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Continuous-wave pumped optical microresonators have been vastly exploited to generate a frequency comb

(FC) utilizing the Kerr nonlinearity. Most of the nonlinear materials used to build photonic platforms exhibit

nonlinear losses such as multiphoton absorption, free-carrier absorption, and free-carrier dispersion which

can strongly affect their nonlinear performances. In this work, we model the Kerr FC based on a modified

Lugiato-Lefever equation (LLE) along with the rate equation and develop analytical formulations to make a quick

estimation of the steady state, bistability, self-pulsation, and modulation instability (MI) gain and bandwidth in

the presence of nonlinear losses. The analytical model is valid over a broad wavelength range as it includes the ef-

fects of all nonlinear losses. Higher-order (>3) characteristic polynomials of intracavity power describing the

steady-state homogeneous solution of the modified LLE are discussed in detail. We derive the generalized

analytical expressions for the threshold (normalized) pump detuning that initiates the optical bistability when

nonlinear losses are present. Free-carrier dispersion-led nonlinear cavity detuning is observed through the reverse

Kerr tilt of the resonant peaks. We further deduce the expressions of the threshold pump intensity and the range of

possible cavity detuning for the initiation of the MI considering the presence of nonlinear losses. The proposed

model will be helpful in explaining several numerical and experimental results which have been previously

reported and thereby will be able to provide a better understanding of the comb dynamics.

DOI: 10.1103/PhysRevA.99.033848

I. INTRODUCTION

The optical frequency comb (FC) is a set of equidistant

and coherent frequency lines in the ultraviolet, visible, and

infrared regions [1], which can be used in precision measure-

ment [2]; microwave signal synthesis [3]; optical communica-

tion [4,5]; sensing, spectroscopy, and molecular fingerprinting

[2,4,6]; astronomy [7]; entangled photon pair generations

[8]; or as an optical ruler [1,4,9]. Mode-locked femtosecond

lasers and fiber lasers have extensively been used for the

generation of optical FC [10,11]; until recently the parametric

frequency conversion using a continuous wave (CW) optical

pump in optical microcavities (microspheres, microdisks, and

microring resonators) has revolutionized the technology for

comb generation [12,13]. Eventually, the device footprint has

been reduced to a few hundred micrometers while a repetition

rate as high as >10 GHz can easily be achieved [12,13].

Varieties of materials have been used along with different

novel fabrication techniques to design ultrahigh-quality-factor

microresonators [4,14,15] for low-threshold, stable FC gen-

eration; however, the search for the most suitable material

is still on. FC generation in crystalline fluorides [16–19],

Hydex glass [20], diamond [21], quartz [22], aluminum nitride

[23,24], lithium niobate [25], AlGaAs [26], silica [4,12], and

silicon nitride [27] have already been demonstrated. Apart

from this, FC is also demonstrated in organically modified

*raktim@ece.iitkgp.ernet.in

silica microcavities by Shen et al. in 2017 [28] with a very

low threshold power.

Silicon-based platforms are often preferred due to several

advantages such as tight optical confinement, high Kerr coeffi-

cient, transparency over a broad wavelength range (telecom to

mid-IR), low cost, and most importantly its compatibility with

the existing microelectronics industry [29]. High-refractive-

index (RI) contrast between silicon and other cladding ma-

terials (air, silica) results in strong optical confinement in

silicon waveguides which allows sharp waveguide bends that

help to reduce the device footprint [30]. Tight confinement

also enhances the effective nonlinearity which facilitates the

realization of different nonlinear phenomena with a very

low input power [31,32]. It has been shown that efficient

dispersion engineering in slot waveguides has the potential

to achieve broadband frequency combs [33]. Silicon, on the

other hand, exhibits strong two-photon absorption (2PA) when

operating below a 2.2-μm wavelength [34,35], which has

been exploited to realize all-optical logic operations [36] as

well as all-optical signal processing [37]. Note that nonlinear

RI, 2PA, free-carrier absorption, etc., depend on the material

structure, band-gap energy, and wavelength of operations.

The allotropes of silicon, viz., crystalline silicon (c-Si), and

amorphous silicon (a-Si) having band-gap energies of 1.1

and ∼1.6−1.7 eV, respectively, are being used in various

optical applications [38]. Although optical waveguides made

of c-Si have a very low linear propagation loss (0.2–1 dB/cm)

and high χ (3) nonlinearity, high 2PA reduces the figure of

merit (FOM) of c-Si in nonlinear applications [32], thereby
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restricting the use of c-Si in most of the nonlinear and

quantum photonic applications in the telecom and near-IR

(NIR) wavelength ranges [39]. a-Si is easier to deposit and

therefore has been used to fabricate slot waveguides [40]. The

waveguides made of a-Si have relatively higher propagation

loss (∼6−7 dB/cm) due to high material absorption [40]. If

hydrogenated (a-Si:H), the effective band (mobility) gap of

a-Si can increase up to 1.9 eV [38]. Interestingly, though the

effective band-gap energy of a-Si or a-Si:H is much higher

than the c-Si, still a-Si and a-Si:H exhibit comparatively larger

2PA in the C band due to the amorphous nature of the material

(i.e., the presence of exponential band tails) [38]. However,

overall FOM for a-Si:H can be improved by five to 15 times

as the nonlinear RI of a-Si:H is an order higher than that of

c-Si. [38].

Apart from silicon, GaAs, AlGaAs, Ge, etc., have 2PA in

the C band owing to their band-gap energies, though AlGaAs

is identified as one of the potential nonlinear materials for FC

generation due to its very high nonlinear refractive index [26]

and is popularly known as the “silicon of nonlinear optics”!

SiC, chalcogenide glasses such as As2S3, As2Se3 possess

three-photon absorption (3PA), whereas GaN has four-photon

absorption (4PA) in telecommunication wavelengths. Silicon

also exhibits 3PA and 4PA losses in mid-IR and far-IR wave-

length ranges [41]. Due to its low nonlinear losses silicon-

nitride (Si3N4) is often a preferred choice over silicon for

nonlinear applications [42] at an expense of Kerr coefficient

(an order less than the silicon). Recently, an octave-spanning

frequency comb has been demonstrated both in Si3N4 [43]

and Si microring resonators (MRRs) [44,45]. Thus, a more

realistic theoretical study on comb dynamics applicable for a

broad wavelength range of operation becomes indispensable

where all the nonlinear losses and higher-order dispersion

terms are being considered.

