ(x′) = − 1

2k
log |x+ − x′+||x− − x′−|. (2.38)

On the other hand the currents generating the Virasoro transformations — where ϕ

transforms with an additional shift as in eq. (2.21) — correspond to the T++ and T−−
components of the stress-energy tensor. The contribution from the Polyakov side of the

action is the twisted Sugawara tensor, whose central charge is given by

cp = 1 + 6k. (2.39)

In the quantum theory the constant k in front of the Polyakov action is renormalized in

such a manner that cM + cp = 0. In the semiclassical limit where k is large we have

cp = 6k = −cM in agreement with the bulk computation. The other OPEs between the

Sugawara tensors and the Kac-Moody currents, eqs. (2.25), (2.26), and (2.29), can also be

seen to follow from the OPE (2.38).
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It is important to note that for the boundary conditions studied in this section, which

are conformally flat ds2
b = e2ϕγ

(0)
µν dxµdxν , we have R = −2�(0)ϕ so the Polyakov action

is simply that of a free scalar. For more general boundary metrics the term Rψ receives

contributions proportional to R(0)ϕ, where R(0) is the Ricci scalar of the boundary metric

γ
(0)
µν . This improvement term is responsible for the twisting of the stress-energy tensor.

Hence, when the topology of the boundary is that of the cylinder or the torus and R(0) = 0,

one could argue that there is no improvement term and that the stress-energy tensor is not

twisted. This would be consistent with the bulk theory since, as we have seen, there is a

linear combination of Killing generators that lead to an untwisted Sugawara tensor (2.27).

However, if we want to define the dual CFT on surfaces with higher genus, a twisted stress-

energy tensor for which the total central charge vanishes is unavoidable. Since we are

interested in the interpretation of free boundary conditions in the context of the AdS/CFT

correspondence, we have assumed that the improvement term contributes to the stress-

energy tensor regardless of the topology of the boundary.

Let us now consider the implications of the equations of motion (1.8). The vanishing

of the T+− component of the stress-energy tensor corresponds to the equation of motion

for ϕ. The fact that cM + cp = 0 then implies that T+− does not receive corrections at the

quantum level. Indeed, we could have obtained the same results of this section if instead

of adding the Polyakov action we had studied the Ward identities of the matter plus ghost

systems which are sensitive to contributions from the measure. The other equations of

motion of the theory prior to gauge fixing,

T++ = 0, T−− = 0, (2.40)

are interpreted as constraints on the physical states of the theory. In particular they re-

quire that physical states are singlets of the Virasoro algebra. Hence the weight of operators

associated with Virasoro transformations must vanish. On the other hand the weights asso-

ciated with the Û(1) Kac-Moody transformations, i.e. Weyl scalings, receive gravitational

corrections. In particular, the gravitationally-dressed weights of scalar primary fields are

given by [13, 14]

λ = h+
λ(1− λ)

k + 2
, (2.41)

where h is the weight in the absence of gravity. In the next section we show that this result

is reproduced by the bulk theory in the semiclassical limit.

Note that these constrains may play an important role in the unitarity of the theory

because, as we have seen, the level of the Kac-Moody algebra is negative. This is consistent

with the fact that the conformal factor is timelike and hence, in the absence of constraints,

the theory is not unitary. However, as in the quantization of the critical string, the con-

straints T++ = T−− = 0 may be used to remove the negative-norm states from the Hilbert

space of the theory.

2.3 Virasoro and Û(1) weights for scalar operators

Let us consider a free scalar field of mass m in the bulk and study its asymptotic behavior.

In AdS3 with Brown-Henneaux boundary conditions we have

φ(r, x) ∼ r−∆−α(x) + r−∆+β(x), (2.42)
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where we have assumed ∆+ 6= ∆− and ∆± are the roots of (see for example [23])

∆(∆− 2) = m2. (2.43)

The non-normalizable mode α(x) is interpreted as a source for the operator O(x) in the

dual theory while β(x) is proportional to its expectation value. The weight of this op-

erator can be deduced from the transformation of φ under the Virasoro symmetry. For

AdS3 with Brown-Henneaux boundary conditions the left-moving generator of Virasoro

transformations is given by

ξBH[ε] = ε(x+)∂+ −
rε′(x+)

2
∂r +

ε′′(x+)

2r2
∂−. (2.44)

Under the action of ξBH the scalar field transforms as

LξBH
φ ∼ r∆−

(
∆−
2
ε′α+ ε ∂+α

)
+ r∆+

(
∆+

2
ε′β + ε ∂+β

)
, (2.45)

from which we deduce that the dual operator O has left (and right) weights h = h̄ = ∆+/2.

