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ABSTRACT Boundary-layer flow of a nanofluid past a stretching sheet with momentum, thermal, and solutal, slip condi-
tions have been investigated numerically by Runge-Kutta shooting technique. The model used for the nanofluid 

incorporates the effects of Brownian motion and thermophoresis.  A similarity solution is presented which depends primarily on  
Prandtl number Pr, Lewis number Le, Brownian motion number Nb, and thermophorsis number Nt. The variation of the reduced Nus-
selt number and reduced Sherwood number with Nb and Nt for various values of Pr and Le is presented in tabular and graphical forms. 
Comparison with published results is presented.

1. INTRODUCTION:

During the last many years, the study of boundary layer flow 
and heat transfer has achieved a lot of success because of its 
large number of applications in Science and Engineering disci-
plines. Some of these applications include materials manufac-
tured by the polymer extrusion, drawing of copper wires, con-
tinuous stretching of plastic films, artificial fibres, hot rolling, 
wire drawing, glass fiber, metal extrusion and metal spinning or 
electronic chips, and many others. A large number of research-
ers engaged with this area of investigation,  for many years.

In these cases, the final product of desired characteristics de-
pends on the rate of cooling in the process and the process of 
stretching. After the pioneering work by Sakiadis [1], a large 
amount of literature is available on boundary layer flow of 
Newtonian and non-Newtonian fluids over linear and nonlinear 
stretching surfaces [2–10]. However, only a limited attention 
has been paid to the study of boundary layer flow of nano fluids 
over a stretching surface.

Most conventional heat transfer fluids, such as water, ethylene 
glycol, and engine oil, have limited capabilities in terms of ther-
mal properties, which, in turn, may impose, serve restrictions 
in many thermal applications. On the other hand, most solids, 
in particular, metals, have thermal conductivities muchhigher, 
say, by one to three orders of magnitude, compared with that of 
liquids. Hence, one can then expect that fluid containing solid 
particles may significantly increase its conductivity. Many of the 
publications on nanofluids are about understanding of their be-
haviors so that they can be utilized, where straight heat transfer 
enhancement is paramount as in many industrial applications, 
nuclear reactors, transportation, electronics as well as biomedi-
cine and food (see Ding et al. [11]). Nanofluid is asmart fluid, 
where the heat transfer capabilities can be reduced or enhanced 
at will. These fluids enhance thermal conductivity of the base 
fluid enormously, which is beyond the explanation of any ex-
isting theory. They are also very stable and have no additional 
problems, such as sedimentation, erosion, additional pressure 
drop and non-Newtonian behavior, due to the tiny size of nano 
elements and the low volume fraction of nano elements re-
quired for conductivity enhancement. Much attention has been 
paid in the past decade to this new type of composite material 
because of its enhanced properties and behavior associated 
with heat transfer, mass transfer, wetting and spreading and an-
timicrobial activities, and the number of publications related to 
nanofluids increases in an exponential manner. The enhanced 
thermal behavior of nanofluids could provide a basis for an 

enormous innovation for heat transfer intensification, which is 
of major importance to a number of industrial sectors includ-
ing transportation, power generation, micro-manufacturing, 
thermal therapy for cancer treatment, chemical and metallurgi-
cal sectors, as well as heating, cooling, ventilation and air-con-
ditioning. Nanofluids are also important for the production of 
nanostructured materials, for the engineering of complex fluids, 
as well as for clean fluid.

They have shown that even with small volumetric fraction of na-
noparticles (usually less than 5%) the thermal conductivity of 
base liquid increased by 10-50% with remarkable improvement 
in heat transfer co-efficient [see references (12-14)]

These authors discussed about the convective transport in na-
nofluids [see references (15-18)]. They studied the natural con-
vective flow of a nanofluids over a vertical plate and their simi-
larity analysis is identical with four parameters governing the 
transport process , namely a lewis number , a Buoyancy- ratio 
Number Gr, a Brownian motion number Nb, and a thermopho-
resis number Nt , A.V. Kuznetsov, D.A. Nield [19]. The study  of  
boundary layer flow of a nanofluid past a stretching sheet with 
a constant surface temperature, has been considered by these 
author[20].  

The objective of the present study is to analyze the development 
of the free convective steady boundary layer flow, heat transfer 
and nanoparticle volume fraction over a vertically stretching 
surface in a nanofluid. A similarity solution is presented. This 
solution depends on  prandtl number Pr,  Lewis number Le, Gra-
shof number Gr, Brownian motion number Nb thermophoresis 
number Nt, momentum slip parameter, thermal slip parameter, 
solutal slip parameter. The dependency of the local Nusselt and 
local Sherwood numbers on these four parameters is numeri-
cally investigated, To our best of Knowledge, the results of the 
paper are new and they have not been published before.