Nonlinear losses include multiphoton absorptions (2PA,

3PA, 4PA), free-carrier absorption (FCA), and free-carrier

dispersion (FCD). A generalized mean-field Lugiato-Lefever

equation (LLE) can be used to model the Kerr FC in a

high-Q, high-finesse optical microcavity where the dispersion,

nonlinear phase accumulation over a round trip, and pump

detuning are low [46]. It is known that a temporal cavity

soliton (CS) generates Cherenkov radiation (dispersive wave)

in the presence of higher-order dispersions which leads to

octave-spanning FC [46]. Recently, numerical studies have

shown that FCA-induced FCD causes nonlinear cavity de-

tuning which in turn helps to generate optical FC even in

the absence of linear detuning of the CW pump [47]. 2PA

in telecom-NIR and 3PA with FCA and FCD in short- and

mid-IR wavelength range generally inhibit the parametric

oscillation in a silicon waveguide [41]. To combat free-

carrier-induced nonlinear losses, external reverse bias has

been employed across the p-i-n junction [44] which has been

fabricated along the cross section of the Si waveguide. The

external bias minimizes the FCA-FCD effects by sweeping

the generated free carriers. This method facilitates broadband

(2.1−3.5 μm [44] and 2.4−4.3 μm [48]) FC over the mid-IR

wavelengths. Breather solitons have been demonstrated both

in Si3N4 and Si waveguides and the effect of 3PA along with

the corresponding FCA-FCD is taken into consideration in the

theoretical models [48,49]. Self-pulsating phenomena in the

presence of 2PA are also discussed [50]. However, a detailed

theoretical study that includes the effects of all nonlinear

losses and free carriers on the generation of Kerr comb is still

scarce.

In this work we obtain the steady-state homogeneous

solutions of free-carrier-driven generalized mean-field LLE

and report the reverse Kerr tilt as a consequence of FCA-

FCD-induced nonlinear cavity detuning [51]. The character-

istic polynomials for the steady-state homogeneous solutions

of the LLE possessing all the nonlinear losses are derived

having an order greater than 3 instead of the well-known

cubic polynomial [52]. In subsequent sections, we discuss the

threshold detuning to initiate the bistability in the presence

of multiphoton absorption and free-carrier effects, which is

a necessary condition to obtain FC. Finally, we generalize

the existing formulations [52–54] to study the modulation

instability (MI) in the presence of higher-order dispersion

terms, 2PA, 3PA, 4PA, FCA, and FCD. Most of the param-

eters used in simulations are taken from [41]. To validate

the analytical model we solve the modified LLE along with

the coupled rate equations numerically through the split-step

Fourier method. Our theoretical study can explain several

experimental results [41,43,48] and thereby provides an in-

depth understanding of the FC dynamics in the most practical

scenarios.

II. THEORETICAL MODEL

Microresonator-based Kerr FC can be modeled by mean-

field LLE. Solving the LLE is computationally less intensive

than other methods [46,55] while the numerical results ob-

tained from LLE match with the experiments reasonably well

even for octave-spanning FC.

Normalization of LLE

The generalized mean-field Lugiato-Lefever equation in-

cluding multiphoton absorption, FCA, and FCD to model the

Kerr comb along with the rate equation can be written as [41]

tR
∂E (t, T )

∂t
= −(α + iδ0)E (t, T ) + iL

∑

k�2

βk

k!

(

i
∂

∂T

)k

E (t, T ) +
(

1 +
i

ω0

∂

∂T

)

×
(

iγ L|E (t, T )|2 −
β2PAL

2Aeff

|E (t, T )|2 −
β3PAL

3A2
eff

|E (t, T )|4

−
β4PAL

4A3
eff

|E (t, T )|6
)

E (t, T ) −
σL

2
(1 + iμc )Nc(t, T )E (t, T ) +

√
θEin, (1)
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∂Nc(t, T )

∂T
=

β2PA

2h̄ω0

|E (t, T )|4

A2
eff

+
β3PA

3h̄ω0

|E (t, T )|6

A3
eff

+
β4PA

4h̄ω0

|E (t, T )|8

A4
eff

−
Nc(t, T )

τeff

, (2)

where τ , T, and tR represent the fast time, slow time, and the

round-trip time, respectively. tR = FSR−1 where FSR is the

free-spectral range of the cavity. E(t ,T) is the field amplitude

whereas α, �0, L, βk , ω0, Ein denote the dimensionless total

round-trip loss coefficient, external pump detuning, cavity

perimeter length, kth order dispersion coefficient, the angular

frequency of the CW pump and input pump amplitude, respec-

tively. βnPA(n = 2, 3, 4), σ , μc, Nc, Aeff , teff , and h̄(=h/2π )

are the multiphoton absorption coefficient, FCA, FCD, free-

carrier density, effective mode area, carrier lifetime, and re-

duced Planck’s constant, respectively. At first, we neglect the

self-steepening term and normalize [46] the LLE and the rate

equation including multiphoton absorption (nPA), FCA, and

FCD terms in convenient compact series forms, as given by

Eqs. (3) and (4), respectively, where n runs from 2 to 4.

∂u

∂ξ
= −(1 + i�)u −

1

2
(1 + iK )φcu − i

s

2

∂2u

∂τ 2
+
∑

k�3

dk

k!

∂ku

∂τ k

+ i|u|2u −
4
∑

n=2

Qn

n
|u|2(n−1)u + S, (3)

∂φc

∂τ
=

4
∑

n=2

θcn
|u|2n −

φc

τc

. (4)

u(ζ , τ ),ξ , �, K, φc, s, dk , Qn (n = 2, 3, 4), S,

θcn(n = 2, 3, 4), and τc are the normalized- intracavity

field amplitude, slow time, fast time, pump detuning, FCD

coefficient, free-carrier density, second- and higher-order

dispersion terms, multiphoton absorption coefficients, pump

amplitude, FCA coefficients, and normalized carrier lifetime,

respectively, where the normalization factors are given in

[56]. One can easily calculate the values of normalized

parameters that correspond to the experimentally obtained

parameters from Table 2 of Ref. [56]. As the carrier

lifetime (teff ) is usually greater than the round-trip time

(tR), one should consider the carrier accumulation over

successive round trips through the boundary condition,

Nc(t,−tR/2) = Nc(t + �t,+tR/2). Similarly, tc is also

greater than the normalized cavity round-trip time

t ′
R(= tR/LD) and φc(ξ,−t ′

R/2) = φc(ξ + �ξ,+t ′
R/2). At

the steady state, φc(ξ,−t ′
R/2) = φc(ξ + �ξ,+t ′

R/2) = φ0

where φ0 is the steady-state free-carrier concentration.

Equations (3) and (4) can be further simplified by assuming

the dominant multiphoton absorption terms only in the

operating pump wavelength range. This assumption holds

satisfactorily true when the nonlinear losses either inhibit

the formation of FC or significantly reduce the span of the

frequency comb. Nevertheless, Eqs. (3) and (4) are more

suitable if the FC is octave spanned. Therefore, Eqs. (3) and

(4) that include only the dominant nPA, FCA, FCD, and rate

equations can be rewritten as

∂u

∂ξ
= −(1 + i�)u −

1

2
(1 + iK )φcu − i

s

2

∂2u

∂τ 2

+
∑

k�3

dk

k!