It is not surprising that a massive scalar field in AdS3 with boundary conditions given in

eq. (2.1) obeys the same asymptotic behavior as eq. (2.42). Unlike the asymptotic Killing

vector ξBH, however, the generators of Virasoro transformations in eqs. (2.7), and (2.8)

have vanishing ξr components. Thus, scalar operators in the dual theory have a vanishing

weight under Virasoro transformations,

Lεφ ∼ r∆− (ε ∂+α) + r∆+ (ε ∂+β) . (2.46)

This result is to be expected since we must enforce the constraints T++ = 0 and T−− = 0 in

the dual theory, and a vanishing Virasoro weight means that all scalar operators are singlets

of the Virasoro symmetry. On the other hand the generators of Kac-Moody transformations

in eqs. (2.7) and (2.8) do have non-vanishing ξr components. Under the left-moving Û(1)

transformation parametrized by σ(x+) the scalar field transforms as

Lλφ ∼ r∆−

(
∆−
2
σα

)
+ r∆+

(
∆+

2
σβ

)
, (2.47)

and similarly for the right-moving Û(1). Thus the gravitationally-dressed weights are given

by λ = λ̄ = ∆+/2 which corresponds to the semiclassical limit of eq. (2.41).

3 Boundary conditions with ŜL(2,R) symmetry

It would be surprising if the conclusions obtained in section 2 did not hold in other gauges.

In this section we perform a similar analysis in a generalization of the lightcone gauge that

can be obtained by performing the change of coordinates x− → enx
−

, n ∈ Z in eq. (1.5).

The boundary metric reads,

ds2
b = −enx−dx+

[
dx− + µ(x)dx+

]
, (3.1)

– 12 –



J
H
E
P
0
3
(
2
0
1
4
)
1
1
6

and will be referred to as the lightcone gauge for the remainder of this paper. We will

also consider a slight modification of the boundary conditions of ref. [10] where the g
(2)
−−

component of the metric is arbitrary,

grr = r−2 +O(r−4), g+− = −enx−r2/2 +O(r0),

gr+ = O(r−1), g++ = −enx−r2µ(x) +O(r0), (3.2)

gr− = O(r−3), g−− = O(r0).

A well-defined variational principle where µ is allowed to vary then requires that the T−− ∝
g

(2)
−− component of the Brown-York stress-energy tensor vanishes. Thus we must either add

improvement terms to the action so that µ is allowed to fluctuate, or set T−− = 0 as an

equation of motion. Since we would like to interpret AdS3 with these boundary conditions

as a theory of gravity at the boundary we choose the second option.

Unlike the original boundary conditions of ref. [10], the boundary conditions given

above do not admit compactification of the φ coordinate. Hence in the limit µ → 0 the

dual theory at the boundary is defined on the plane. It is possible to analytically continue

n → in to study the theory on the cylinder but then the bulk and boundary metrics are

complex. This is not too problematic in the dual theory since the conformal factor drops

out of the matter, ghost, and Polyakov actions, and it is possible to restrict the theory to

the real plane. In the remainder of this paper we take n ∈ Z but our conclusions hold for

complex n.

The most general solution obeying these boundary conditions may be written once

again using Fefferman-Graham coordinates (2.3). First let us note that it is convenient to

regard the lightcone parameter µ as the coefficient of a Beltrami differential [11]. Indeed,

the lightcone gauge may be obtained from the conformal gauge by the change of coordinates

x+ → x+, x− → f(x−), and 2ϕ→ − log(∂−f) + nx−, whereby µ is given by

µ =
∂+f

∂−f
. (3.3)

It is then easy to see that µ has weight (1,−1). The Brown-York stress-energy tensor

satisfying eq. (2.5) is given by

T++ = −12

c
L(x+)− (∂+ − 2µ∂−) (∂−µ+ nµ) +

(
µ∂2
−µ−

1

2
∂−µ∂−µ−

n2

2
µ2

)
+ µ2T−−,

T−− = −12

c
L̄(x−)−

(
{f, x−}+

n2

2

)
, (3.4)

T+− = ∂2
−µ+ n∂−µ+ µT−−,

where c = 3l/2G, {f, x−} is the Schwarzian derivative of f with respect to x−, and L̄(x−)

is a function obeying

(∂+ − µ∂−) L̄− 2L̄∂−µ = 0. (3.5)

The equation of motion T−− = 0 and the identity ∂3
−µ ≡ (∂+ − µ∂−) {f, x−}−2{f, x−}∂−µ

then yield the following equation for µ,

∂3
−µ− n2µ = 0. (3.6)
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We identify L(x+) with the expectation value of the generator of Virasoro transformations

of the matter and ghost systems, and L̄(x) with the expectation value of the t−− component

of their stress-energy tensor. In the next section we will see that condition (3.5) corresponds

to covariant conservation of tµν .

The boundary conditions given in eq. (3.2) support a Vir⊗ ŜL(2,R) asymptotic sym-

metry group [10] with total central charge ctotal = 0 and Kac-Moody level k = −c/6.

