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Organic photovoltaics (OPVs) promise cheap and flexible solar energy. Whereas light gen-
erates free charges in silicon photovoltaics, excitons are normally formed in organic semi-
conductors due to their low dielectric constants, and require molecular heterojunctions to
split into charges. Recent record efficiency OPVs utilise the small molecule, Y6, and its
analogues, which - unlike previous organic semiconductors - have low band-gaps and high
dielectric constants. We show that, in Y6 films, these factors lead to intrinsic free charge
generation without a heterojunction. Intensity-dependent spectroscopy reveals that 60-90%
of excitons form free charges at AM15 light intensity. Bimolecular recombination, and hole
traps constrain single component Y6 photovoltaics to low efficiencies, but recombination is
reduced by small quantities of donor. Quantum-chemical calculations reveal strong coupling
between exciton and CT states, and an intermolecular polarisation pattern that drives exciton
dissociation. Our results challenge how current OPVs operate, and renew the possibility of
efficient single-component OPVs.

TSchool of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand. 2 MacDiarmid Institute for Advanced Materials and
Nanotechnology, Wellington, New Zealand. 3 Wellington UniVentures, Victoria University of Wellington, Wellington, New Zealand. 4 Robinson Research
Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, New Zealand. ° The Dodd-Walls Centre for Photonic and Quantum
Technologies, Dunedin, New Zealand. 6 Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand. 7 ARC Centre of Excellence in
Exciton Science, School of Chemistry, University of Sydney, Sydney, NSW, Australia. 8 School of Materials Science and Engineering, Peking University,
Beijing, China. ? College of Materials Science and Engineering, Qingdao University, Qingdao, China. '°These authors contributed equally: Michael B. Price, Paul
A. Hume. ®email: michael.price@vuw.ac.nz; paul.hume@vuw.ac.nz; justin.hodgkiss@vuw.ac.nz

| (2022)13:2827 | https://doi.org/10.1038/s41467-022-30127-8 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30127-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30127-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30127-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30127-8&domain=pdf
http://orcid.org/0000-0003-2227-0514
http://orcid.org/0000-0003-2227-0514
http://orcid.org/0000-0003-2227-0514
http://orcid.org/0000-0003-2227-0514
http://orcid.org/0000-0003-2227-0514
http://orcid.org/0000-0002-7582-7155
http://orcid.org/0000-0002-7582-7155
http://orcid.org/0000-0002-7582-7155
http://orcid.org/0000-0002-7582-7155
http://orcid.org/0000-0002-7582-7155
http://orcid.org/0000-0003-4537-4519
http://orcid.org/0000-0003-4537-4519
http://orcid.org/0000-0003-4537-4519
http://orcid.org/0000-0003-4537-4519
http://orcid.org/0000-0003-4537-4519
http://orcid.org/0000-0001-5009-2407
http://orcid.org/0000-0001-5009-2407
http://orcid.org/0000-0001-5009-2407
http://orcid.org/0000-0001-5009-2407
http://orcid.org/0000-0001-5009-2407
http://orcid.org/0000-0002-0234-7206
http://orcid.org/0000-0002-0234-7206
http://orcid.org/0000-0002-0234-7206
http://orcid.org/0000-0002-0234-7206
http://orcid.org/0000-0002-0234-7206
http://orcid.org/0000-0003-1886-5590
http://orcid.org/0000-0003-1886-5590
http://orcid.org/0000-0003-1886-5590
http://orcid.org/0000-0003-1886-5590
http://orcid.org/0000-0003-1886-5590
http://orcid.org/0000-0003-1070-5859
http://orcid.org/0000-0003-1070-5859
http://orcid.org/0000-0003-1070-5859
http://orcid.org/0000-0003-1070-5859
http://orcid.org/0000-0003-1070-5859
http://orcid.org/0000-0002-9629-8213
http://orcid.org/0000-0002-9629-8213
http://orcid.org/0000-0002-9629-8213
http://orcid.org/0000-0002-9629-8213
http://orcid.org/0000-0002-9629-8213
mailto:michael.price@vuw.ac.nz
mailto:paul.hume@vuw.ac.nz
mailto:justin.hodgkiss@vuw.ac.nz
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

hen light is absorbed by inorganic semiconductors,

like silicon or gallium arsenide, a combination of free

charges and excitons (bound electrons and holes) are
created, and their ratio depends upon the material’s dielectric
constant. For organic semiconductors, the paradigm holds that
only excitons are intrinsically photogenerated because the low
dielectric constant>? of these materials (¢ ~ 3-4) means the
electron and hole Coulombic interaction is not efficiently
screened, leading to Frenkel excitons with high binding energies
(Ep). For the last thirty years>#, this constraint has guided the
development of organic photovoltaics (OPVs) - which promise a
step-change in flexible, lightweight, non-toxic solution-processed
solar energy production, but are yet to be widely commercialised.
Splitting bound excitons into free charges has required sharp
molecular heterojunctions between donor and acceptor materials.
Rather than purely optimising charge harvesting, OPV devices
have been optimised for exciton splitting at interfaces, and
demand complex interpenetrating networks of donor and
acceptor materials. The molecular heterojunction approach limits
device efficiencies®, introduces inherent voltage losses and
instabilities from interfaces®, and complicates research progress’.
Reports have previously shown some field-assisted exciton dis-
sociation, and ‘extrinsic’ charge formation in neat homopolymers
and small molecules3-11, as well as significant charge-transfer (or
polaron-pair) state formation in neat “push-pull” copolymers and
small molecules!>~14, However no organic material (until now)
has exhibited substantial, let alone majority, free charge (rather
than polaron pair) formation - which undergoes bimolecular
(rather than geminate), recombination.