∂ku

∂τ k
+ i|u|2u −

Qn

n
|u|2(n−1)u + S, (5)

∂φc

∂τ
= θcn

|u|2n −
φc

τc

, (6)

where n = 2 in the case of 2PA is dominant, n = 3 when 3PA

is significant, and n = 4 when 4PA is the dominant nonlinear

loss mechanism. As an example, depending upon the band-

gap energy of silicon (i.e., Eg ∼ 1.1 eV), only 2PA, 3PA, or

4PA is significant at the operating wavelength λ < 2.2 μm

(telecommunication and near-IR wavelength), λ > 2.2 μm to

λ < 3.3 μm (short-wavelength IR) and λ > 3.3 μm (mid-IR),

respectively, for silicon waveguides. Note that the operating

wavelength range depends upon the doping concentration of

the intrinsic material of the optical waveguide [44]. Free carri-

ers are generated through multiphoton absorption that induces

additional FCA losses to the system. FCA is associated with

the FCD as free carriers are also able to modify the refractive

index of the medium [41,44]. Particularly, if the intensity of

the input incident pulse is very high, the effects of FCA and

FCD will be crucial. However, in suitable conditions such as

low pulse energy or in the presence of external bias that is

able to sweep the free carriers, the effects of FCA-FCD can be

neglected [41]. The carrier evolution given in (4) with respect

to the slow time can be rewritten in the following form after

including the boundary condition:

∂φc

∂ξ
= θcn

(

1

tR

∫

tR
2

− tR
2

|u|2ndτ

)

−
φc

τc

≈ θcn
|u|2n −

φc

τc

. (7)

The approximation given in Eq. (7) works reasonably well

at steady state or at the onset of both the self-pulsation

(SP) and the MI. Realistic values of different parameters are

taken from [41] and normalized [56]. In our simulations, the

waveguide area and the effective area (Aeff ) are equivalents

[41,57].

III. STEADY-STATE SOLUTIONS

We find the steady-state (∂u/∂x = 0), stationary ∂u/∂τ =
0) homogeneous solutions of Eq. (5). In the steady state [58]

the wave amplitude u follows the relationship with the pump

amplitude S given by Eq. (8).

u =
S

(1 + i�) + 1
2
(1 + iK )

∑4
n=2 Cn|u|2n − i|u|2 +

∑4
n=2

Qn

n
|u|2(n−1)

. (8)
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If the intracavity power and input pump power are denoted by Y (=|u|2) and X (=|S|2), respectively, the steady-state,

stationary, and homogeneous solution of LLE can be expressed by the characteristics polynomial of Y having a degree of (2n + 1)

and can be written as Eq. (9) where n varies from 2 to 4 if 2PA, 3PA, and 4PA all are present. Thus the characteristic polynomial

satisfies a nonic polynomial of Y.

X = (1 + �2)Y − 2�Y 2 + Y 3 + 2

4
∑

n=2

Qn

n
Y n + (1 + �K )

4
∑

n=2

CnY n+1 − K

4
∑

n=2

CnY n+2 +
4
∑

n=2

Q2
n

n2
Y 2n−1

+
1

4
(1 + K2)

4
∑

n=2

C2
nY 2n+1 +

4
∑

n=2

4
∑

q=2

CnQq

q
Y n+q. (9)

In case only one out of 2PA, 3PA, and 4PA is dominant

along with the FCA and FCD, Eq. (9) can be simplified as

X = (1 + �2)Y − 2�Y 2 + Y 3 +
2

n
QnY n

+Cn(1 + �K )Y n+1 − KCnY n+2 +
Q2

n

n2
Y 2n−1

+
CnQn

n
Y 2n +

C2
n

4
(1 + K2)Y 2n+1. (10)

Equation (10) can further be reduced in Eq. (11) in the

presence of only multiphoton absorption, whereas FCA and

FCD are negligible.

X = (1 + �2)Y − 2�Y 2 + Y 3 +
2

n
QnY n +

Q2
n

n2
Y 2n−1. (11)

Equation (12) is the steady-state stationary solution of LLE

while multiphoton absorption along with FCA is considered

while the effect of FCD can be neglected.

X = (1 + �2)Y − 2�Y 2 + Y 3 +
2

n
QnY n + CnY n+1

+
Q2

n

n2
Y 2n−1 +

CnQn

n
Y 2n +

C2
n

4
Y 2n+1. (12)

It is clearly visible from Eq. (12) that the steady-state,

stationary solutions become quantic, septic, and a nonic poly-

nomial of Y in the presence of either 2PA, 3PA, or 4PA

along with the corresponding FCA-FCD, respectively. Note

that all these equations (9)–(12) are reduced to the well-known

cubic polynomial of Y if all the nonlinear losses are neglected

[52], as given in Eq. (13). Cn is defined as the product of

θcn and the τc. Thus, the polynomial of degree (2n + 1 > 3)

accounts for the steady-state homogeneous solutions of LLE

for multiphoton absorptions in the presence of FCA and FCD.

X = [(1 + �2)Y − 2�Y 2 + Y 3]. (13)

IV. BISTABILITY AND KERR TILT

Different important features such as the threshold pump

power and threshold pump detuning that initiate the Turing

pattern and eventually the stable comb formation can be

retrieved from the bistability curve and the Kerr tilt which

are obtained from the steady-state behavior of LLE [52–54].

In addition, the dynamics of FC can partially be understood

through Kerr tilt and the bistability curve as the cavity soliton

solutions of LLE result from the coexistence of patterned and

CW solutions [58].

A. Threshold condition to initiate optical bistability

It is known that the minimum value of the normalized

cavity detuning � that can initiate the optical bistability in the

absence of all the nonlinear losses is
√

3 [52–54]. Multiphoton

absorption along with FCA-FCD changes the threshold value

of the cavity detuning. It is shown that in the presence of

2PA and FCA-FCD, the steady-state homogeneous solution

of the LLE satisfies the quintic polynomial of Y. However, if

the FCA and FCD are negligible, the polynomial reduces to a

cubic polynomial having the 2PA coefficient (Q2 �= 0, C2 = 0,

K = 0), which is given by

X = (1 + �2)Y + (Q2 − 2�)Y 2 +
{

1 +
Q2

2

4

}

Y 3. (14)

In this case, as Eq. (14) is a cubic polynomial of Y, it is

possible to find out an analytical expression of the threshold

value of the normalized cavity detuning that initiates the

optical bistability. Equating the dX/dY = 0, one can obtain

the value of detuning beyond which the intracavity power will

be multivalued, which is given by Eq. (15):

�± �
8Q2

4 − 3Q2
2

±
√

3

4 − 3Q2
2

(

Q2
2 + 4

)

, (15)

negative values of � being neglected. We calculate the thresh-

old value of � from Eq. (15) and plot it in Fig. 1(a). It is

observed that 2PA increases the threshold for optical bistabil-

ity. We also find the saddle-node positions X± of the bistable

curve by plugging the �+ into Eq. (14).