The asymptotic Killing vectors generating the Virasoro and Kac-Moody symmetries are

respectively given by

ξ[ε] = ε(x+)∂+ −
1

n
ε′(x+)∂−, (3.7)

ζ[Λ] =
e−nx

−
∂−Σ[Λ]

2r2
∂+ −

rΣ[Λ]

2
∂r + Λ∂− +

(
e−nx

−
(∂+ − 2µ∂−) Σ[Λ]

2r2
∂−

)
•

, (3.8)

where ( )• is a pure gauge term that will be useful later. Here Σ[Λ] is given by

Σ[Λ] = ∂−Λ + nΛ, (3.9)

and the parameter Λ(x) obeys the same equation as µ, i.e.

∂3
−Λ− n2∂−Λ = 0. (3.10)

The Killing vectors for the case n = 0 can be obtained by performing a change of coordinates

enx
− → x− where Λ and µ transform as tensors of weight (1,−1) (see eq. (3.3)). This is

only necessary when the n→ 0 limit is divergent as in the Virasoro Killing vector ξ[ε]. In

expressions without factors of 1/n setting n = 0 is equivalent to the aforementioned change

of coordinates.

The charges of the theory are conserved, finite, and integrable only when T−− = 0.

Using eq. (2.9) the charge associated with the Kac-Moody generator ζ[Λ] reads

U [Λ] = − 1

2π

∫
dφ

k

2

(
Λ∂2
−µ− ∂−Λ∂−µ+ ∂2

−Λµ− n2Λµ
)
, (3.11)

where we recall that the coordinate φ is not compact. Equation (3.10) allows us to

parametrize Λ by

Λ =
1

n

[
λ0(x+) + λ+(x+)enx

−
+ λ−(x+)e−nx

−
]
. (3.12)

Then the Kac-Moody charges can be written as

Ua[λa] = − 1

2π

∫
dφλa(x

+)Ja(x
+), a = {0,±}, (3.13)

where the left-moving currents Ja are given by

J0 =
k

2n

(
∂2
−µ− n2µ

)
, J± =

k

2n
e±nx

− (
∂2
−µ∓ n∂−µ

)
. (3.14)
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We stress that the n = 0 case is well defined and can be obtained by setting n = 0 in

eq. (3.11) and performing a change of coordinates enx
− → x− in eq. (3.12). Alternatively,

one can change the coordinates directly in the expression for the currents (3.14).

In section 4 we will show that Ja match the ŜL(2,R) currents of the dual theory at

the boundary. That these currents generate an SL(2,R) Kac-Moody algebra with level

k = −c/6 can be seen from the commutator of charges,

i[Ua[α], Ub[β]] = εabcη
cdUd[αβ]− k ηab

4π

∫
dφ
(
α′β − αβ′

)
, (3.15)

where ε0+− = −1 and the only non-vanishing components of ηab are η00 = −1/2 and

η+− = η−+ = 1. Using eq. (3.13) we can recover the transformation of the currents leading

to the commutator (3.15). These can be expressed more conveniently as an OPE

Ja(x
+)Jb(0) =

k ηab
(x+)2

+
εabcη

cdJd(x
+)

x+
, (3.16)

which agrees with the expression found in ref. [24] and more readily demonstrates that

we have an ŜL(2,R) algebra. An alternative way of deriving this result is to consider the

transformation of the leading components of the metric as in section 2. The solution for µ

that is consistent with the expression for the currents in eq. (3.14) is given by

µ =
1

kn

(
−2J0 + J−e

nx− + J+e
−nx−

)
. (3.17)

Then the transformation of the currents under the action of the Killing vector ψ can be

obtained from

δψµ = − (Lψg)(0)
++ , (3.18)

where Lψ is the Lie derivative corresponding to ψ. For the Kac-Moody transformations

generated by eq. (3.8) we obtain

δΛµ = (∂+ − µ∂−) Λ + Λ∂−µ, (3.19)

and it is not difficult to check that the transformations of the currents deduced from this

equation are consistent with the commutator (3.15) and the OPE (3.16).

Let us now consider the charge associated with the Virasoro symmetry. Using the

asymptotic Killing vector (3.7) we find

Qε = − 1

2π

∫
dφ ε(x+)

[
L(x+) + Ts(x

+)
]
, (3.20)

where Ts is the twisted Sugawara tensor given by

Ts =
k

2

(
µ∂2
−µ−

1

2
∂−µ∂−µ−

n2

2
µ2

)
+

k

2n
∂+

(
∂2
−µ− n2µ

)
. (3.21)

In terms of the ŜL(2,R) currents the twisted Sugawara tensor can be more conveniently

written as

Ts =
1

2k
ηabJaJb + ∂+J0. (3.22)
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We must note that this expression has been obtained in the semiclassical limit where k is

large. Hence it is not surprising that the first term in eq. (3.22) differs from the standard

form of the Sugawara tensor of ŜL(2,R) where k → k + 2.

