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Abstract 

Purpose – The present study aims to address the flow and heat transfer of MgO-MWCNTs/EG hybrid 

nanofluid in a complex shape enclosure filled with a porous medium. The enclosure is subject to a uniform 

inclined magnetic field and radiation effects. The effect of the presence of a variable magnetic field on the 

natural convection heat transfer of hybrid nanofluids in a complex shape cavity is studied for the first time. The 

geometry of the cavity is an annular space with an isothermal wavy outer cold wall. Two types of the porous 

medium, glass ball and aluminum metal foam, are adopted for the porous space. The governing equations for 

mass, momentum and heat transfer of the hybrid nanofluid are introduced and transformed into non-

dimensional form. The actual available thermal conductivity and dynamic viscosity data for the hybrid 

nanofluid are directly used for thermophysical properties of the hybrid nanofluid.  

Design/methodology/approach – The governing equations for mass, momentum and heat transfer of hybrid 

nanofluid are introduced and transformed into non-dimensional form. The thermal conductivity and dynamic 

viscosity of the nanofluid are directly used from the experimental results available in the literature. The finite 

element method is used to solve the governing equations. Grid check procedure and validations were 

performed. 

Findings – The effect of Hartmann number, Rayleigh number, Darcy number, the shape of the cavity and the 

type of porous medium on the thermal performance of the cavity are studied. The outcomes show that using the 

composite nanoparticles boosts the convective heat transfer. However, the rise of the volume fraction of 

nanoparticles would reduce the overall enhancement. Considering a convective dominant regime of natural 

convection flow with Rayleigh number of 107, the maximum enhancement ratio (Nusselt number ratio 

compared to the pure fluid) for the case of glass ball is about 1.17 and for the case of aluminum metal foam is 

about 1.15 when the volume fraction of hybrid nanoparticles is minimum as 0.2 per cent. 
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Originality/value – The effect of the presence of a variable magnetic field on the natural convection heat 

transfer of a new type of hybrid nanofluids, MgO-MWCNTs/EG, in a complex shape cavity is studied for the 

first time. The results of this paper are new and original with many practical applications of hybrid nanofluids 

in the modern industry.  

Keywords: Porous media, Natural convection, Magnetohydrodynamic flow, MgO-MWCNTs/EG hybrid 

nanofluid 

 

Nomenclature 

Latin symbols 

B Magnetic induction (flux density) (T) 

C Dimensional concentration of nanoparticles 

cp Specific heat at constant pressure (JkgK-1)  

Da
 

Darcy number 

Dl,s Large and small diameter 

g Gravitational force (ms-2) 

Ha Hartmann number 

i Number of grid points 

k Thermal conductivity (Wm-1K-1), Dummy variable for numerical calculations 

L Length of the enclosure (m) 

N Dummy variable for numerical calculations 

NR Radiation parameter 

Nu Nusselt number 

P Pressure (Pa) 

Pr Prandtl number 

R Residual error 

Ra Rayleigh number 

Ro,i,m Outer, inner and middle diameter  

ro,i,m,s,l Outer, inner, middle, small and large radius (m) 
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T Dimensional temperature (K) 

u Horizontal velocity along x-direction (ms-1) 

v Vertical velocity along y-direction (ms-1) 

x Cartesian coordinate x-direction (m) 

y Cartesian coordinate y-direction (m) 

Greek symbols 

Į Thermal diffusivity (m2s-1) 

µ Dynamic viscosity (kgm-1s-1) 

ȕ Volumetric coefficient of thermal expansion (K) 

Ȗ Penalty coefficient parameter 

ș Dimensionless temperature 

ȟ Basis function 

ȡ Density (kgm-3) 

ı Electrical conductivity (sm-1) 

Subscripts 

Avg Average value 

bf Base fluid 

C Cold 

h Hot 

hnf Hybrid- Nanofluid 

Ȧ Angle of uniform magnetic field 

0 Reference 

Superscripts 

* Variables in dimensional form 

 