Recently, small molecule non-fullerene fused ring electron
acceptors (FREAs)!°-2! have driven a rapid uptick in the power
conversion efficiency (PCE) of OPVs. Alongside this advance has
arisen unexpected observations, namely: (1) Barrierless free
charge generation in PM6:Y6 blends?? (full chemical names and
structures shown in Supplementary Fig. 1). (2) Charge generation
efficiency in blends of PM6:Y6 increases with increasing incident
light intensity?3. (3) In Y6!124 and IDIC?>, excitons are deloca-
lised, or form an ‘intra-moiety’ intermediate state with likely
charge-transfer (CT) like character. These observations have all
been explained by invoking CT-states, however, with additional
data, we show here that a more profound explanation is required.

FREAs have recently been measured to have very high
refractive indices?®27, and hence high complex dielectric con-
stants. Of the FREAs, Y6 and its derivatives are present in both
the binary and ternary OPVs that hold the highest PCEs!6:28-30,

In inorganic semiconductors, the number of bound excitons
versus free charges can be described by the Saha-Langmuir
relation.

* 1.5 E,

£ =1 (bl e (1)
where the free charge fraction, x, is dependent upon the tem-
perature, T, excitation density, n, effective mass, m* and the
exciton binding energy, E; (which is related to the inverse of the
dielectric constant3!). From comparison of the highest occupied
molecular orbital (HOMO)-lowest unoccupied molecular orbital
(LUMO) gap to the optical gap measured by Karuthedath et al.,
the exciton binding energy of Y6 is Eg=100-250 meV - much
lower than, for example, P3HT (Ez ~ 700 meV)32. Based on a
midpoint, 175 meV binding energy, estimated for Y6 above, and
assuming an effective mass between3334 m*=1.7-0.2 m,, this
simple calculation would predict a high fraction (20-80%) of
intrinsically generated free charges.

Here, we show that the high optical frequency dielectric con-
stant of Y6 leads to majority free charge generation upon optical
excitation within neat films. To prove that the aforementioned

‘intra-moiety’ TA signature is in fact due to free charges, we
demonstrate that recombination follows bimolecular kinetics,
rather than monomolecular decay as would occur for CT states.
We use a combination of ultrafast transient absorption, photo-
luminescence up-conversion and time-resolved terahertz spec-
troscopy, and identify the spectral signatures and decay rates of
singlet excitons and free charges (polarons). Intensity-dependent
photoluminescence (PL) measurements prove the existence of
radiative bimolecular charge recombination, which would not be
the case if only CT states were formed. We present simple kinetic
models that accurately reproduce our experimental data, wherein
a free charge fraction of between 0.7-0.99 exists in equilibrium
with bound charges under steady-state illumination, and 60-90%
of photoexcited excitons dissociate to charges. Bimolecular, and
rapid minority carrier, charge recombination inhibit the efficiency
of single-component devices, but this recombination can be slo-
wed by ‘doping’ our Y6 films with only a small amount of ‘p-type’
polymer electron donor. Using quantum-chemical calculations,
we show that free charge generation is expected due to strong
coupling between equienergetic exciton and CT states, and reveal
that asymmetric polarisation of the different lattice positions
results in a “donor/acceptor” system derived purely from inter-
molecular interactions.

Results

Radiative bimolecular recombination. Fig. 1la shows the nor-
malised excitation density-dependent external photoluminescence
quantum efficiency (PLQE) of two neat films of Y6 (BTP-4F) of
differing thicknesses. As the intensity of pulsed excitation is
increased, the PLQE increases steadily, peaks, and then decreases
for both films. This peak in PL efficiency has not been observed
before in similar organic systems, where it is expected that the PL
remains steady with increasing fluence before dropping in effi-
ciency as non-radiative bimolecular processes kick-in. Three
explanations for the phenomena of a rise in PL with increasing
pump intensity are possible: saturation of exciton (or charge)
traps, triplet-triplet annihilation (TTA), or bimolecular radiative
recombination of intrinsically generated free charges (bulk
ionisation).

Exciton trap saturation is considered in detail in the Supple-
mentary Information. We rule out this explanation due to the
unphysical rate constants required for it to match the transient
absorption and PL data, and due to the lack of any other evidence
of exciton trap saturation in the TA spectra/kinetics. TTA is also
considered in the Supplementary Information. Due to a number
of considerations, such as the large numbers of triplets required
for this effect to be solely responsible for the PL rise, which
conflicts with experimental evidence, we also rule this out. We
therefore conclude that a substantial fraction of photogenerated
free charges must be responsible for the PL rise shown in Fig. 1a.
As detailed in the below sections, and the Supplementary
Information, charge trap saturation, and TTA are possible, and
likely present to some extent in our system, but only in
conjunction with significant intrinsic charge generation.

Figure 1b illustrates the expected behaviour of excitation
density-dependent PLQE for varying proportions of radiative
monomolecular to bimolecular processes. The rise in efficiency
observed in Fig. la is not possible for a system undergoing
monomolecular (geminate) radiative recombination, even from
intra-moiety CT states, and exciton-exciton annihilation can only
produce a bimolecular contribution with reduced radiative
efficiency. Charges must be present in the neat film, and these
charges are formed ‘intrinsically’, rather than through exciton
annihilation processes. Under steady-state illumination, this free
charge (polaron) population will exist concurrently with a

2 | (2022)13:2827 | https.//doi.org/10.1038/s41467-022-30127-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Q

¢ Film1l
Film 2

=
o

it
ii ++

o
0

PLQE (Normalised)
o o
>

o
[N)

0.0

1015 10‘16 1(‘)17 1018

Excitation density (cm™3)