As mentioned earlier we identify L with the expectation value of the generator of

Virasoro transformations of the matter plus ghost part of the dual theory. Then the

central charge of the matter and ghost systems can be determined from the anomalous

transformation of L under Virasoro reparametrizations. The latter can be obtained from

the change in the subleading components of the metric using eq. (2.20). Since g
(2)
µν depends

on L and µ, on the left-hand side of this expression we use the transformation of µ given

by eq. (3.18). For the Virasoro generator (3.7) µ transforms as

δεµ = ε∂+µ+ ∂+εµ−
1

n

(
∂2

+ε+ ∂+ε∂−µ
)
. (3.23)

Then, using eq. (2.20) we find that L transforms as

δεL = 2ε′L+ εL′ +
c

12
ε′′′, (3.24)

where c = 3l/2G is the Brown-Henneaux central charge. We have thus obtained the same

result found in the boundary conditions for the conformal gauge: the central charge of the

matter and ghost systems is cM = 3l/2G.

On the other hand, the central charge of the twisted Sugawara tensor is determined

by the ŜL(2,R) algebra and is given by [22]

cp =
3k

k + 2
+ 6k. (3.25)

In the semiclassical limit where our analysis is valid this reduces to cp = −c. This is

consistent with the commutator of charges since the total central charge, ctotal = cM + cp,

vanishes,

i[Qε, Qσ] = Qε′σ−εσ′ . (3.26)

As in section 2, eqs. (3.26) and (3.20) can be used to determine the Ts(x
+)Ts(0) OPE which

is consistent with the current algebra given in eq. (3.16) in the semiclassical approximation.

Mirroring the discussion of section 2 it is also possible to recover the central charge of

the matter and ghost fields by untwisting the Sugawara tensor in eq. (3.20). This is

accomplished by the Killing generator [10]

ξ̃[ε] = ξ[ε] +
1

n
ζ[ε′]. (3.27)

Then in the semiclassical limit the central charge of the Sugawara tensor is cp ∼ O(1) and

the commutator of charges (3.26) picks up a central charge equal to ctotal = cM = 3l/2G.

The last ingredient in the Vir⊗ ŜL(2,R) asymptotic symmetry algebra consists of the

commutators between Virasoro and Kac-Moody charges which are given by

i[Qε, U0[λ]] = −U0[ελ′]− k

4π

∫
dφελ′′,

i[Qε, U+[λ]] = −U+[ελ′ − ε′λ], (3.28)

i[Qε, U−[λ]] = −U−[ελ′ + ε′λ].
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Using eq. (3.13) it is not difficult to check that these expressions are consistent with the

transformation of the currents obtained from eq. (3.23). One can also show that these

transformations follow from the OPEs

Ts(x
+)J0(0) =

k

(x+)3 +
J0

(x+)2 +
∂+J0

x+
, (3.29)

Ts(x
+)J+(0) =

2J+

(x+)2 +
∂+J+

x+
, (3.30)

Ts(x
+)J−(0) =

∂+J−
x−

, (3.31)

which in the large-k limit are a direct consequence of the JaJb OPE given in eq. (3.16). In

particular, this implies that L does not transform under the Kac-Moody symmetry. As in

section 2 this result can be checked from the transformation of the subleading components of

the metric using eq. (2.20). Note, however, that the right-hand side of eq. (2.20) is sensitive

to subleading terms in the the asymptotic Killing vectors. These terms correspond to pure

gauge transformations since their charges vanish, but we find that they are necessary for

consistency of the transformations at subleading order. This is the reason why a pure

gauge term denoted by ( )• has been added to eq. (3.8). Otherwise we would find that

δΛL = F (x+, x−) for some function F , which is clearly inconsistent since the Vir⊗ ŜL(2,R)

algebra is left-moving. For the ŜL(2,R) generator given in eq. (3.8) we find

δΛL = 0, (3.32)

which is consistent with the results obtained above.

The fact that we have obtained a twisted Sugawara tensor in the generator of Virasoro

transformations is consistent with the constraints on the dual theory at the boundary.

There we must impose T+− = 0 on physical states and it is readily seen that T+− in

eq. (3.4) is proportional to J−. Thus, it follows from the constraint that J− is an operator

of weight zero under Virasoro transformations which is precisely what eq. (3.31) is telling

us. Similarly, the constraint T++ = 0 implies that L + Ts must vanish on physical states

so that physical states in the dual theory are singlets of the Virasoro symmetry.