1. Introduction 

The convective flow and heat transfer of an electrically conductive fluid in a magnetic field, 

magnetohydrodynamic (MHD) heat transfer, is of substantial attention in the recent metal-working and 

metallurgical applications. In MHD flows, the magnetic field can control the boundary-layer flow and 
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heat transfer of an electrically conducting fluid. Some of the engineering applications of MHD flows 

are a nuclear reactor, MHD generators, plasma studies, purifications of metal from a non-metal mixture, 

geothermal energy extractions, metallurgy, polymer technology, the design of MHD power generators 

and MHD heat and mass transfer systems. Some of these applications can be found in the books by 

Cramer and Pai [1], Branover and Tinober (1970), Shercliff [3], and in the classical papers for instance, 

Ingham (1973), Apelblat(1969), Liron and Wilhelm(1974), Goldsworthy(1961), Yih(1999), Watanabe 

and Pop(1993). 

Complex shape enclosures and wavy geometries are utilized in various engineering designs to 

enhance transport performance (Sheremet et al., 2016). In this regard, many of literature studies 

addressed the natural convection heat transfer (Khanafer, 2014). For instance, Adjlout et al. (2002) 

theoretically addressed the influence of a wavy wall of the convective heat transfer for various value of 

Rayleigh number, cavity inclination angles. The outcomes reveal that the geometry of the cavity walls 

influences the flow and heat transfer rate in the cavity. Mahmud et al. (“Free convection in an enclosure 

with vertical wavy walls”, 2002) studied the effect of amplitude and aspect ratio of a wavy wall on the 

convective heat transfer characteristics in an enclosure. Yu and Xu (2018) investigated the effect of 

various thermal boundary conditions on the heat transfer in a cavity and revealed using a finite element 

method. The natural convection over vertical plates is also studied by Ahmed and Mahdy (2016) and 

Ahmed (2017).  

Sheikholeslami et al. (2018) have presented the application of CVFEM for the effect of magnetic 

field on nanofluid natural convection and radiation heat transfer through a porous medium using a non-

Darcy model. Influences of Hartmann number, nanofluid volume fraction, Darcy number and Rayleigh 

number on thermal characteristics. Al-Najem et al. (1998) numerically investigated the impact of a 

transverse magnetic field on the laminar natural convection in a tilted enclosure. Mansour and El-Shaer 

(2002) studied the effect of magnetic field on non-Darcy axisymmetric free convection in a power-law 

fluid-saturated porous medium with variable permeability. Grosan et al. (2009) studied the effect of an 

internal heat generation source on the natural convection heat transfer in a rectangular enclosure subject 

to a magnetic field and filled with a porous medium. Revnic et al. (2011) theoretically addressed the 

influence of a magnetic field on the unsteady natural convection heat transfer in a square cavity. The 

cavity was filled with a porous medium.  

Javaherdeh and Najjarnezami (2018) investigated the magnetic field effects on the flow and heat 

transfer in a cavity filled with a porous medium. We also mention the paper by Sathiyamoorthy and 
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Chamkha (2012a) on natural convection flow under magnetic field in a square cavity for uniformly (or) 

linearly heated adjacent walls. Finally, we point out the review paper by Sheikholeslami and Rokni 

(2017) on the simulation of nanofluid heat transfer in the presence of a magnetic field. Doostani et al. 

(2017) and Ghalambaz et al. (2017) addressed the natural convection and melting heat transfer of an 

MHD fluid in a cavity. 

Invoking Rosseland approximation for thermal radiation, Magyari and Pantokratoras (2011) 

studied the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer 

characteristics of various boundary layer flows. Martyushev and Sheremet (2012) have investigated the 

characteristics of Rosseland approximations in modeling nonstationary conditions of convection-

radiation heat transfer in an enclosure with a local energy source. Also, Pop and Sheremet (2017) 

investigated the free convection in a square cavity filled with a Casson fluid under the effects of 

thermal radiation and viscous dissipation. Tahmasebi et al. (2018) and Mehryan et al. (2018) utilized 

the non-homogeneous Buongiorno’s model to study the flow and heat transfer of nanofluids in a cavity 

with porous layers. Sheremet et al. (2018) addressed the natural convection flow and heat transfer of 

Al2O3-water nanofluid in a cavity filled with a porous medium.   