(o

1.0 7'
T 0.8
u
@©
g 0.61 % Free Charge
§ —
= | — 10
L 0.4 —_— 20
9 —_— 30
o 0.2 — 40
50
60
0.0 ‘ ‘ ‘ -
1013 1014 1015 1016 1017 1018

Excitation density (cm™3)

Fig. 1 Intensity-dependent photoluminescence quantum efficiency of Y6.
a Normalised photoluminescence efficiency, as a function of excitation
density, of 130 nm thick (blue dots) and 80 nm thick (orange dots) neat
films of Y6 on a glass substrate. The sample was excited by 600 ps pulses
of 532 nm light. The sample was measured in vacuum, and the relative
photoluminescence efficiency was determined from the ratio of the 2nd
harmonic scatter peak at 1064 nm to the integrated PL intensity between
850 and 1050 nm. The error bars shown represent the relative error of the
change in PL at different excitation densities, rather than the total error
(details in the Supplementary Information). b Simulation of intensity-
dependent PLQE values showing effect of increasing (orange) or decreasing
(blue) radiative bimolecular recombination (from prompt free charge
fraction, calculated using the model detailed in the text and Sl. € Graphic
representation of exciton-free charge equilibrium in Y6.

population of bound Frenkel or CT-like excitons, as illustrated by
Fig. 1c.

Exciton - charge dynamics. To quantify the relative proportions
of charges versus excitons, we perform ultrafast spectroscopic
measurements on films of neat Y6. We identify spectral sig-
natures of the singlet exciton, and free charge/CT-state species

and their kinetics to estimate first and second order kinetic rates/
lifetimes. Figure 2a shows the area-normalised transient absorp-
tion (TA) spectrum of a neat Y6 film pumped with a 150fs,
700 nm laser pulse at a moderate excitation density of ~1017
excitations/cm?>. The spectrum evolves from one initial photo-
excited species, a sharp negative peak at 915nm, to another
consisting of both positive and negative features, apparent after
~500 ps. Singular value decomposition, multivariate curve reso-
lution analysis and application of a genetic algorithm (GA)3°
consistently resolve two major species present, shown as the blue
and orange spectra in Fig. 2b. We confirm that the orange species
is that of the polaron - referred to as free charge (FC) for con-
sistency in the rest of the manuscript - by comparing the TA
spectra of Y6 blended with two hole accepting species (PTB7-Th
and poly-TPD), to reveal the Y6 electron signature. The charge
spectrum in neat Y6 closely resembles charge spectra obtained
from these measurements (we note that the donor hole signature
is also present in the PTB7-Th:Y6 measurement, which must be
accounted for when making this comparison). We note that the
charge is also likely to have a very similar spectrum to an
intraspecies charge-transfer3® state/excimer/weakly-bound exci-
ton delocalised over 2 or more molecules in the Y6 crystal, and
therefore designate the spectra here as representing the free
charge plus CT state populations. We stress that we cannot
explain all of our data unless there is a significant fraction of free
charges, as detailed below.

We confirm that the blue species is that of the singlet exciton in
2 ways: (1) through TA measurements of a ‘solid-solution’ of Y6
diluted in polystyrene (Supplementary Fig. 2), and (2) by
comparing the TA spectra of the ‘blue’ species to the transient
kinetics of upconverted PL signal from the same film at roughly
similar excitation density. As shown in Fig. 2¢c, the singlet TA
matches the transient PL signal. The singlet, and free charge/CT
species show different kinetic decays to each other across multiple
different excitation density regimes (see below). As an initial
indication of bimolecularity, we note that the square of the charge
population closely matches the derivative of the charge, even at
low fluence.

The singlet and charge species, as shown in Fig. 2d, show a
prompt, fluence independent (Supplementary Fig. 4), intercon-
version within the first 2.5 picoseconds, which also has no clear
excitation-energy dependence (observable within our excitation
energy resolution - Supplementary Fig. 5). These observations are
consistent with observations from Wang et al.!, though our other
measurements (terahertz spectroscopy, ultrafast transient PL, and
fluence dependent PLQE) necessitate a model beyond pure CT
generation. As this effect appears not to be due to excess energy
(based on TA measurements pumped with different excess
energies), the rapid formation is likely an effect of increased
exciton delocalisation at early times3”38. In line with Gillet
et al.3%, we also observe a small 3rd spectral component in the TA
which is consistent with a triplet signature (Supplementary
Fig. 6). As further evidence that there are significant free charges
present, the triplet signal peak is significantly delayed compared
to the charge/CT signal, which is consistent with a non-geminate
triplet generation pathway rather than geminate triplet formation
from inter-system crossing. Additionally, optical-pump-terahertz-
probe spectroscopy (Supplementary Fig. 17) shows a conductivity
spectrum consistent with a fraction of free charges present at ~3 ps
pump delay time (although we note that this spectrum could also
be consistent with a pure CT-state population - insufficient
signal-noise ratio in the measurement prevents more precise
interpretation).