X± = ±
4

27

(

1

4 + Q2
2

)2

(±4� ∓ 2Q2 +
√

4 − 3Q2
2

√
�)

×

⎡

⎣

12 + Q2
2 + �2

(

4 + 3Q2
2

)

± Q2

√

4 − 3Q2
2

√
�

+2�
(

4Q2 ∓
√

4 − 3Q2
2

√
�
)

⎤

⎦,

(16)

� = �2 −
16Q2

4 − 3Q2
2

� +
Q2

2 − 12

4 − 3Q2
2

. (17)
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FIG. 1. Effect of 2PA on optical bistability. (a) Normalized

detuning � vs normalized 2PA coefficient Q2. (b) Saddle-node

positions X± and X2PA± with Q2 when � is fixed at 2.216. Intracavity

power Y with the change in input pump power; X for (c) � =
√

3,

(d) � = 2.216, (e) � = 3.496, and (f) � = 10, with a set of five

different values of Q2, in each case (Q2 = 0, 0.2, 0.5, 1.0, and1.5).

Bistable behavior initiates at � =
√

3, 2.216, and 3.496 when the Q2

is 0, 0.2, and 0.5, respectively. For Q2 > 2
√

3, bistability does not

occur even if � is as high as 10.0 (a,f) with positive and realistic

values of X and Y.

In the absence of 2PA, Eq. (16) reduces to the known

expression

X± = ±
(

2

27

)

(±2� +
√

�2 − 3)(3 + �2 ∓ �
√

�2 − 3).

(18)

The intracavity steady-state power Y± in the presence of

2PA can be given by

Y± = −
1

3

(Q2 − 2�)
(

1 + Q2
2

4

)

±
1

6

√

4 − 3Q2
2

(

1 + Q2
2

4

)

√
�, (19)

Y± =
1

3
(2� ±

√

�2 − 3), (20)

which reduces to the well-known Eq. (20) when Q2 = 0. In

Fig. 1(b), X± and X2PA± represent the value of normalized

input pump power in the absence and presence of 2PA,

respectively, at which the bistability starts (saddle nodes). In

the absence of 2PA, both the curves [red (light gray) solid

curve] for X+ [X−, blue (deep gray) solid curve] and the

cyan (light gray) dashed-dotted curve for X2PA+ [X2PA−, dotted

magenta (light gray)] initiate from the same point, as shown in

Fig. 1(b). For Q2 = 0, when the detuning � is 2.216, both the

FIG. 2. The possible range of 2PA coefficients for which bista-

bility can occur. Intracavity power Y with respect to normalized

detuning � at (a) Q2 = 0, (c) Q2 = 4. Input pump power X vs �, at

(b) Q2 = 0, (d) Q2 = 4.0. Bistability occurs at a positive value of Y

and X if Q2 = 0 (<2
√

3), whereas bistability can be obtained for a

very small value of �, with negative values of X and Y when � =
4 (>2

√
3).

values of X+ and X− merge into 2.7762, which indicates that

if the Q2 is large, bistability does not occur. As an example,

we show that the 2PA increases the bistability threshold as

presented in Figs. 1(c)–1(f). The arrow indicates the change

in bistability pattern with the increase in Q2.

If there is no 2PA, the bistability occurs at � =
√

3. How-

ever, if the 2PA coefficient Q2 is 0.2 and 0.5, the minimum

pump detunings that initiate the bistability are 2.216 and

3.496, respectively. Also, it can easily be found that, for any

of the two roots (�+ or �−) of Eq. (15) to be positive, the

condition given by Eq. (21) has to be satisfied:

Q2 �
2

√
3

or Q2 � 2
√

3. (21)

Earlier, it was predicted numerically that after a certain

maximum value of 2PA coefficient bistability may cease to

exist [59]. In contrast, our theoretical model predicts that it is

possible to observe bistability at Q2 � 2
√

3 with a very small

detuning (even less than
√

3) [as shown in Figs. 2(a)–2(d)].

For Figs. 2(a) and 2(b), at first, we consider the case where Q2

is less than 2
√

3 and show the values of intracavity and pump

power for which the bistability initiates.

On the other hand, in Fig. 2(c) we plot the intracavity and

pump power for which the bistability occurs when Q2 > 2
√

3.

To obtain bistability in the latter case, the input pump power

X and intracavity power Y both have to be negative, which

is not possible in practice. Therefore, we restrict our analysis

for the 2PA coefficient within 2
√

3 (≈1.154) and discard the

other possibilities. It should also be noted that although optical

bistability is a necessary condition for the formation of the

optical cavity soliton, it is not a sufficient condition [59] to

generate the cavity soliton.
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FIG. 3. Effect of 2PA on Kerr tilt. (a) The ratio of maximum

normalized intracavity power (Ymax ) and the normalized pump power

(X) with 2PA parameters, and (b) normalized detuning (�) with 2PA

coefficient (Q2) where the maxima occur. Kerr tilts with different

2PA coefficients when normalized input power is (c) X = 1 and

(d) X = 1.5.

B. Kerr tilt with nonlinear losses

Resonance of a cavity is tilted as a consequence of Kerr

nonlinearity. In these circumstances, the resonance peak oc-

curs at the normalized pump detuning � = Y = X [58].

Therefore, the real roots of Eq. (22), which can be obtained

by putting � = Y in Eq. (11), yield the maximum value of

Y, i.e., Ymax for a particular normalized pump power, X in the

presence of 2PA (n = 2).

Q2
n

n2
Y 2n−1 +

2

n
QnY n + Y − X = 0. (22)

The ratio of normalized intracavity power with respect to

the normalized pump power (i.e., Ymax/X) and the correspond-

ing normalized detuning � at which the maxima occur are

plotted in Figs. 3(a) and 3(b), respectively, for different values

of normalized 2PA coefficients Q2(0−0.5).

Figures 3(c) and 3(d) show the Kerr tilt for three distinct

values of Q2 (0, 0.2, and 0.5) at two different input pump

powers (X = 1 and 1.5). It is apparent that the higher the

input pump power, greater is the slope of the Kerr tilt, which

means one requires larger external pump detuning to obtain

maximum intracavity power. In addition, if the 2PA is present,

with the increase in input pump power, intracavity power

decreases as the nonlinear absorption is more prominent at

comparatively high input power.