4 Conformal field theory in the lightcone gauge

Let us now turn to the dual theory at the boundary described by

Z =

∫
DφaDµ exp i

{
Sm+g[φa, µ] +

k

16π
Sp[µ]

}
, (4.1)

where k = −cM/6 and cM is the central charge of the matter and ghost systems described

by Sm+g. As in section 2.2, the Polyakov action can be more conveniently written as

Sp = 2

∫ √
|γ|d2x

{
1

2
∂µψ∂

µψ −Rψ
}
, (4.2)
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where we must substitute the expression for ψ given by �ψ = −R. For the lightcone

gauge (3.1) we have ψ = − log(∂−f) + nx− from which it follows that

Sp = 2

∫
d2x

{
∂2
−f

∂−f
∂−µ− n2µ

}
. (4.3)

The stress-energy tensor is given by

T++ = t++ − µ2t−− −
k

2

[
(∂+ − 2µ∂−)(∂−µ+ nµ)−

(
µ∂2
−µ−

1

2
∂−µ∂−µ−

n2

2
µ2

)]
,

T+− = t+− − µt−− +
k

2

(
∂2
−µ+ n∂−µ

)
, (4.4)

T−− = t−− −
k

2

(
{f, x−}+

n2

2

)
where we have used the equations of motion T−− = 0 and tµν is the stress-energy tensor

of the matter and ghost systems. Eq. (4.4) agrees with the Brown-York stress-energy

tensor (3.4), after normalization by a factor of k/2, provided that (1) t+− − µt−− = 0, (2)

L̄ = 〈Φ|t−−|Φ〉 and (3) L =
〈
Φ|t++ − µ2t−−|Φ

〉
10.

The first condition follows from conformal invariance of the matter and ghost systems.

In order to see this consider writing the boundary metric (3.1) as

γµν = enx
−

(ηµν − δµ+δν+µ) , (4.5)

where ηµν is the metric of flat space. Then the lightcone gauge may be thought as a

perturbation of a conformal field theory by a marginal operator of weight (1,1)

S[φa, γ] = S[φa, η] +

∫ √
|η|d2xµt−− (4.6)

Due to this perturbation the hitherto vanishing t+− component of the stress-energy tensor

receives a contribution equal to µt−− so that condition (1) is satisfied.

The second condition constraints t−− to obey (3.5)

(∂+ − µ∂−)t−− − 2t−−∂−µ = 0. (4.7)

Since t+− = µt−−, eq. (4.7) follows from covariant conservation of the stress-energy tensor

of the matter and ghost action Sm+g. Hence condition (2) is also satisfied and from T−− = 0

and the identity ∂3
−µ ≡ (∂+ − µ∂−) {f, x−} − 2{f, x−}∂−µ we recover the equation of

motion of µ

∂3
−µ− n2∂−µ = 0. (4.8)

We now turn to the condition (3) which requires L =
〈
Φ|t++ − µ2t−−|Φ

〉
. We would

like to show that t++ − µ2t−− is the only combination of weight (2,0) operators that leads

to a Virasoro algebra. Let us consider the generating functional of connected diagrams

10Here 〈Φ| . . . |Φ〉 denotes the expectation value on a state of the matter and ghost system.
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of the matter plus ghost action Sm+g. In two dimensions this is given by the Polyakov

action [11] which may also be written as

Sp = − cM
96π

∫∫
|γ|

1
2 |γ′|

1
2 d2xd2x′R(x)G(x, x′)R(x′), (4.9)

where γµν is the metric at the boundary and G(x, x′) is the scalar Green function satisfying

|γ|
1
2�G(x, x′) = δ(2)(x− x′). (4.10)

The solution to this equation is given by

G(x, x′) =
1

4π
log |x+ − x′+||f(x)− f(x′)|, (4.11)

where we recall that µ = ∂+f/∂−f .

We are interested in the two-point functions of the stress energy tensor, i.e.〈
tµν(x)tρσ(x′)

〉
=

(4π)2√
|γ|
√
|γ′|

δ2Sp
δγµν(x)δγρσ(x′)

. (4.12)

It is convenient to write the Polyakov action as

Sp = − cM
96π

∫
|γ|

1
2 d2xR(x)ϕ(x), �ϕ = R, (4.13)

whereupon the second-order variation of the action, omitting variations that lead to contact

terms in the two-point function, reads

δ2Sp = − cM
48π

∫
d2x

[
δ(|γ|

1
2R)δϕ+

1

2
|γ|

1
2Rδ2ϕ

]
, (4.14)

and δϕ, δ2ϕ are obtained from the variation of the second equation in (4.13).

