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Abstract: We investigate the nature of heat transfer and entropy generation for natural
convection in a two-dimensional circular section enclosure. The enclosure is assumed to fill
with porous media. The Darcy momentum equation is used to model the porous media. The
full governing differential equations are simplified with the Boussinesq approximation and
solved by a finite volume method. Whereas the Prandtl number Pr is fixed to 1.0. Results are
presented in terms of Nusselt number, entropy generation number, and Bejan number.

Keywords: porous cavity, irreversibility, entropy generation, Bejan number, Nusselt number

Introduction

     Horizontal cylinders filled with fluids are commonly encountered in the world around us. This type
of geometry and flow configuration are commonly observed in the field of electronics, cooling system,
heat exchanger, etc.  When their side wall temperature is non-uniform, natural convection motion
develops inside the cylinder and many efforts have been devoted, over the last decades, to understand
the flow structure and related heat transfer mechanism under various heating conditions. Articles by
Sierra [1], Ostrach and Hantman  [2], Ostrach [3], Xin et al. [4] are some of them. Two configurations
have been extensively studied: the configuration heated from below (Rayleigh-Benard convection) and
that heated from the side. Most of the previous work deals with non-porous media and none of them
considered a Second-law (of thermodynamics) analysis.
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     Therefore, in the present work, we study the entropy generation characteristics along with the nature
of heat transfer inside a porous circular cavity by solving numerically the fully nonlinear momentum
and energy equations in a two-dimensional Cartesian frame. More specifically, the cavity is divided
into two symmetrical parts by the vertical centerline and both of the parts are perfectly isothermal, but
differentially heated. Results are presented for different Rayleigh numbers (Ra=10 to 5000).

Figure 1. Schematic diagram of the problem under consideration

Equations and Numerical Methods

     Figure 1 shows the domain to be analyzed and the adopted coordinate system. All asterisked
quantities in this paper are in dimensional form. The left symmetrical part of the cylinder is cold and
the right part is hot as indicated in Figure 1. It is assumed that the cavity is completely filled with the
fluid. Uneven density of fluid originating from the temperature difference of the walls produces
buoyancy. The saturated porous medium is assumed to be isotropic in thermal conductivity and follows
the Darcy model (see Bejan [5]). Finally, the set of non-dimensional governing equations in terms of
the stream function ψ and temperature Θ are
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subjected to the following boundary conditions
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     Equations (1) and (2) along with the boundary conditions given in Eq. (4) are solved using control
volume based Finite-Volume method. A non-staggered and non-uniform grid system is used with a
higher mesh density near the walls. TDMA solver solves discretized and linearized equation systems.
The whole computational domain is subdivided by an unequally spaced mesh with a size of 116×128.

Entropy Generation

     For the porous media, which follows the Darcy model, the dimensionless form of the local rate of
entropy generation (NS) can be calculated from the following equation:
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where genS ′′′ and 0S ′′′  are local entropy generation rate and the characteristics transfer rate (see Bejan

[6]), respectively. The detailed derivation of the above equation is available in Bejan [5]. Equation (5)
consists of two parts. The first part (first square bracketed term at the right-hand side of Eq. (5)) is the
irreversibility due to finite temperature gradient and generally termed as heat transfer irreversibility
(HTI). The second part is the contribution of fluid friction irreversibility (FFI) to entropy generation,
which can be calculated from the second square bracketed term. Bejan number (Be) can be
mathematically expressed as

.
FFIHTI

HTI
+

=Be (6)

Results and Discussion

     We first present the flow and thermal fields' behavior in terms of streamlines and isothermal lines.
Isothermal lines inside the cavity are shown in Figure 2 for six different values of Rayleigh number as
indicated in the figure. Corresponding streamfunction plots are shown in Figure 3. Conduction like
isotherms are observed at Ra=10. Streamlines are similar to concentric circles except near the center
region of the cavity, where elliptic core is observed. With the increase of Rayleigh number, convection
current develops inside the cavity and isothermal lines start to swirl as shown in Figures 2(a) and 2(b).
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Core of the streamlines rotate counterclockwise direction with the increasing Ra. Thermal spots appear
near the bottom half of the hot wall and the top half of the cold wall at Ra=500. Temperature gradient,
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Figure 2. Isothermal lines at different Rayleigh number