C. Bistability and Kerr tilt in the presence of FCA-FCD

In the previous section, we have provided a detailed quan-

titative analysis of the shift in Kerr tilt as well as the reduction

in the intracavity output power in the presence of 2PA.

In this section, we discuss the optical bistability and Kerr

tilt in the presence of FCA-FCD. To investigate the effect

of FCA-FCD, we have assumed arbitrary values of FCA

and FCD coefficients. The bistability curves at a fixed pump

FIG. 4. (a) Bistability curve at � = 2.216, and (b) Kerr tilt at

X = 1, for a set of six different values of 2PA-induced FCA-FCD

(C2 and K2, respectively). (c) Dependence of Kerr tilt on input pump

power X when C2 = K2 = 5. For all the cases, the 2PA coefficient Q2

is taken as 0.2.

detuning are plotted in Fig. 4(a) for different values of FCA

and FCD coefficients. Figures 4(b) and 4(c) exhibit the Kerr

tilt as a function of pump detuning. FCA-induced loss has

a similar effect on the bistability curve as that of the mul-

tiphoton absorption. It is also evident that FCD introduces

a cavity detuning that manifests itself through the reverse

Kerr tilt. In practice, the reverse Kerr tilt shown in Fig. 4(b)

indicates that with suitable FCD-induced cavity detuning,

one can obtain maximum intracavity power even without any

external pump detuning (solid pink curve). For a fixed value

of FCA-FCD coefficient, the reverse tilt increases with the

increase in the input pump power X, as depicted in Fig. 4(c).

It is seen that the intracavity power becomes multivalued with

large detuning and pump power. A similar kind of reverse

Kerr tilt as shown in Figs. 4(b)–4(d) is also reported in a

recently published manuscript that discusses the possibility of

parametric oscillations in silicon microcavities in the presence

of 2PA [60].
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FIG. 5. Effective detuning �eff [diagonal, red (light gray) curve]

and FCD-induced detuning �FCD [horizontal, green (light gray)

curve], with the variation in pump detuning when (a) C2 = K2 = 2,

and (b) C2 = K2 = 5 at input pump power; X = 1 in both cases. Input

pump detuning is also plotted [blue (deep gray) curve] in (a,b) to

indicate the reference level in the absence of FCA-FCD. �FCD can

possess multiple values if FCA-FCD coefficients are high.

D. FCA-FCD-induced cavity detuning

To explain the reverse Kerr tilt analytically, we further

modify the normalized LLE given in Eq. (5) as

∂u

∂ξ
= −(1 + i�eff )u −

1

2
φcu − i

s

2

∂2u

∂τ 2

+
∑

k�3

dk

k!

∂ku

∂τ k
+ i|u|2u −

Qn

n
|u|2(n−1)u + S, (23)

�eff = � + �FCD = � +
Kφc

2
, (24)

where the effective cavity detuning �eff is defined as the

sum of the external pump detuning � and the FCD-induced

detuning (DFCD). It should be noted that the �eff changes over

round trips. Effective detuning �eff [diagonal, solid red (light

gray) curve] and FCD-induced detuning �FCD [horizontal,

solid green (light gray) curve], for two sets of FCA-FCD

coefficients, C2 = K2 = 2, and C2 = K2 = 5, at input pump

power X = 1 are plotted in Figs. 5(a) and 5(b), respectively.

In both cases, input pump detuning has also been plotted

[diagonal, solid blue (deep gray) curve] to indicate the ref-

erence level in the absence of FCA-FCD. Figures 5(a) and

5(b) show how the overall cavity detuning is affected by

the FCD-induced detuning at different FCA-FCD coefficients.

The intersection between the diagonal, red (light gray) and

FIG. 6. Kerr tilt (Y/X) with the change in effective detuning, �eff ,

instead of pump detuning, � for two different pump powers: (a) X =
1 and (b) X = 2.5. FCD-induced steady-state cavity detuning, �FCD

with the intracavity power, Y when the free carriers are generated due

to the (c) 2PA [blue (deep gray) solid curve], (d) 3PA [red (light gray)

solid curve], and 4PA [green (light gray) dotted curve].

the horizontal, green (light gray) curves indicates the effective

cavity detuning when the external pump detuning is zero.

Generation of a stable frequency comb even without external

pump detuning with suitable initial pump power has been

previously demonstrated [47].

Note that, in order to excite the temporal cavity soliton

in the microresonator experimentally, one must modulate the

phase of the microresonator driving field which can be done

through electrical or thermal detuning. Recently, the effect

of thermo-optical chaos on soliton generation was studied

both numerically and experimentally [61]. Thermal detuning

can easily be included in our numerical model following the

approach adopted in [61]. In this work, however, we assume

that the microresonator is in a thermal equilibrium state

and neglect such thermally induced detuning while studying

the steady-state behavior and the MI in the presence of all

nonlinear losses.

We also plot the normalized intracavity power (Y/X) with

the change in �eff instead of � in Figs. 6(a) and 6(b) for

two different values of X. As expected, this time there is no

tilt in the opposite direction. When the carrier accumulation

reaches the steady state, the effective detuning, �eff can be

written as

�
(Steady state)

eff = � +
KCn|u0|2n

2
= � +

KCnY0
n

2
, (25)

where u0 is the steady-state amplitude and the Y0 is the steady-

state intracavity power. The steady-state FCD-induced cavity

detuning for 2PA, as plotted in Fig. 6(c), is much larger than

the FCD-induced cavity detuning due to the 3PA and 4PA as

shown in Fig. 6(d).

We have considered realistic values of FCA-FCD coeffi-

cients calculated from [41,56] in order to obtain the steady-

state maximum FCD-induced cavity detuning for 2PA, 3PA,

and 4PA as shown in Figs. 6(c) and 6(d).
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V. GENERALIZED EXPRESSION: BISTABILITY AND

SELF-PULSATION

The stability of Eq. (10) can be analyzed by perturbing

the steady-state solutions u0 and φ0 with small variations

in the amplitude δu(ξ ) and the free carriers δφc(ξ ), with

respect to the slow time, respectively. Thus if u(ξ ) = u0 +
δu(ξ ) and φc(ξ ) = φ0 + δφc(ξ ), then the perturbation array