Modulo contact terms the two-point functions of the stress-energy tensor are then

given by 〈
t++t

′
++

〉
=

c/2

(x+ − x′+)4
+
c/2(∂+f)2(∂′+f

′)2

(f − f ′)4
, (4.15)

〈
t++t

′
−−
〉

=
c/2(∂+f)2(∂′−f

′)2

(f − f ′)4
, (4.16)

〈
t−−t

′
−−
〉

=
c/2(∂−f)2(∂′−f

′)2

(f − f ′)4
, (4.17)

where primed quantities correspond to primed coordinates. We can thus identify the gen-

erator of Virasoro transformations of the matter and ghost action with

L =
〈
Φ|t++ − µ2t−−|Φ

〉
, (4.18)

since its two-point function reproduces the appropriate anomalous term that leads to the

Virasoro algebra 〈
L(x+)L(0)

〉
=
cM/2

(x+)4
. (4.19)
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Thus the Brown-York stress-energy tensor matches the expectation value of the stress-

energy tensor of the dual theory at the boundary. This is not too surprising since the

Polyakov action in the dual theory guarantees that the stress-energy tensor is covariantly

conserved and that its trace reproduces the quantum anomaly. In particular, having iden-

tified L with the generator of Virasoro transformations of the matter and ghost fields, their

central charge can be obtained in the bulk from the anomalous transformation of L and is

given by cM = 3l/2G in the semiclassical approximation.

The Polyakov action is invariant under Kac-Moody transformations where

δx− = Λ(x), δΛµ = (∂+ − µ∂−)Λ + Λ∂−µ, (4.20)

and Λ satisfies ∂3
−Λ − n2∂−Λ = 0. Therefore the parameter Λ may be written as in

eq. (3.12). The Noether currents, computed from eq. (4.3) and normalized by a factor of

2π, are then given by

J̃−0 =
k

2n
(∂2
−µ− n2µ)− 1

n
µΠ, J̃+

0 =
1

n
Π (4.21)

J̃−± =
k

2n
e±nx

− (
∂2
−µ∓ n∂−µ

)
− 1

n
µΠ, J̃+

± =
1

n
e±nx

−
Π (4.22)

where the upper indices are spacetime indices and we have defined Π = −k
2

(
{f, x−}+ n2

2

)
to simplify these expressions. The Noether currents of the matter plus ghost action jia
can be determined as follows. In the absence of the Polyakov action these symmetries are

gauged at the classical level since they correspond to a combination of diffeomorphisms

and Weyl transformations introduced by making the metric dynamical. Therefore the

ŜL(2,R) currents must vanish on-shell. Since the lightcone parameter µ enters as a La-

grange multiplier that sets t−− = 0 (see eq. (4.6)), the currents must be proportional

to t−−. Furthermore, since the Kac-Moody algebra is left-moving, we expect j−a to have

weight 1 under Virasoro transformations and, from the conservation equation, that j+
a has

weight 0. Since t−− has weight 0 as well, we have

j−a ∝
1

n
µt−−, j+

a ∝
1

n
t−−. (4.23)

The relative sign between these currents and those given in eqs. (4.21), (4.22) is determined

from the variation of the full action,

δS = δSm+g +
k

16π
δSp =

∫
d2x

{
δφa[φa] + δµ

[
t−− −

k

2

(
{f, x−}+

n2

2

)]}
, (4.24)

where [φa] represents the equations of motion of the matter and ghost fields φa. From the

non-linear part of δµ in eq. (4.20) we have

δS =

∫
d2x ∂− [Λµ (t−− + Π)]− ∂+ [Λ (t−− + Π)] + . . . (4.25)

where we see that both t−− and Π contribute with the same coefficient to the Kac-Moody

currents. Thus,

j−a = − 1

n
µt−−, j+

a =
1

n
t−−, (4.26)
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and, using the equations of motion, the Kac-Moody currents of the matter, ghost, and

Polyakov actions, Ja = ja + J̃a are given by

J−0 =
k

2n

(
∂2
−µ− n2µ

)
, J+

0 = 0, (4.27)

J−± =
k

2n
e±nx

− (
∂2
−µ∓ n∂−µ

)
, J+

± = 0. (4.28)

Hence, the J−a components match the Kac-Moody currents found in the bulk (3.14). That

these currents generate an ŜL(2,R) current algebra with level k = −cM/6 (3.16) was

originally found in refs. [12, 24, 25] and follows from the parametrization of µ given in

eq. (3.17) and the transformation of µ given in eq. (4.20).

The dual theory is also invariant under Virasoro transformations where,

δx+ = ε(x+), δx− = −ε
′(x+)

n
, δµ = ∂+ (εµ)− ε′′(x+)

n
− ε′(x+)

n
∂−µ, (4.29)

Following arguments similar to those used in the derivation of the Kac-Moody currents,

we find that on-shell, the Virasoro current Hµ, where µ is a spacetime index, is given by

H− = t++ − µ2t−− + Ts, H+ = 0, (4.30)

where Ts is the twisted Sugawara tensor of eqs. (3.21), (3.22) with central charge cp = 6k.

Hence in the semiclassical limit the total central charge ctotal = cM + cp vanishes, in

agreement with the computation in the bulk. In the quantum theory we expect Ts to be

given by,

Ts =
1

k + 2
ηabJaJb + ∂+J0, (4.31)

where Ja are the Kac-Moody currents of eq. (3.14) and the central charge becomes

cp =
3k

k + 2
+ 6k. (4.32)

Then the OPEs between the Sugawara tensor and the Kac-Moody currents follow directly

from the ŜL(2,R) algebra and agree with the expressions found in the bulk.