(a) Ra=10 (b) Ra=50 (c) Ra=100

(d) Ra=500 (e) Ra=1000 (f) Ra=5000

Figure 3. Streamlines at different Rayleigh number
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as well as, heat transfer rate is higher in magnitude near these thermal spots. Core of the streamlines
elongated at this Rayleigh number. Further increase in the Rayleigh number elongates the thermal spots
along the wall. Boundary layer type of flow is observed at Ra=5000. Fluid is almost stagnant at the

(a) Ra=10 (b) Ra=50 (c) Ra=100

(d) Ra=500 (e) Ra=1000 (f) Ra=5000

Figure 4. Isentropic lines at different Rayleigh number

(a) Ra=10 (b) Ra=50 (c) Ra=100

(d) Ra=500 (e) Ra=1000 (f) Ra=5000

Figure 5. Iso-Bejan lines at different Rayleigh number
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middle portion of the cavity. For the same flow configuration contours of entropy generation number
and Bejan number are plotted in Figures 4(a)–(f) and Figures 5(a)–(f). At low Rayleigh number,
entropy generation rate mainly dominated by the finite temperature gradient. The extent of
irreversibility throughout the whole cavity is observed. With increasing Rayleigh number, convection
current dominates and the extent of irreversibility start to concentrate towards the wall. At high
Rayleigh number, high concentration of entropy generation is observed near the wall. However, heat
transfer irreversibility (Bejan number) shows a different picture. With increasing Rayleigh number,
higher concentration of Bejan number is observed at the center region of the cavity and the extent of
the heat transfer irreversibility rotates along the direction of convective distortion of isothermal lines.
     Average Nusselt number and entropy generation number at steady state are calculated using the
following equation:
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where s is the distance along the circular wall, S is equal to πR, and ∀  is representing the volume of the
cavity. Figure 6 shows the distribution of average Nusselt number and entropy generation number as a
function of Rayleigh number.

Figure 6. Average Nusselt and entropy generation numbers as a function of Rayleigh number
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Nomenclature

A Area of the cavity, m2.
Be Bejan number, (see Eq. (8)).
Cp Specific heat of the fluid, J.kg-1.0C-1.
Cs Specific heat of the solid matrix, J.kg-1.0C-1.
D diameter of the cylinder, m
Ecm Modified Eckert number = ( )TKCDu p ∆../22

0 .
K Permeability of the porous media, m2.
Ns Entropy generation number
Nu Nusselt number

Pr Prandtl number = ν/α.
R Radius of the cylinder, m
Ra Rayleigh number, (see Eq. (3)).

genS ′′′ Entropy generation rate, W.m-3.K-1.
T Temperature of the fluid, 0C.
T0 Reference temperature, 0C.
u* x-component of the velocity, m.sec-1.
v* y-component of the velocity, m.sec-1.
v y-component of the dimensionless velocity = v*/u0.
u x-component of the dimensionless velocity = u*/u0.
u0 Reference velocity = α/D.
x* Horizontal distance, m.
y* Vertical distance, m.
x Dimensionless horizontal distance =x*/D.
y Dimensionless vertical distance =y*/D.

Greek symbols
α Thermal diffusivity of the fluid, m2.sec-1.
β Thermal expansion coefficient of the fluid, 0C-1.
ψ* Streamfunction, m2.sec-1.
ψ Dimensionless streamfunction = ψ*/α.
Θ Dimensionless temperature = (T-T0)/∆T.
ρ Density of the fluid, kg.m-3

ν Kinematic viscosity of the fluid, m2.sec-1.
∀ Volume of the cavity, m3.
φ Porosity of the porous media.

Conclusions

     The nature of heat transfer, entropy generation, and heat transfer irreversibility inside a differentially
heated circular cylinder is presented in this paper. In conduction regime, both average Nusselt number
and the entropy generation number are independent of Rayleigh number variation. In convection
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dominated regime, these parameters show an increasing tendency with increasing Rayleigh number. At
high Rayleigh number, the near-wall magnitude of overall entropy generation rate is higher, but heat
transfer irreversibility is higher at the center portion of the cavity.
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