ε = (δu, δu∗, δφc)T in the presence of nPA and correspond-

ing FCA-FCD is found to satisfy the following linearized

equation:

dε

dξ
= J

(n)
BS,SPε, (26)

where J
(n)
BS,SP is the 3 × 3 Jacobian matrix of (10) and (11)

and is given by

J
(n)
BS,SP =

⎛

⎜

⎜

⎜

⎝

R
(n)
BS,SP + iI

(n)
BS,SP −

(

n−1
n

Y n−2Qn − i
)

u2
0 − 1

2
(1 + iK )u0

−
(

n−1
n

Y n−2Qn + i
)

u∗
0

2 R
(n)
BS,SP − iI

(n)
BS,SP − 1

2
(1 − iK )u∗

0

nY n−1u∗
0θcn

nY n−1u0θcn
− 1

τc

⎞

⎟

⎟

⎟

⎠

, (27)

where R
(n)
BS,SP and I

(n)
BS,SP are

R
(n)
BS,SP = −

[

1 +
Cn

2
Y n + QnY

(n−1)

]

, (28)

I
(n)
BS,SP = −

[

� +
KCn

2
Y n − 2Y

]

. (29)

The conditions for BS and SP (free-carrier oscillation) can

be obtained from J
(n)
BS,SP in the presence of FCA-FCD which

can be written in a general form as

BS : det
(

J
(n)
BS,SP

)

> 0, (30)

SP :
[{

tr
(

J
(n)
BS,SP

)2 − tr
(

J
(n)2
BS,SP

)}

tr
(

J
(n)
BS,SP

)

− 2 det
(

J
(n)
BS,SP

)]

> 0, (31)

where det and tr are the determinant and the trace, respec-

tively. Equation (31) corresponds to the Hopf bifurcation.

VI. LINEAR STABILITY ANALYSIS

In this section, we perform the linear stability analysis of

the stationary CW solutions (u0 and φ0) of free-carrier-driven

LLE. The evolution of normalized carrier density and signal

amplitude due to the spatiotemporal perturbations are given by

Eqs. (32) and (33), respectively, in the presence of nonlinear

losses including FCA-FCD. In each case, we find the MI gain

λ with the normalized sideband frequency �. We also show

the dependence of MI gain and bandwidth on normalized

detuning �, signal power Y, and higher-order dispersion.

Finally, we provide a general expression of MI gain for mul-

tiphoton absorptions. Throughout our manuscript superscript

(n) stands for nPA and unlike the powers, the super- and

subscripts are not italic.

φc(ξ ) ≈ φ0(ξ ) + δφ(ξ ), (32)

u(ξ, τ ) = u0(ξ ) + u+(ξ )ei�τ + u−(ξ )e−i�τ . (33)

The carriers cannot follow the quick oscillation of the

optical field and therefore, unlike the optical field amplitude

u, the carrier density cannot change in fast-time τ . In the

presence of nPA at the onset of the MI, the carrier density is

equal to φ0. Substituting the φc and u given by Eqs. (32) and

(33) into Eqs. (3) and (4), respectively, the general expressions

for homogeneous solutions for the normalized free carrier and

the intracavity field amplitude (φ0, u0, respectively) can be

obtained as

φ0 = θcn
τc|u0|2n = Cn|u0|2n, (34)

∂u0

∂ξ
= −(1 + i�)u0 −

1

2
(1 + iK )θcn

τc|u0|2nu0

+ i|u0|2u0 −
Qn

n
|u0|2(n−1)u0 + S, (35)

whereas the perturbations signal amplitudes (u+ and u∗
−) are

written as

∂u+

∂ξ
= −(1 + i�)u+ −

1

2
(1 + iK )φ0u+ + i

s

2
�2u+

− i
d3

6
�3u+ + i(2|u0|2u+ + (u0)2u∗

−)

−
Qn

n
(n|u0|2(n−1)u+ + (n − 1)|u0|2(n−2)(u0)2u∗

−),

∂u∗
−

∂ξ
= −(1 − i�)u∗

− −
1

2
(1 − iK )φ0u∗

− − i
s

2
�2u∗

−

+ i
d3

6
�3u∗

− − i(2|u0|2u∗
− + (u∗

0 )
2
u+)

−
Qn

n
(n|u0|2(n−1)u∗

− + (n − 1)|u0|2(n−2)(u∗
0 )

2
u+).

(36)

Note that for the weak amplitudes and exponentially grow-

ing solutions, u∗
− = u+. The Jacobian, JMI, to find the MI

growth rate (gain) can be written as

JMI =

⎡

⎣

∂
∂u+

(

∂u+
∂ξ

)

∂
∂u∗

−

(

∂u+
∂ξ

)

∂
∂u+

( ∂u∗
−

∂ξ

)

∂
∂u∗

−

( ∂u∗
−

∂ξ

)

⎤

⎦

=

[

JMI
11 JMI

12 (u0)2

JMI
21 (u∗

0 )2 JMI
22

]

. (37)

033848-8



FREE-CARRIER-DRIVEN KERR FREQUENCY COMB IN … PHYSICAL REVIEW A 99, 033848 (2019)

The eigenvalues of the matrix JMI yield the modulation

instability growth rate λ, which is calculated by equating the

det(JMI−λ.I ) = 0 where I is a 2 × 2 identity matrix. The

growth of the sideband amplitude can be expressed as u+ =
Cexp(λξ ) where C is an arbitrary constant. One can write JMI

pq

in the following form:

JMI
pq =

{

R
(n)
MI + (−1)(q−1)iI

(n)
MI , when p = q

(

−α
(n)
MI

)

+ (−1)(q)i
(

−β
(n)
MI

)

, when p �= q
. (38)

The MI gain can be obtained by solving the quadratic

equation (39) of λ only for the real values:

(

{

R
(n)
MI − λ

}2 +
{

I
(n)
MI

}2

{

α
(n)
MI

}2 +
{

β
(n)
MI

}2
− Y 2

)

= 0. (39)

Here, the LLE is truncated up to the third-order dispersion.

RMI
(n), IMI

(n), a(n), and β (n) are given as

R
(n)
MI = −

[

1 +
Cn

2
Y n + QnY

(n−1)

]

, (40)

I
(n)
MI = −

[

� +
KCn

2
Y n −

s

2
�2 +

d3

6
�3 − 2Y

]

, (41)

α
(n)
MI =

[

n − 1

n
QnY (n−2)

]

, (42)

β
(n)
MI = −1. (43)

Equation (39) can be simplified in a more convenient form

given by Eq. (44):

[

λ2 − 2R
(n)
MIλ + R

(n)
MI

2

+ I
(n)
MI

2

−
(

α
(n)
MI

2

+ β
(n)
MI

2
)

Y 2
]

= 0.

(44)

Note that, in the absence of all nonlinear losses (multipho-

ton absorption, FCA, FCD) and the higher-order dispersion

terms, RMI
(n), IMI

(n), aMI
(n), and βMI

(n) become −1, −(� −
s�2/2−2Y ), 0, and −1, respectively, such that λ reduces to

the well-known expression (45) for MI gain [53,54]:

λ±(�) = −1 ±

√

4Y

(

� −
s�2

2

)

−
(

� −
s�2

2

)2

− 3Y 2.