We fit our transient absorption kinetics and intensity-
dependent PLQE data based on a basic kinetic model of free
charges and excitons present in a neat film of Y6 upon
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Fig. 2 Ultrafast transient absorption spectra and kinetics of singlets and free charges in neat Y6, and optical pump terahertz probe conductivity.
a Transient absorption spectra, normalised to the absolute area integral, of a neat film of Y6 at different time delays. 700 nm, 200 fs pump pulse, excitation
density ~ 1076 excitations/cm3. The spectrum evolves from the exciton, blue line, with a negative peak at 915 nm, to the red-shifted charge/CT state
spectrum, orange line. b Confirmation of charge and exciton transient absorption spectra by comparison of neat species (extracted using genetic
algorithm) with species resolved from blends of Y6 with hole accepting materials (PTB7-Th, polyTPD). The green dashed line shows the hole spectra of
PTB7-Th blended with PCBM. ¢ Singlet component from GA of transient absorption (dark blue line), at an excitation density of ~8 x 106 cm~3, compared
with up-converted PL signal (cyan), at an excitation density of ~2 x 101 cm~3. d Initial kinetics of the exciton (blue) versus charge/CT (orange) TA kinetics
in the first 2.5 ps after photoexcitation. The charge species shows a rise concomitant with the fast initial decay of the singlet species. 550 nm, 200 fs pump

pulse, excitation density ~ 1018 excitations/cm3.

illumination. Fig. 3a graphically represents this model (with
further details in SI and Fig. 3b, c). The key processes illustrated
and modelled are: Photogeneration of an initial, delocalised
singlet exciton, S;*, which rapidly evolves into localised excitons,
S1, and free electrons and holes, FC. Free charges bimolecularly
recombine to form singlets and triplets, or non-radiatively via
trap/defect states. This basic model is all that is required to
accurately recreate our experimental data. We can optionally
include further processes, such as triplet-triplet annihilation, or
specify the traps as most likely being hole traps#?, to improve our
fits to the data further. Our data fails to fit to a model that
explicitly includes a substantial and long-lived CT state popula-
tion (see SI for further details).

Figure 3b-d show the results of a global fit of this basic model
to a multiple fluence series of transient absorption, and PLQE
data (with TTA and trap effects also shown in Fig. 3d). We
calculate internal PLQE*! (taking photon recycling into account -
see below) as the ratio of radiative decay events to total decay
events, integrated over a microsecond, with a simulated 600 ps
input photon pulse. The radiative and non-radiative singlet decay
rates are obtained from comparison of the PLQE values of Y6 in a
solid-state solution of polystyrene.

These models simultaneously fit the transient absorption data,
and crucially, fit the large increase, or hump’, in PLQE with only
a small number of free parameters (as low as 4). The fitted
parameters correspond to physically meaningful rate constants in
agreement with literature. We thus view them as instructive for
estimating free charge yields and transition rates in Y6. Error

analysis of these models is shown in the Supplementary
Information. Though there is interdependency between the fitted
rates, and hence the individual error in each rate constant is
significant (and model dependent), we can use these models to
put a lower and upper bound on steady-state free charge yields at
given excitation intensities. Setting the conservative criterion that
there is a 10% rise in PLQE with excitation intensity, the models
show that the exciton dissociation probability (the proportion of
excitons that dissociate to charges within their lifetime) lies in the
range 0.6-0.9, and the corresponding steady-state free charge
fraction lies in the range 0.65-0.99 at 1 Sun excitation intensity.
Our total carrier density under AMIL1.5 lies in the range
1013-10'*cm—3 depending on the model used.

The red line in Fig. 3e illustrates the fraction of steady-state free
charges present based on a basic kinetic model with no TTA or
hole trap filling. Almost completely overlapping this line is a blue
curve given by the Saha equation, with an excitonic binding
energy of 270 meV (corresponding to an exciton effective mass of
~0.5 m,). The very close match between the two curves shows the
equivalence of the kinetic model to the Saha equation.

High photon reabsorption in thin films. As illustrated in Fig. 3d,
it is important to take into account photon reabsorption in PLQE
measurements of Y6 thin films. This is a further consequence of
their extremely high refractive index. We use the same process as
Richter et al.#! to approximate photon reabsorption, and show
that the true PLQE of Y6 is much higher (~6%) than what would
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Fig. 3 Kinetic model of charge generation in Y6 with transient absorption, PLQE and predicted steady-state free charge fractions. a Jablonski diagram
highlighting key excited-state pathways - rapid initial interconversion (solid red arrows), charge recombination (solid orange arrows), non-radiative (red
dashed arrows), and radiative rates (green arrows). b Normalised transient absorption kinetics of excitons (blue circles) and (c) charge states (orange
circles) at different excitation densities, fitted with a global fit to the basic kinetic model described in the text and Sl (solid blue and orange lines). d Internal
(blue crosses) and external (red crosses) PLQE values of Y6 as a function of excitation density, with corresponding simulated values from fits to the
transient absorption and intensity dependent PLQE. Internal PLQE is calculated from external PLQE as per Richter et al.4l. The solid blue line is the
simulated PLQE from the basic model, the dashed blue line shows the PLQE calculated when TTA is included, and the dotted blue line shows the estimated
PLQE from an explicit treatment of hole traps (but no TTA). e Steady-state free charge fraction as a function of total excitation density calculated from the
rate constants gathered from the basic kinetic model (red line), and from an estimate from the Saha equation (blue line). The Saha equation is calculated
based on an excitonic binding energy of 270 meV, corresponding to an exciton effective mass of ~0.5 m,.

be ascertained from a direct reading of the external PLQE (~2%).
This has significant importance for solar cell material optimisa-
tion efforts, as maximising PLQE is a useful approach for asses-
sing photovoltaic efficiency potential2, and ultimately, being able
to harness radiative carrier recombination through photon recy-
cling is key to approaching the Shockley-Quiesser limit. Although
we estimate photon recycling is small for these measurements
(Supplementary Fig. 16), the high refractive index means that it
will become significant if internal PLQE can be increased.