As discussed in section 3 the appearance of the twisted Sugawara tensor in the gen-

erator of Virasoro transformations agrees with the gravitational constraints on the dual

theory. Indeed, from eq. (4.4) we have11

0 = T+− ∝ J−, 0 = T++ = t++ − µ2t−− + Ts +O(J−). (4.33)

which constraints J− to be an operator of weight 0 and that all physical states are singlets

under Virasoro transformations. The first constraint is consistent with the appearance of

the the twisted Sugawara tensor in the generator of Virasoro transformations, while the

second constraint requires that physical states are singlets of the Virasoro symmetry. This

result can be recovered in the bulk and is a consequence of the vanishing ξr component

11Note that these equations hold for any value of n.
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of the asymptotic Killing vector (3.7). A massive scalar field in AdS3 with boundary

conditions given by eq. (3.2) obeys the same asymptotic behavior as AdS3 with standard

Brown-Henneaux boundary conditions (2.42). Thus, under Virasoro transformations a

scalar field in the bulk transforms asymptotically as

Lεφ ∼ r∆−

(
ε ∂+α−

1

n
ε′∂−α

)
+ r∆+

(
ε ∂+β −

1

n
ε′∂−β

)
, (4.34)

where we can see that the Virasoro weight of all scalar operators vanishes. On the other

hand, under Kac-Moody transformations generated by J0, i.e. by the Killing vector (3.8)

with Λ = λ0(x+), we have

Lεφ ∼ r∆−

(
∆−
2
λ0α+ λ0∂−α

)
+ r∆+

(
∆+

2
λ0β + λ0∂−β

)
, (4.35)

from which we conclude that the ŜL(2,R) weight is given by λ = h = ∆+/2 in agreement

with the semiclassical limit of the result obtained in ref. [11],12

λ = h+
λ(1− λ)

k + 2
. (4.36)

As in the conformal gauge studied in section 2.2, we expect the theory to be non-

unitary, in this case because ŜL(2,R) does not have unitary representations (see e.g. [26]).

Note however that the ŜL(2,R) algebra is broken since the stress-energy tensor is twisted

and the ŜL(2,R) currents are not operators of weight one (3.31); furthermore, note that

the symmetry is realized non-linearly (3.31). Hence the standard arguments from represen-

tation theory used to establish the non-unitarity of the theory do not apply. Nevertheless,

even if the theory is not unitary we have constraints that can in principle be used to remove

states with negative norm from the spectrum. We leave a detailed analysis of the unitarity

of the theory for future work.

It is important to note that unlike section 2.2 where we considered the conformal

gauge, in the lightcone gauge the gravitational degree of freedom µ couples to matter and

ghosts (4.6). Hence it is instructive to consider a couple of examples that realize some of

the results obtained in this section. The first example is a free scalar field whose action is

given by

Sm =
1

2

∫ √
|γ|d2xγµν∂µφ∂νφ =

∫
d2x (−∂+φ∂−φ+ µ∂−φ∂−φ) . (4.37)

The equation of motion reads

0 = ∂−∇+φ, ∇+ = ∂+ − µ∂−. (4.38)

and it is not difficult to show that t−− = 2π(∂−φ∂−φ) obeys eq. (4.7) since it is a conse-

quence of covariant conservation of the stress-energy tensor. The action is left invariant by

the ŜL(2,R) transformations

δx− = Λ(x), δφ = Λ∂−φ, δµ = (∂+ − µ∂−)Λ + Λ∂−µ, (4.39)

12Note that in the case n = 0 we have Λ = λ0(x+)x− but also ζr = −r∂−Λ/2 for the r-component of

the Kac-Moody Killing vector. Hence eq. (4.35) is independent of n and we recover the result λ = h of [11]

when n = 0.
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where Λ(x) is given by eq. (3.12). The Noether currents jµa , where µ is a spacetime index,

are given by

j−a = −2π

n
µ∂−φ∂−φ, j+

a =
2π

n
∂−φ∂−φ. (4.40)

and agree with the expression obtained under general arguments (4.26).

The action (4.37) is also invariant under the δx+ = ε(x+) reparametrizations where

the fields transform as

δφ = ε∂+φ, δµ = ∂+εµ+ ε∂+µ. (4.41)

Hence the action is invariant under Virasoro transformations where δx+ = ε(x+), δx− =

−1/nε′(x+) and φ transforms in the obvious way. When the Polyakov action is included,

the full generator of Virasoro transformations, Hµ, is given by

H− = t++ − µ2t−− + Ts, H+ = 0. (4.42)

Here we identify L = t++ − µ2t−− with the generator of Virasoro transformations of the

free scalar field. Using the expressions for the stress-energy tensor tµν of the free scalar

theory, L can be more conveniently written as,

L = t++ − µ2t−− = 2π(∇+φ)2, (4.43)

which is a left-moving operator thanks to the equations of motion of φ. We can also check

that its OPE contains the appropriate 1/(x+)4 term found in eq. (4.19). To see this note

that the φ(x+)φ(0) OPE can be obtained from the Green function given in eq. (4.11).