2.  MATHEMATICAL FORMULATION
We consider a steady incompressible laminar two dimensional 
boundary layer flow of a nano fluid past a vertical stretching 
sheet with linear velocity.  A steady uniform stress leading to 
equal and opposite forces is applied along x-axis, so that sheet 
is stretched keeping origin fixed.  A uniform magnetic field of 
strength B0 is imposed along the y-axis.  The schematic of the 
physical configuration is displayed in Fig. 1.  Under the usual 
boundary layer approximation, the basic governing equations 
can be taken in the following form:
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Here x and y are respectively the directions along and perpen-
dicular to the surface, u, v are the velocity components along the 
x and y directions respectively, T is the temperature of liquid, 
C is the nanoparticle fraction and other terms have their usual 
meanings as given in the nomenclature.  Equations (1) - (4) are 
supplemented with the following boundary conditions
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equations (2) – (4) can be written as
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Here we note that the continuity equation (1) holds automati-
cally with the definitions given in (6). Using equation (6) the 
boundary conditions (5) can be written as 
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Here 0bN →  implies that there is no thermal transport due to 
the buoyancy effects formulated as a result of nano particle con-
centration gradients.  The non-dimensional parameters appear-
ing in equations (7) – (10) are the Grashof number Gr, Magnetic 
parameter M, Prandtl number Pr, the Brownian motion param-
eter Nb, the thermophoretic parameter Nt, the Lewis number Le 
and the slip parameter γ and they are defined respectively as 
follows: 
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3.  NUMERICAL SOLUTION
The non-linear differential equations (7) to (9) with boundary 
conditions (10) are solved numerically by the shooting tech-
nique that uses fourth order Runge-Kutta and Newton-Raphson 
methods. The non-linear differential equations are first decom-
posed into to a system of first order differential equations 

(12)

with the boundary conditions
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In order to integrate equations (8), (9), (10), with boundary 
conditions (11), We require values of (0)f ′  and (0)θ ,and( )0φ ,  but no such values are available at the boundary. The 
important factor of shooting method is to choose the appropri-
ate values ofη ∞

.In order to determineη ∞  for boundary value 
problem stated by equations, (8) to (11), we start with some 
guess values  for some particular set of parameters to obtain

(0)f ′  , (0)θ , and ( )0φ . The solution procedure is repeated 
with another large value of η ∞ until two successive values of 

(0)f ′  , (0)θ  ,and ( )0φ  differ only by the specified significant 
digit. The last value of η ∞ is finally chosen to be the most ap-
propriate value of the limitη ∞ for that particular set of param-
eters. The value ofη ∞ may change for another set of physical 
parameters. Once the finite value of η ∞ is determined then the 
integration is carried out. We compare the calculated values of

, ,  (0)f andθ φ′  at 10η = (say) with the given boundary 
conditions (10) 0f ′ = ,

(10) 0,  (10) 10.andθ φ= =  and adjust the estimated values of
(0)f ′  , (0)  (0)andθ φ , to give a better approximation for the 

solution. We take the series of values of (0)f ′  , (0) (0)andθ φ
, and apply the fourth order Runge-Kutta  method with step size 
0.01. The above procedure is repeated until we get the results 
upto the desired degree of accuracy, 610− . 

4. RESULTS AND DISCUSSION.
To provide a physical insight into the problem, comprehensive 
numerical computations are carried out for various values of 
the parameters that describe the flow, heat and mass transfer 
characteristics with nanoparticles. The parameters Gr Pr ,Le, 
Nb  ,Nt , β , γ , δ , are involved in the final form of the math-
ematical model. The problem can be extended on many direc-
tions, but the primary consideration, is the effects of slip flow, 
free convection and nanoparticle volume fraction. In order to 
bring out the salient features of the flow, heat and mass trans-
fer characteristics, the numerical results are presented in Figs. 
2–11,and in Tables 1–3. 
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Equations 8 -10 with boundary conditions (11) have been 
solved numerically for various values of the parameters Gr Pr 
,Le, Nb  ,Nt , β , γ , δ ,using Runge-Kutta shooting method, 
which is stable and convergent .The most crucial factor of this 
numerical solution is to choose the appropriate finite value of  
η ∞ Thus, the asymptotic boundary conditions given by (13) 
were replaced by a comparatively large value max 10η = ,for the 
similarity variable maxη . The choice of 

max 10η =  ensured that 
all numerical solutions approached to the asymptotic values 
correctly. It is worth mentioning to consider that the choice of 
a large value for maxη   is an important point that is often over-
looked in publications on  boundary layer flows.

The result for the reduced Nusselt number - 'θ (0) are com-
pared with those of Wang[22] Gorla and Sidawi[21] and Khan 
and Pop[20] in Table 1. It is observed that comparison shows 
good agreement for each value of Pr. Hence it is justified that our 
results are correct to the best of our knowledge.