Fast charge recombination in single component OPV devices.
High intrinsic charge yields suggest a new path for OPV design by
creating single component devices, or devices with very low
donor contents (which may also be beneficial for semi-
transparent OPV). However, the results from the transient
absorption, PLQE, and terahertz spectroscopy data explain why,

even though charges are intrinsically generated, single compo-
nent, monolayer devices are not efficient. High bimolecular
charge recombination, combined with a significant hole trap
population, mean that free charges recombine before arriving at
electrodes in a device. With our measured charge recombination
rates, and assuming (for the sake of illustration), our mono-
molecular charge recombination term to give the minority carrier
lifetime, the hole diffusion length would be less than 15 nm. We
fabricated single component Y6 devices. The highest PCE based
on a ITO/PEDOT:PSS/Y6/LiF/Al structure was 0.09%. By repla-
cing PEDOT:PSS with PCP-Na, whose HOMO better aligns with
that of Y6, the highest PCE obtained was 0.63% (Supplementary
Fig. 7). This value is low (though there is no junction in the active
layer to separate charges and prevent minority carrier recombi-
nation). This loss of photocurrent and photovoltage is due in part
to high bimolecular, and space-charge induced recombination,
which we show by performing intensity dependent short-circuit
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PTB7-Th.

current (Jsc) measurements. Previous reports have seen power
law dependence of Jsc on illumination intensity (I) according
to:43:44 J . oc I% Deviations of the fitting parameter, &, from unity
signify bimolecular recombination or space-charge effects due to
unbalanced charge mobilities*>~4¢. Electron and hole mobilities
are relatively balanced in Y6 (being 1.8 —40x10~% and
0.5 — 50 x 1073 cm? V~ 1571 respectively?447), and at intensities
below 0.01 suns, the exponent, &, approaches 1 (Supplementary
Fig. 8). Fig. 4a shows that for the region between 0.2 and 2 suns
incident photo-intensity, the fitted exponent is a = 0.84, indi-
cating the device suffers from significant bimolecular recombi-
nation and/or space-charge effects at 1 sun.

To further emphasise the importance of high charge recombi-
nation, rather than exciton splitting, as a limiting factor in device
efficiency, we investigated the effect of ‘doping’ our Y6 material
with very small amounts of donor polymer, PTB7-Th#8. These
very dilute blends allow us to temporally separate the processes of
charge separation, transport, and recombination in transient
absorption measurements. We measured the photovoltaic
external quantum efficiencies of the corresponding devices, which
both show surprisingly high efficiencies. As shown in Fig. 4b,
when blended in a 1:50 ratio of PTB7-Th:Y6, the EQE is nearly
twice as high as for the 1:100 parts blend. However, Fig. 4c shows
that this is not due to differences in exciton splitting. The
transient absorption kinetics show that for both blends the
exciton species decay, and the charge species appear, with almost
identical kinetics in the first 20 ps, but the charges recombine
faster in the 1:100 blend, showing that the polymer donor’s key
role is to decrease the rate of recombination. For both
bimolecular charge recombination, and hole-trap (or n-dopant)
induced recombination, once holes are removed from the Y6 - as
they are, rapidly, in normal bulk heterojunction (BHJ) blends (as
shown in Supplementary Fig. 10) - then the left-over electrons
have nothing with which to recombine, and their recombination
kinetics are slowed after electron and hole separation.

Molecular picture of charge generation. Density functional
theory calculations were used to gain an understanding of the
structural features responsible for free charge generation in Y6.
The first requirement is significant electronic coupling between S,
and CT,. This parameter was calculated for all molecular pairs
exhibiting n-n stacking interactions in the Y6 crystal structure?*
by projecting the quasi-diabatic exciton/CT states calculated for a

pair of separated molecules onto the adiabatic states of the
molecular pair in the crystal geometry*->0. This approach enables
us to simultaneously predict the energies and couplings for
exciton/CT states (Fig. 5a, Supplementary Fig. 22, and Supple-
mentary Table 1).

The computed couplings and energetics point to a kinetic
pathway for exciton break-up. The exciton-CT coupling is
significant (10-75 meV), with the CT states either equal or lower
in energy to the excitonic states (except one pair in which the
stacking interaction is minimal). These two factors, combined
with the low reorganisation energy (estimated as ~0.3 eV based
on the individual molecules) imply that exciton dissociation is
expected, even according to incoherent charge transfer theories.
The same electronic coupling parameters/state energies are also
consistent with the possibility of coherent CS, as we observe
spectroscopically. Indeed, as previously noted, the coupling
between excitonic states suggests a high degree of exciton
delocalisation®, which is expected to lower the reorganisation
barrier for charge formation. Coupling of the CT states with the
ground state is also strong (30-85 meV), which is consistent with
the rapid recombination observed experimentally. We note that
the CT-GS coupling strengths do not correlate with the exciton-
CT coupling in a simple manner. This apparent independence of
Viecr and Vergs indicates that the recombination can, at least
in principle, be overcome by crystal structure engineering to
maximise the Vg, cp/Vergs ratio. Evidence of exciton/CT
hybridisation may be seen in the broader red tail of the UV-vis
absorption spectra.

Our calculations also offer a clue regarding the origin of charge
formation in Y6. In pairs involving molecules from different
lattice positions, there is a clear energetic preference
(~0.15-0.3 V) for which of the two possible CT states is formed.
These observations indicate that the packing geometry results in
two distinct polarisation environments, creating a donor-acceptor
system through supramolecular, rather than synthetic means.
This interpretation also explains the significant recombination
observed experimentally: the alternation of 'donor' and 'acceptor’
positions on the scale of the unit cell is akin to an extremely
intermixed blend system - meaning that both charge formation
and recombination are extremely rapid.