Therefore the OPE of ∇+φ is given by

∇+φ(x)∇+φ(0) = − 1

4π

1

x+
, (4.44)

and it is readily seen that L obeys the expected OPE

L(x+)L(0) =
1/2

(x+)4
+

2L(0)

(x+)2
+
∂+L(0)

x+
. (4.45)

As a second example let us consider a free Majorana fermion in the lightcone gauge,

S =
1

2

∫ √
|γ|d2x iψ̄γµe µ

a ∂µψ =

∫
d2xψ− (∂+ − µ∂−)ψ− + ψ+∂−ψ+, (4.46)

where ψ̄ = iψ†γ0, ψ† = (ψ− ψ+), and the gamma matrices and zweibein are given by

γ0 =

(
0 −1

1 0

)
, γ1 =

(
0 1

1 0

)
, eaµ =

(
1 µ

0 1

)
. (4.47)

The equations of motion are readily seen to be

∂−ψ+ = 0, (∂+ − µ∂−)ψ− −
1

2
∂−µψ− = 0, (4.48)

and it is easy to check that t−− = −π(ψ−∂−ψ−) satisfies eq. (4.7).
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The action is invariant under ŜL(2,R) transformations δx− = Λ(x) where

δψ+ = 0, δψ− = Λ∂−ψ +
1

2
∂−Λψ, δµ = (∂+ − µ∂−)Λ + Λ∂−µ. (4.49)

Using the equations of motion, the corresponding Noether currents are given by

j−a = −π
n
µψ−∂−ψ− j+

a =
π

n
ψ−∂−ψ−, (4.50)

in agreement with eq. (4.26). The action is also invariant under the chiral transformations

δx+ = ε(x+) where the fields transform as

δψ+ = ε∂+ψ+ +
1

2
∂+εψ+, δψ− = ε∂+ψ−, δµ = ∂+εµ+ ε∂+µ. (4.51)

Hence the Virasoro transformation parametrized by δx+ = ε(x+) and δx− = −1/nε′(x+)

is also a symmetry of the theory. As for the free scalar field the full generator of Virasoro

transformations, which includes contributions from the Polyakov action, is given by

H− = t++ − µ2t−− + Ts, H+ = 0, (4.52)

where we identify L = t++ − µ2t−− with the generator of Virasoro transformations of the

matter and ghost fields. For the free fermion theory L is given by

L = t++ − µ2t−− = −πψ+∂+ψ+, (4.53)

which is the T++ component of the stress-energy tensor of a free fermion field in a flat

background. Since the equation of motion of ψ+ does not change in the lightcone gauge,

it is readily seen that L is conserved and that the OPE L(x+)L(0) is given by

L(x+)L(0) =
1/4

(x+)4
+

2L(0)

(x+)2
+
∂+L(0)

x+
. (4.54)

5 Conclusions

In this paper we have studied the recently-proposed free boundary conditions for AdS3

and shown they reproduce many results of 2D quantum gravity in the conformal and light-

cone gauges. An interesting aspect of these boundary conditions is that they enhance the

asymptotic symmetry group of AdS3 and support both Virasoro and Kac-Moody algebras.

In particular, we have shown that the Virasoro and Kac-Moody charges of the bulk theory

match the corresponding quantities at the boundary. We have seen that the appropriate

generator of Virasoro transformations has a vanishing central charge, in agreement with

the dual theory. This generator is also consistent with the constraints imposed on the dual

theory, which require that physical states are singlets under Virasoro transformations.

It is interesting to note that the Kac-Moody currents depend only on the boundary

data, i.e. on the gravitational degrees of freedom, ϕ or µ. Hence BTZ solutions have

vanishing Kac-Moody charges and the standard form of Cardy’s formula can be used to

match the entropy of BTZ black holes. In particular, the lightcone gauge admits only
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extremal BTZ black holes provided n = 0. This is consistent with the single copy of the

Virasoro algebra found at the boundary.

This paper is a first step towards more rigorous checks of the correspondence and it

would be interesting to explore other aspects of 2D quantum gravity from holography.

Here we only considered a boundary with either a cylinder or a torus topology. Since

the new asymptotic symmetries defined by the new boundary conditions studied here act

only on the gravitational sector and two-dimensional gravity is topological, an obvious

interesting avenue for future research is to extend our study to boundaries with more

complex topology. Another interesting question is to understand if any relation exists

between boundary conditions with dynamical gravity and a near-horizon description of

four-dimensional Schwarzschild or Kerr black holes.
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