The variation of reduced Nusselt number (Nur)and Sherwood 
number (shr) with Nb and Nt for Pr =10, Le =10 are presented 
in tables 2(a) and 2(b).

It is observed from the above tables that, Nur  is a decreasing 
function and Shr is an increasing function , for the parameters 
Pr, Le, Nb, and Nt  and our results match very well with the re-
sults of Khan and Pop [20]. Further, as in Kuznetsov and Nield 
[18], simple linear multiple regression estimations Nurest and 
Shrest of the reduced Nusselt number and reduced Sherwood 
number are also obtained, which incorporate the effects of 
Brownian motion parameter Nb and thermophoresis parameter 
Nt. These linear regression estimations can be written as 

Nurest = Nur + Cb Nb +Ct Nt ;        

Shrest = Shr +CbNb +CtNt                                            (14)     

The results of these estimations with the regression coefficients 
and the maximum relative errors   ɛ and γ  are calculated as ɛ 
=|(Nurest – Nu)/ Nu |  and  γ =| (Shrest – Sh)/Sh |, see Kuznetsov 
and Nield [11]. Further it is noticed that for most practical pur-
poses, the simple linear regression formulas in Equation (14) is 
enough to justify the resultant analysis.

Table 1: Comparison of results for the reduced Nusselt  Num-
ber - (0)

Pr Present results 
Nb=Nt=0 Wang[22] Gorla and 

Sidawi[21]
Khan and 
Pop[ 20]

0.07 0.087151 0.0656 0.0656 0.0663
0.2 0.172349 0.1691 0.1691 0.1691
0.7 0.453918 0.4539 0.5349 0.4539
2 0.911358 0.9114 0.9114 0.9113
7 1.89542 1.8954 1.8905 1.8954
20 3.354154 3.3539 3.3539 3.3539
70 6.459435 6.4622 6.4622 6.4621

(a)  Variation of Nur with Nb and Nt for Pr=5 

Nb=0.1 Nb=0.2 Nb=0.3 Nb=0.4 Nb=0.5

Nt -Nur Nt -Nur Nt -Nur Nt -Nur Nt -Nur

0.1 1.52571 0.1 1.49294 0.1 1.50153 0.1 1.48506 0.1 1.46862

0.2 1.51757 0.2 1.50151 0.2 1.48507 0.2 1.46867 0.2 1.45234

0.3 1.50137 0.3 1.48505 0.3 1.46114 0.3 1.45233 0.3 1.43601

0.4 1.48503 0.4 1.46113 0.4 1.45228 0.4 1.43601 0.4 1.41987

0.5 1.46862 0.5 1.45228 0.5 1.43607 0.5 1.41987 0.5 1.40375

(b) Variation of Shr with Nb and Nt when Pr=5

Nb=0.1 Nb=0.2 Nb=0.3 Nb=0.4 Nb=0.5

Nt Shr Nt Shr Nt Shr Nt Shr Nt Shr

0.1 2.232335 0.1 1.068073 0.1 0.433837 0.1 0.308759 0.1 0.233694

0.2 2.883622 0.2 1.401455 0.2 0.906707 0.2 0.65933 0.2 0.510934

0.3 4.303617 0.3 2.102545 0.3 1.361134 0.3 1.001745 0.3 0.781566

0.4 5.689995 0.4 2.772253 0.4 1.819651 0.4 1.335961 0.4 1.045893

0.5 7.042962 0.5 3.455619 0.5 2.260107 0.5 1.662334 0.5 1.303739

Fig 2, depicts the   plot of velocity profile 'f  versus, dimension-
less distance η  for different values of Grashof  number Gr, and 
it is noticed that velocity  increase, with the  increase of Grashof 
number Gr, physically  Gr > 0 means heating of fluid  or cooling 
boundary Surface   and Gr< 0, means cooling of fluid or heating 
of the surface  and Gr = 0 implies absence of free convection 
current .

Fig 3, projects the effect of slip parameter β  on the transverse 
and axial velocity profiles. It is readily seen that the amount of 
slip ( )1 0fη−  increases monotonically with β   from the no-slip 
situation 0β =  towards full slip as β →∞ .  The latter limiting 
case implies that the frictional resistance between the cooling 
liquid and the stretching sheet is eliminated, and the stretch-
ing of the sheet does no longer impart any motion to the cool-
ing liquid.  Clearly, β  has a substantial effect on the flow of the 
liquid past stretching sheet .This slip parameter is a function of 
the local Reynolds number, the local Knudsen number, and the 
tangential momentum accommodation coefficient representing 
the fraction of the molecules reflected diffusively at the surface. 
As the slip parameter increases, the slip velocity increases and 
the wall shear stress decreases. These results  match  with the 
conclusions reached in other recent studies.