The energy levels calculated for free charges also reveal the
presence of distinct polarisation environments. Fig. 5b shows the
ionisation energy (IE) distributions calculated for a Y6 thin film
using the long-range electrostatic embedding procedure available
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Fig. 5 Electronic couplings and energies for Y6 excitons, CT states, and charges. a Exciton-CT energy offsets and electronic couplings (in meV) for
selected m-stacked molecular pairs extracted from the Y6 crystal structure (alkyl chains have been removed for clarity, remaining structures can be found
in the Supporting Information)24. b Density of states (DOS) for holes (—IE) in a 10 nm thick model thin film based on molecular dynamics equilibration of
the Y6 crystal structure, normalized to unit area. Dashed line indicates the DOS onset determined by photoelectron spectroscopy in air®. ¢ Average
jonisation energy as a function of n-stacking layer showing differential hole stabilisation for the different lattice positions, which occur in an “...ABBA..."

sequence.

in VOTCA (electron affinity (EA) is shown in Supplementary
Fig. 13)°1-57. Figure 5c shows that the different energetics of
charges occupying distinct crystal positions results in a bimodal
density of states, particularly for holes. These distributions
confirm the presence of a driving force for charge formation
inherent to the Y6 packing structure, on the order of the exciton
binding energy. This situation bears some similarity to single
component OPVs in which crystalline domains with different
orientations possess distinct charge energetics, resulting in charge
formation at interfacial boundaries®®. The present work is
distinguished from the prior literature in that the different
energetics are inherent to the crystal structure, resulting in bulk -
rather than interfacial - charge generation.

In summary, our calculations reveal equal energy exciton-CT
manifolds (as a result of differential polarisation), strong exciton-
CT coupling, and a flat energetic landscape for electron transport.
Taken together with previous theoretical work showing appreci-
able electronic coupling for electron and hole transfer, these
observations strongly suggest the existence of a kinetic pathway
for exciton-to-free charge conversion in Y6.

Discussion

The observation of intrinsic charge generation in a single organic
material necessitates an expanded understanding of the photo-
voltaic process in organic materials. The implications for device
design are far-reaching, showing that a new approach to reaching
maximum efficiency may be to maximise intrinsic charge gen-
eration yield, whilst reducing rapid trap/dopant-assisted mono-
molecular and bimolecular charge recombination, rather than
focus on exciton splitting in a donor-acceptor blend. Indeed, we
suggest that the highest efficiency OPV blends (such as PM6:Y6)
have in fact been optimised for the extraction of intrinsically
formed charges.

We propose a mechanism for how recombination is suppressed in
current Y6 blends, drawing on studies invoking energy level bending
at the donor/acceptor interface as a result of long-range interactions
of charges with molecular quadrupole moments®22°19-61 In an
excitonic picture — where charges only form at the interface - these

fields assist CT dissociation and suppress non-geminate recombi-
nation. However, these benefits come at the expense of exciton
dissociation rates, resulting in an intrinsic limit for the ionisation
energy offset between the neat materials®. When free charges are
intrinsically generated in Y6, not only is the interfacial exciton dis-
sociation barrier bypassed, but the level bending defines an attractive
potential for holes, which are pulled towards the interface before
leaving the acceptor material, while electrons are repelled. Under this
interpretation, champion efficiency systems, such as PM6/Y6, benefit
from both exciton- and charge-funnelling effects: excitons in PM6
are funnelled to Y6 via resonant energy transfer®?’, while level
bending pulls holes from Y6 into the polymer domain, and sup-
presses recombination thereafter. We can test whether quadrupolar
fields affect charge recombination in Y6 by comparing charge and
exciton kinetics of neat Y6, to a film of Y6 blended with 20% weight
ratio PCBM (a ratio present in highly efficient ternary devices?®).
The energy levels of PCBM mean that both electron and hole
transfer from Y6 to PCBM are prohibited. Any reduction in charge
recombination rate will therefore be due to interfacial level bending
(one would expect the effect of increased crystallinity in Y6 due to
the PCBM would increase recombination, rather than decrease).
Supplementary Fig. 11 shows that, as predicted, there is a small
reduction in charge recombination rate, and concurrent reduction of
exciton population, when PCBM is introduced.

Efficient intrinsic charge generation, in the FREA small
molecule Y6, has broad implications for OPV device design.
While previous works (on materials such as P3HT®? and
PCBM®) have generated debate, showing evidence of a propor-
tion of (10-15%) charges generated in neat films, this work differs
significantly in that the free charges are not formed ‘extrinsically’
(in the case of P3HT®%), or from field-induced exciton
separation!?. Considering a population of excitons and free
charges in neat Y6 necessitates a more nuanced understanding of
the simplified four step process - exciton generation, exciton
transport, charge separation at a heterojunction, charge transport
- that has previously dominated OPV discussion. Exciton diffu-
sion length is no longer a simple function of how fast a lone
exciton travels and how long it lives - interconversion into free
charges and the reverse process must also be considered. The ease
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of charge separation, but concurrent rapid charge recombination,
necessitate a renewed focus on reducing such recombination. This
hints that for current Y6-based devices the key purpose of the
bulk heterojunction is more to reduce charge recombination, than
to split excitons. Emphasis may shift from not only reducing
interfacial and CT state bimolecular recombination, but to also
focussing on a reduction in minority-carrier recombination.
Simultaneously maximising intrinsic PLQE and charge genera-
tion should improve OPV device open circuit voltages — which
have yet to achieve parity with inorganic photovoltaics. Specific
directions of study include: improving crystal packing to further
enhance dielectric constants and hence free charge fraction;
tuning energy levels through packing structures and/or molecular
orientation rather than different compounds; and crystal struc-
ture engineering to minimise CT-ground state coupling.