(45)

A. MI in normal dispersion regime (s = +1)

It is known that unlike a straight waveguide or optical

fiber, MI can occur in synchronously driven optical cavities

or in ring lasers even if the system is pumped in the normal

dispersion regime [53]. As a result, a stable stationary train of

pulses can be generated in the cavity irrespective of the sign

of the dispersion.

In this section, we discuss the dependency of MI gain λ

on � and �(at Y = 2.5) as well as on � and Y (at � = 7.5),

respectively, in the normal dispersion region. At first, we plot

MI gain, λ±, with respect to normalized frequency �(>0)

in Fig. 7(a). It is seen that 2PA in silicon can completely

inhibit the parametric oscillations. Figure 7(b) shows the MI

gain in the presence of 3PA. Nonzero third-order dispersion

FIG. 7. (a) MI-gain lobes λ± in the absence and presence of 2PA

for � > 0, (b) λ+ in the presence and absence of 3PA. Simulation

parameters are s = 1, Y = 2.5, D = 7.5, Q2 = 1, K2 = 0.05, C2 =
0.1, θc2 = 0.05, θc3 = 6.31 × 10−7, Q3 = 8.73 × 10−4, C3 = 0.049,

K3 = 4.9. Effect of third-order dispersion (d3 = 0.1) is also consid-

ered in (b) [red (light gray) dashed curve]. Third-order dispersion

induces asymmetry in the gain lobe with respect to � = 0.

(d3 = 0.1) induces the asymmetry in the MI-gain lobe with

respect to � = 0 and thereby enhances the MI bandwidth

[46]. The values of nPA and FCA-FCD coefficients are taken

from [41].

Figures 8(a) and 8(b) depict the dependency of MI gain λ

on � and �(at Y = 2.5) as well as on � and Y (at � = 7.5),

respectively, in the normal dispersion region while all the

nonlinear losses are ignored.

To produce the rest of the curves [Figs. 8(c)–8(h)] we use

the realistic values of nPA and FCA-FCD coefficients for

silicon (c-Si) waveguides from [41,56]. In the presence of

2PA no parametric gain lobe has been observed [Figs. 8(c)

and 8(d)]. The MI gain in the presence of 3PA, 4PA, and the

corresponding FCA-FCD is plotted in Figs. 8(e)–8(h). The

cyan and magenta lines are drawn on the two-dimensional

(2D) plots to indicate the corresponding values of λ for � =
7.5 and Y = 2.5, respectively [53]. Projection of the 2D plot

on each axis through the shadow plot helps to anticipate the

approximate values of the MI gain with respect to different

parameters.

B. MI in anomalous dispersion regime (s = −1) and the effect

of FCA-FCD on MI-growth rate

Similar curves can be plotted for the MI gain in case of

the anomalous dispersion regime of operation. We observe

there is no parametric gain in the presence of 2PA at telecom

wavelengths. It was previously reported by Lau et al. [41] that

in mid-infrared (MIR) while the dominant loss mechanism

is 3PA, the effect of 3PA-induced FCA-FCD is prominent

and the parametric oscillations can only take place if the

pump power is sufficiently low [41]. In their simulations, the

waveguide is pumped at the anomalous region (s = −1). This

claim can be supported analytically through the MI analysis

in the presence of nonlinear losses as shown in Fig. 9. We

plot the λ with � and � in Fig. 9(a) in the absence of any

nonlinear losses, whereas Fig. 9(b) dictates the MI gain in

the absence of FCA-FCD while 3PA is present. Figure 9(c)

shows the MI gain in the presence of 3PA and FCA-FCD

at Y = 2.5. Similarly, when the intracavity power is almost

quadrupled (Y = 10.5) the corresponding MI gain has been

plotted in Figs. 9(d)–9(f) for three different cases as described

earlier. It is conspicuous from Figs. 9(c) and 9(f) that there
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FIG. 8. Real part of the MI gain λ vs (a) � and � (at Y =
2.5), and (b) � and Y (at � = 7.5) in the absence of all nonlinear

losses. Variation of λ with (c) � and �(at Y = 2.5), (d) � and

Y (at � = 7.5) while 2PA and FCA-FCD are present. Change in

λ with the change in (e) � and �(at Y = 2.5), and (f) � and

Y (at � = 7.5) when 3PA and FCA-FCD are present. λ with (g) �

and �(at Y = 2.5), and (h) � and Y (at � = 7.5) in the presence

of 4PA and FCA-FCD. For all the cases, third-order dispersion

(d3 = 0.1) is taken into consideration. Other simulation parameters

are s = 1, θc2 = 0.0005, Q2 = 0.93, C2 = 29.81, K2 = 7.5 (at λ0 ∼
1.56 μm); θc3 = 6.31 × 10−7, Q3 = 8.73 × 10−4, C3 = 0.049, K3 =
4.9 (at λ0 ∼ 2.4 μm); θc4 = 6.018 × 10−8, Q4 = 6.16 × 10−6, C4 =
4.66 × 10−3, K4 = 2.9 (at λ0 ∼ 4.0 μm). The cyan and magenta

lines overlaid on the 2D plots indicate the corresponding values of

λ for � = 7.5 and Y = 2.5, respectively.

is no parametric oscillation if FCA-FCD is present while the

intracavity power is high (Y = 10.5); however, MI gain lobes

exist for relatively low intracavity power (Y = 2.5). There-

fore, in the case of 3PA, the principle mechanisms to inhibit

the comb formation are 3PA-induced FCA and FCD [41]. To

obtain parametric oscillation in the presence of 3PA, either

the generated free carriers have to be swept away by suitable

external bias or the input pump power X (consequently, Y) has

to be sufficiently low.

VII. CONDITION FOR MAXIMUM MI GAIN AND

THRESHOLD INTENSITY

It is known [54] that the MI gain in the absence of nonlinear

losses can be given by Eq. (46) while the maximum gain

FIG. 9. MI gain λ with respect to � and � when Y is fixed at

2.5 in (a) the absence of all nonlinear losses, (b) the presence of only

3PA and no FCA-FCD, and (c) the presence of 3PA and FCA-FCD.

MI gain λ with respect to � and � when at Y = 10.5 in (d) the

absence of all nonlinear losses, (e) the presence of only 3PA and no

FCA-FCD, and (f) the presence of 3PA, FCA-FCD. It is observed

that if input power X is high (high intracavity power, Y) parametric

oscillation ceases to occur in the presence of FCA-FCD along with

3PA.

(λ = λmax = Y −1) can be achieved if �k = 0,

λ±(�) = −1 ±
√

Y 2 − (�k)2, (46)

where �k is given by

�k =
(

� −
s

2
�2 − 2Y

)

. (47)

Therefore, the steady-state solution will always be stable

if Y < 1. However, in the presence of nonlinear losses, the

solution of λ can be written as (48) instead of Eq. (47).