After Huminic and Huminic (2018), hybrid nanofluids are a stable suspension of composite 

nanoparticles (with the size under 100 nm) utilized as a working fluid in heat transfer applications. 

Hybrid fluids contain two or three types of solid nanoparticles into a conventional fluid such as 

ethylene glycol, water or a mixture of water and ethylene glycol, kerosene, paraffin oil, vegetable oil or 

engine oil. Comprehensive reviews on nanofluids and hybrid nanofluids were presented by Mahian et 

al. (2018; 2018), Sarkarn et al. (2015), Akilu et al.(2016), Sidik et al. (2016), Sundar et al. (2017) and 

Babu et al. (2017). We also mention here the papers by Mehryan et al. (2017, n.d.), Ghalamaz et al. 

(2018), Hayat et al.(2018), Devi and Devi(2016), and Tayebi and Chamkha (2017) regarding the heat 

transfer of hybrid nanofluids. The phase change heat transfer of hybrid nanofluids was also addressed 

by Ghalambaz et al. (2017; 2017), Chamkha et al. (2017) and Shao et al. [50].  

Recently, MgO-MWCNT/Ethylene Glycol has been synthesized experimentally (Soltani and 

Akbari, 2016; Vafaei et al., 2017). This nanofluid benefits from the high thermal conductive nanotubes 

and the MgO nanoparticles as extra enhancer. The experimental data on the dynamic viscosity and 

thermal conductivity of the nanofluid are also available. Hence, this nanofluid is adopted for the 

theoretically study convective heat transfer in the present study.  
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The present study aims to analyze the effect of using MgO-MWCNT/Ethylene Glycol hybrid 

nanofluid on the natural convection flow and heat transfer a non-regular shape cavity filled with porous 

media subject to radiation and MHD effects. 

  

2. Mathematical model and problem formulation 

A non-regular shape porous cavity is studied in the present study. There is a hot tube in the center 

of the cavity, and the outer walls of the cavity are wavy and cold. The space between the inner hot wall 

and the outer wavy cold walls is filled with a Darcy porous medium. Indeed, the outer wavy walls 

represent the smaller and cold pipes of a heat exchanger. The geometry of the cavity can be described 

in three steps as shown in Fig. 1. Fig. 2 shows the final geometry and utilized boundary conditions. In 

the present study, two types of porous medium, glass ball as a porous medium with low thermal 

conductivity and aluminum foam as a porous medium with very high thermal conductivity are adopted. 

The porous medium is saturated with MgO-MWCNT/EG hybrid nanofluid. The review of available 

literature regarding hybrid nanofluids shows that the regular or modified Brinkman and Maxwell 

models are not adequate for evaluating the dynamic viscosity and thermal conductivity of hybrid 

nanofluids [41]. Hence, in the present study, the actual experimental data of these type of hybrid 

nanofluids is utilized for calculations and will be discussed later.  

 

 

(a) 
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(b)       (c) 

Fig. 1. The geometry shape of the cavity; (a) The first step: inner, outer and a guided circle, (b) the 

second step: introducing star shape of the cavity using introduced circles, (c) the third step: introducing 

fillets at the edges. 
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Fig. 2. Final schematic diagram of the physical model. 