We have shown, through intensity-dependent PLQE measure-
ments, that free charges exist in neat films of the molecular semi-
conductor Y6, at illumination intensities below 1 sun. We have
corroborated this measurement with optically-pumped time-
resolved terahertz, ultrafast photoluminescence up-conversion and
transient absorption spectroscopy. Our data can be explained by
simple kinetic models, along with a new quantum mechanical
picture of exciton-CT state coupling and free charge energetics. We
have outlined the implications of this finding for our understanding
of the photovoltaic process, and the mechanism of action for cur-
rent champion efficiency devices, and have suggested further ave-
nues of study for enhancing efficiency in future devices. These
findings open up the potential to think beyond the bulk hetero-
junction, and revisit the possibility of fabricating efficient doped
organic p-n junctions.

Methods

General. UV-Vis absorption spectra were obtained using Carry 5000 (Agilent) and
a Cary 50 Bio UV-vis spectrometer in the range 190-1100 nm. Photoluminescence
spectra were obtained using a Cary Eclipse (Varian). Photoluminescence quantum
efficiency measurements were obtained in an integrating sphere using the method
of de Mello et al.%. A Q-switched frequency doubled ND:YAg laser with output
wavelength 532 nm, pulse-length 600 ps, and rep-rate set to 25 kHz was used to
excite the sample for the intensity dependent PLQE measurements. Sample film
thicknesses were performed using a Dektak profilometer. Thin films of Y6, and Y6
blends were spin-coated onto quartz spectrosil substrates in a glovebox from

11 mg/ml chloroform solutions, at a spin-speed of 3000 rpm. Solid solutions of
Y6:polystyrene were prepared in a 1:50 weight ratio, and spincoated in a glovebox
at 800 rpm.

Device fabrication. Indium tin oxide-patterned glass substrates were cleaned by
sequential sonication in acetone and propan-2-ol and subjected to ozone treatment.
A 35nm film of PEDOT:PSS was spin coated in air from aqueous solution and
baked on a hotplate at 110 °C for 15 min. A 30 nm layer of Y6 was spin coated from
a chlorobenzene solution in a nitrogen-filled glovebox (0.1 ppm O,, 0.0 ppm H,0).
The cathode of 1 nm LiF and 90 nm Al was deposited by vacuum thermal eva-
poration at pressure ~10~6 mbar through a shadow mask to define 6 mm? pixels.
The devices based on PTB7-Th:Y6 were fabricated with a normal structure as ITO
glass/PEDOT:PSS/PTB7-Th:Y6/PNDIT-F3N/Ag. Patterned ITO glass was pre-
cleaned in an ultrasonic bath with deionized water, acetone and isopropanol, and
treated in an ultraviolet-ozone chamber (Jelight Company, USA) for 20 min.
PEDOT:PSS was spin-coated on the pre-cleaned ITO at 5000 rpm, followed by
baking at 150 °C for 15 min. Then, the active layers were spin-coated on PED-
OT:PSS (PTB7-Th:Y6, X:12 mg mL~! in chloroform, 2500 rpm). Afterwards, the
PNDIT-F3N solution (0.5 mgmL~! in methanol) was spin-coated on the active
layer at 2000 rpm. Finally, Ag electrode (ca. 80 nm) was slowly evaporated onto the
surface of the underneath layer under vacuum (ca. 10= Pa). The devices were not
masked and the active area of devices were 4 mm?.

Device characterisation. Photovoltaic device JV characteristics were measured in
a nitrogen-filled glove box at room temperature using a solar simulator and source-
measure unit. Light intensity was determined using a calibrated silicon diode. We
tested 20 devices for each kind and choose the best performing devices. Light
intensity was varied by adjusting the distance between source and device under test
and also by use of neutral density filters. EQE spectra of PTB7-Th:Y6 devices were
obtained using a Solar Cell Spectral Response Measurement System QE-R3011
(Enlitech Co.).

Transient absorption spectroscopy. Measurements were performed using a
homebuilt experimental setup illuminated by an amplified Ti:sapphire laser, with
pulse durations of 100-150 fs, centred around 800 nm and at a repetition rate of
3 kHz. The excitation pulses are generated either using this fundamental, or by
using an optical parametric amplifier (TOPAS) with the 800 nm fundamental input
and then chopped at f/2 (1.5 kHz). Photoexcitations in the materials were probed
via a broadband white light continuum generated by focusing a portion of the
fundamental to an undoped YAG (Yttrium Aluminium Garnet) crystal. Pump-
probe polarizations were kept under magic angle (54.7°) configuration to avoid
orientational dynamics. After passing through the photoexcited sample, the probe
pulses were spectrally dispersed using a prism spectrometer and are then collected
using a CMOS camera (visible components) or an InGaAs photodiode array (IR
components). The time resolution is obtained via introducing time delays in the
pump path which is achieved using a retroreflector connected to a motorized
translational stage. The differential transmission signals at various time delays are
calculated from the sequential probe shots corresponding to the pump on versus
off. For typical measurements, 8000 shots were averaged at each time point and
were repeated at least four times. To avoid degradation, all the samples were
measured under a vacuum, or inert nitrogen environment.

Time-resolved terahertz spectroscopy. Optical pump terahertz probe spectro-
scopy was performed using a dual lock-in technique, similar to that described by
Tiwana et al.%. THz pulses are generated by an amplified Ti:sapphire laser, with
pulse durations of 100-150 fs, centred around 800 nm, generated at a repetition
rate of 3 kHz chopped to 1.5 kHz, incident onto a 1 mm thick ZnTe crystal. THz
pulses are measured by balanced photodetectors using electrooptic sampling in a
separate ZnTe crystal. The 800 nm ‘optical’ pump is chopped at 750 Hz, and
incident on the sample with a spot-size diameter of 4-5 mm. The THz probe
diameter was measured as ~1-2 mm. The entire THz beam path is enclosed in a
cavity pumped with dry air, with humidity monitored to ensure % water remains
below 2%. The sample is enclosed in a nitrogen environment to avoid laser
degradation and is excited from the glass substrate side. THz conductivity was
calculated®® as:

goc(ny +ng) AT

Ao =
7 L T

where ¢, is the vacuum permittivity, c is the speed of light, n, and np are the
refractive indices of the media on both sides of the sample in the THz region —
quartz, and air, L is the sample thickness, and 4T the measured change in THz
transmittance.