λ(n) = R
(n)
MI ±

√

{(

α
(n)
MI

)2 +
(

β
(n)
MI

)2}

Y 2 −
(

I
(n)
MI

)2
. (48)

In this case, the maximum gain can be obtained if I
(n)
MI = 0.

One can write the general expression of λmax in terms of Y,

α
(n)
MI , β

(n)
MI , and R

(n)
MI as follows:

λ(n)
max

= Y

√

{(

α
(n)
MI

)2 +
(

β
(n)
MI

)2}+ R
(n)
MI. (49)

If the FCA and FCD are neglected, the expression of

maximum gain becomes

λ(n)
max

= Y

√

(

n − 1

n

)2

Q2
nY 2(n−2) + 1 − (1 + QnY n−1).

(50)

We further deduce the expression for the minimum in-

tensity to initiate the MI. It can be shown after algebraic
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FIG. 10. (a) Maximum MI gain with the change in intracavity

power Y with a set of four 2PA coefficients (Q2 = 0, 0.2, 0.5, 0.9).

(b) Range of � for which MI can initiate with different 2PA coeffi-

cients (Q2 = 0, 0.2, 0.5, 0.9).

simplification that the steady-state solution will always be

stable for

Y �
−R

(n)
MI

√

{(

α
(n)
MI

)2 +
(

β
(n)
MI

)2}
. (51)

As an example, in the presence of only 2PA, the value of Y

for which the steady-state solution of the LLE will always be

stable in the presence of only 2PA is

Y �
1

(

√

(Q2
2

4
+ 1

)

− Q2

)

. (52)

Maximum MI gain λmax is plotted in Fig. 10(a) for four

different values (0, 0.2, 0.5, and 0.9) of 2PA coefficients

Q2 in the absence of FCA-FCD. It should be noted that

the 2PA coefficient for silicon at telecom wavelength Q2

is ∼0.9.

VIII. RANGE OF NORMALIZED DETUNING

TO OBTAIN MI

In this section, we find the range of possible normalized de-

tuning to initiate the MI and compare the results for different

cases such as the following: when all the nonlinear losses are

absent, when only nPA is present, when both the nPA and FCA

are present, and when all the nonlinear losses are present. The

condition for threshold can be found by equating λ given by

Eq. (49) to 0. It is known [54] that in the absence of nonlinear

losses,

s

2
�2 = (� − g±), (53)

where g± can be expressed in terms of Y,

g± = 2Y ±
√

Y 2 − 1. (54)

It is to be noted, in the anomalous dispersion region, for

� to possess real solution, � must be less than g+ whereas,

for the normal dispersion regime, the required detuning �

should be more than g− for MI to occur. When the pump

detuning lies in between (g−, g+) ∈, i.e., g− < � < g+, MI

can be initiated for both the anomalous and normal dispersion

regimes. Similarly, in the presence of all the nonlinear losses,

the general expression to obtain the threshold condition can

be determined from Eq. (44):

{

I
(n)
MI

}2 =
{(

α
(n)
MI

)2 +
(

β
(n)
MI

)2}

Y 2 −
{

R
(n)
MI

}2
. (55)

However, the relation of MI gain, �, with � and output

power Y obtained from Eqs. (53)–(55) can be given by a third-

order polynomial of �,

−
d3

6
�3 +

s

2
�2 = (� − g

(n)′

± ), (56)

where

g
(n)
1±

= 2Y ±
√

{(

α
(n)
MI

)2 +
(

β
(n)
MI

)2}

Y 2 −
(

R
(n)
MI

)2
, (57)

g(n)′

±
= g

(n)
1±

−
KCn

2
Y n. (58)

If the carrier lifetime can be reduced by sweeping the

carriers applied to the external bias voltage across the device

cross section, which often can be done by forming a p-i-n

junction across the waveguide cross section, then the square

of the τc term can be negligible. The situation is equivalent

to the case when nPA is present while FCA and FCD are

absent. In this case, neglecting the higher-order dispersion

terms [dk (k � 3) = 0] Eqs. (56)–(58) are reduced to

s

2
�2 =

(

� − g
(n)
1±

)

. (59)

For 2PA without FCA-FCD,

s

2
�2 =

(

� − g
(2)
1±

)

, (60)

g
(2)
1±

= 2Y ±

√

√

√

√

[

(

n − 1

n

)2

Q2
nY 2(n−2) + 1

]

Y 2 − (1 + QnY n−1)
2
.

(61)

In Fig. 10(b) we plot the range of � both in the absence of

all nonlinear losses and in the presence of only 2PA, for which

the steady-state solution can be unstable. It is discussed earlier

that in the absence of all nonlinear losses the steady-state

solution will be unstable in the range g− < � < g+ where g±
is given by Eq. (60). From Fig. 10(b) it can be seen clearly

that with the gradual increase in the 2PA coefficient, the range

of � for which MI can initiate becomes narrower.
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There is also an in-depth existing study on optical mi-

crocavity that discusses the generation of the Turing pattern

analytically for two distinct cases considering either intensity-

dependent nonlinear losses or the intensity-dependent nonlin-

ear refractive index of the medium. However, the mathemat-

ical framework outlined in [62] did not include the effects of

multiphoton absorptions, FCA, and FCD. Another interesting

work led by Chembo (Godey et al.) [63] presents the gener-

ation of Turing rolls as well as the generation of bright and

dark temporal solitons in anomalous and normal dispersion

regimes, respectively, without considering nonlinear losses.

We believe that our work can further be extended follow-

ing the mathematical analysis given in [62,63] including all

the nonlinear losses as our formalism is amenable to the

incorporation of other associated physical effects like thermal

detuning [61].

IX. CONCLUSIONS

To conclude our work, we have derived analytical expres-

sions of steady-state homogeneous solutions of a free-carrier-

driven Kerr frequency comb. Higher-order (>3) characteristic

polynomials of intracavity power describing the steady-state

homogeneous solution of the modified LLE are discussed in

detail. The nonlinear phase detuning of the cavity has been

observed through negative Kerr tilt. We also find an analytical

expression for the steady-state FCD-induced cavity detuning.

Expression of MI gain in the presence of all nonlinear losses

is found and the threshold detuning along with the range of

normalized pump detuning to initiate MI are discussed. The

maximum allowed value of the 2PA coefficient for which the

optical bistability can occur and the analytical expression of

the threshold pump detuning to initiate the MI are important

parameters from the experimental point of view. Therefore,

our theoretical study is a step towards predicting comb dy-

namics in the realistic cases where all the nonlinear losses and

higher-order dispersions are present.
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