The effect of Pr on temperature profile is exhibited in fig 4. It is 
noticed from fig 4,that temperature decrease  with increasing 
values of  Pr . An increase in Pr reduces   the thermal boundary 
layer thickness. Prandtl number signifies the ratio of   momen-
tum diffusivity to thermal diffusivity .Fluids with lower prandtl 
number passes higher conductivities (and thicker thermal 
boundary layer structures) so that heat can diffuse from wall 
faster than higher Pr fluids so the property of prandtl  number 
is to control the rate of cooling in conducting flows .

Fig 5 depicts that as the thermal slip parameterγ ,  increases 
temperature  in the thermal boundary layer is  progressively 
enhanced. There is sudden overshoot in temperature  between

γ = 0.6, and  γ =0.7,where It can also be seen that the thick-
ness of the thermal boundary increases as the flow becomes 
more rarefied.

The effect of Le on nanoparticle volume fraction profile is shown 
in fig( 6) for constant values of  Pr, Gr, Nt, Nb. It is observed from 
fig. 6, that as Le increases nanoparticle volume fraction profile  
decreases .It is to be noticed that increasing values of Le, lowers 
the concentration of the nanoparticle in the boundary layer re-
gion which in turn results in reducing heat transfer rates . Hence 
the value of Le must be maintained at minimum value to have a 
situation of conducive for cooling of the stretching sheet. Fur-
ther it is noticed that the effect of Le numbers on the dimension-
less mass transfer rates is that increase in dimensionless mass 
transfer rates is monotonic for larger Le numbers.

Figs. 7 and 8 shows the variation in nanoparticle volume frac-
tion profile vs Nb and Nt  for the selected values of other param-
eters . It is clear from fig. 7, that there is decrease nanoparticle 
volume fraction profile with the increase in Nt.  Like dimension-
less heat transfer rates, the change in the mass transfer rates 
is higher for smaller values of the parameter Nb and decreases 



234 IJSR - INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH

Volume : 3 | Issue : 6 | June 2014 • ISSN No 2277 - 8179 Research Paper

with the increase in the parameter Nb. However, for large values 
of Pr numbers, the dimensionless mass transfer rates increase 
with the increase in Nt and decrease in Nb. 

The effects of β , γ ,δ , on  nanoparticle volume fraction pro-
file is shown in figs, 9, 10 and 11  for constant values of  Pr, Gr, 
Nt, Nb respectively and it is noticed that as β  increases na-
noparticle volume fraction profile increases, which means that 
there is thickening of  concentration boundary layer thickness 
, resulting in enhancement of fluid temperature where as the 
values of γ    and  δ  increases,  keeping  values of all the other 
parameters fixed, it is noticed that nanoparticle volume frac-
tion profile decreases, which attributes to the fact that, there is 
thinning of concentration boundary layer thickness, resulting in 
reduction of fluid temperature. 

5. CONCLUSION:  
The problem of laminar free convective flow resulting from 
the stretching of a flat, vertically surface in a nanofluid 
with,Momentum, thermal and solutal slip conditions have been 
investigated numerically. The model used for the nanofluid 
incorporates primarily the effects of Brownian motion, ther-
mophoresis, momentum slip, thermal slip, and solutal slip pa-
rameters respectively.A similarity solution is presented which 
depends on the Prandtl number Pr, Lewis number Le, Brown-
ian motion parameter Nb and thermophoresis parameter Nt.  
The variation of the reduced Nusselt and reduced Sherwood 
numbers with Nb and Nt for various values of Pr and Le is pre-
sented in tabular form.We can find that the inclusion of the slip 
parameters change the wall drag force greatly. Linear regres-
sion estimations of the reduced Nusselt and reduced Sherwood 
numbers are also obtained in terms of Brownian motion and 
thermophoresis parameters. 

The following are the important results of the present investiga-
tion:

1. The effect of Grashof number and momentum slip param-
eter  is to enhance velocity in the boundary layer, where as  
thermal slip parameter enhances temperature of the fluid 
in the thermal boundary layer region.

2. The Grashof number accelerates the fluid  velocity in 
boundary layer region.

3. Because of the Brownian and thermophoresis effects, a 
jump in the heat transfer rate is observed in case of nanoflu-
id which points to the fact that nanofluids are better suited 
for effect cooling of the stretching sheet.

4. Prandtl number decreases thermal boundary layer thick-
ness and Lewis number decreases the nanoparticle concen-
tration, in the boundary layer.  Hence, these parameters are 
to be kept at their minimum for better cooling conditions.

5. The effect of momentum slip is to increase nanoparticle 
concentration, in concentration boundary layer, where as 
the effect of thermal slip and solutal slip is to reduce nano-
particle concentration, in concentration boundary layer.

Fig 1. Schematic diagram of a nano fluid flow over a vertical 
stretching sheet
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