Ultrafast transient photoluminescence spectroscopy. Ultrafast photo-
luminescence dynamics were measured using a photoluminescence up-conversion
technique. The setup’s light source is a Ytterbium fiber laser (Tangerine SP,
Amplitude Systemes) operating at 44 kHz and generating 150 fs pulses. The laser
output was split into pump and gate parts. The pump was frequency-doubled to
515 nm using a BBO crystal and focused to a 50 um? spot to excite the sample. The
sample fluorescence was collimated and refocused on a nonlinear mixing crystal
(1 mm BBO, 0 =32°) by a pair of aluminium-coated off-axis parabolic mirrors.
The crystal angle is set for the phase-matching condition (type I) to produce sum
frequency signals at 480 nm from mixing the 1030 nm gate and 900 nm photo-
luminescence. Two achromatic lenses collimated and focussed the upconverted
signals onto the spectrometer (Princeton Instruments SP 2150). Signals were
detected by an intensified CCD camera (Princeton Instruments, PIMAX3). A
combination of 550 nm long- and 800 nm short-pass filters were used to remove
residual excitation and 1030 nm gate light, respectively. The time delay between
pump and gate beams was controlled via a motorized optical delay line on the
excitation beam path. For each delay time, 240,000 shots were accumulated.
Samples were measured under a vacuum environment.

Density functional theory calculations. Density functional theory calculations
were performed using Gaussian 09%7 with an ultrafine integration grid, and the
accuracy of two-electron integrals increased to 10!l. Optimized geometries were
confirmed by calculation of the associated vibrational modes, which revealed no
imaginary frequencies in all cases.

Electronic coupling calculations. Electronic coupling calculations were conducted
on pairs of molecules extracted from the X-ray crystal structure, with alkyl chains
truncated to ethyl. These calculations used the long-range corrected CAM-
B3LYP® exchange—correlation functional in combination with the 6-31+G(d,p)
basis set. Linear response TD-DFT calculations for excited states were performed
within the Tamm-Dankoff approximation (TDA). Dielectric stabilisation was
treated using a polarisable continuum model with € = 5.0, based on the
experimentally-determined value?®%°-72, To treat CT states, the
exchange-correlation functional was range-tuned according to the established non-
empirical procedure®®-72, resulting in an optimal range-separation parameter of
0.010 Bohr~1. Electronic couplings and exciton/CT energetics were accessed by
performing calculations in which the molecules were separated from one another
by 10 A to define localized/quasi-diabatic states. At this distance, interactions
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involving orbital overlap are negligible, resulting in the formation of localized CT
states, and pure exciton states that can be localized by diabatization”3. The energies
and couplings between these states were calculated by projection onto the states of

the molecular pair in the crystal packing geometry*>°0.

Density of states calculations. Density of states calculations for electrons and
holes were performed using the long-range embedding procedure available in
VOTCA-CTP>!-57, Molecular charge densities and polarizabilities for the ground
state, cation, and anion were calculated using B3LYP/6-311 G(d,p). The charge
densities were used to fit distributed atomic multipoles (specifically, atomic char-
ges, dipoles, and quadrupoles) using GDMA (version 2.3)74. Polarizabilities for
atoms in alkyl chains were taken directly from the set of Thole polarizabilities”3.
Atomic polarizabilities for atoms in the Y6 chromophore were obtained by scaling
Thole polarizabilities to match the DFT-calculated polarisable volume of the
core®l, Solid state corrections to the gas-phase IE/EA were calculated using the
long-range Ewald summation scheme in VOTCA-CTP. These calculations
employed a molecular dynamics equilibrated 8 x 8 x 6 supercell constructed from
the Y6 crystal structure?4, with the -m stacking direction aligned with the z-axis, to
match the experimentally observed face-on packing preference relative to the
substrate. This simulation cell was used to mimic a ~10 nm thin film by including a
~20 nm vacuum buffer in the z direction and applying the shape term for a per-
iodically repeated supercell in the xy plane. The interaction cut-offs for electrostatic
and polarization interactions were 8 and 6 nm, respectively.

Molecular dynamics simulations. Molecular dynamics simulations were con-
ducted using the Y6 crystal structure with the missing atoms of the alkyl side
chains built in. The system containing 8 x 8 x 6 unit cells was generated using
Maestro’> in the Schrodinger Material Science Suite, and then prepared for
molecular dynamics simulation with the OPLS3e force field using the System
Builder in Desmond”-78. The prepared system first underwent 100 ps of Brownian
minimization, followed by 1 ns of equilibration using NPT molecular dynamics
simulation at 1 fs timestep, 300 K and 1.01325 bar. A further 10 ps molecular
dynamics simulation was conducted to collect 200 frames of trajectories at 50 fs
time interval for analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The raw data and code for data processing can be found at https://github.com/
Mikebprice/Free-charge-generation-in-Y6. Questions regarding this data set are
encouraged to be sent to the corresponding authors.

Code availability

Code that was used to support the findings of this study (and which has not been
previously made available) can be accessed from https://github.com/
PaulAlexanderHume/Free-charge-generation-in-Y6-theory. Questions regarding this
data set are encouraged to be sent to the corresponding authors.
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