The hybrid nanofluid is assumed as a stable homogeneous solution, and it is assumed that 

the porous matrix is well treated to prevent interaction or sedimentation of nanoparticles with 

the porous structure. The hybrid nanofluid is a Newtonian incompressible and single-phase 

mixture of base fluid and nanoparticles. The thermophysical properties of the hybrid nanofluid 

are considered constant except the density, which is modeled using the Boussinesq 

approximation. Considering these assumptions, the Governing equations for conservation of 

mass, momentum, and energy of the hybrid nanofluid are written as (Sheikholeslami et al., 

2018):  

 

Hybrid- nanofluid continuity equation:  

* *

* *
0hnf hnfu v

x y

  
   

                                                  (1) 

Momentum equations: 
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     

2 2* *

2 * * * *2 *2

*

* * *

* *
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hnf
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hnf hnf

v uhnf hnfhnf
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u u uu p
u v
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K
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 
 




              
       

     

(2) 

     
 

*

2 2*

2 * * * *2 *2

* * *

* *

*

2 2* *sin cos cos
0hnf

hnf hnf

hnf

hnf hnf

hnf hnf hnf

hnf hnf

hnf

u vhnf hnfhnf

v v

v B

v v p
u v

x y y x y

T T gc

K
   

 
 



 



             
      

   

  

(3) 

Thermal (energy) equation: 

 
2

* * *2 *2

4

* 2
* *

4

,

* *

44 4

* *

,

4
,

*3
4 3

hnf hnf hnf

hnf c hnf

hnf

hnf hnf

c

eff hnfq qr r

x y
hnf

T T hnfhnf hnf

x y

k

cp

T
eqr R y

uT T T
u v

x y x y

T TT T



 

   
   

       






           
        

 

 

    (4) 

The corresponding boundary conditions for Eqs. (1)- (4) are, 

.hnf cT n T          for curved (outer) wall 

.hnf hT n T          for center (inner) wall 

                                                      (5) 

* *. 0hnf hnfu n v   for all walls 

 

where n  is normal to the surface. The velocity at the walls is zero which is the usual 

boundary condition for fluids next to a surface. It is assumed that the flow in the hot pipe and 

cold pipes is strong with high velocity. Hence, the convective heat transfer coefficient inside 

the hot tube and inside the cold tubes is very high. Hence, the constant wall temperature is 

considered as the thermal boundary condition.    
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As mentioned MgO-MWCNT/EG is utilized as the working fluid. The thermal 

conductivity and dynamic viscosity of this hybrid nanofluid for various concentration of 

hybrid nanoparticles are listed in Table 1. In the present study, the nanofluid is consist of 

Ethylene Glycol and hybrid nanoparticles. The total volume fraction of nanoparticles is ࢥ 
which can be 0.2%, 0.4% or 0.6%. The volume fraction of ׋ is consist of MWCNT and MgO 

which assumed to be equal. It should be noted that the total volume fraction of hybrid 

nanoparticles is very low as the hybrid nanofluids are synthesized with low volume fraction 

of nanoparticles.  

Due to the lack of appropriate models for accurate prediction of dynamic viscosity and 

thermal conductivity of hybrid nanofluids, the actual experimental data are directly 

incorporated in the covering equations. Indeed, the direct use of actual experimental data for 

thermal conductivity and dynamic viscosity of hybrid nanofluids bypasses the possible errors 

due to lack of appropriate physical models for thermophysical properties of hybrid 

nanofluids. 

Table 1. Determination of the dynamic viscosity ratio and thermal conductivity ratio as a 

function of temperature (oC) and volume fraction of nanoparticles (%), based on 

experimental data (Soltani and Akbari, 2016; Vafaei et al., 2017). 

 

 hnf Thermal conductivity ratio khnf/kbf Dynamic viscosity ratio µhnf/µbf׋

0.2 1.11388 1.10346 

0.4 1.15481 1.23450 

0.6 1.19750 1.57070 

 

The effective thermal conductivity of the porous medium and hybrid nanofluid (keff,hnf) 

and the effective thermal conductivity of the porous medium and the base fluid (keff,bf) can be 

evaluated using the following relations (Nield and Bejan, 2017): 

 , 1eff hnf hnf sk k k                                                                                                        (6a) 

 ,bf 1eff bf sk k k               (6b) 

The density, ȡhnf, and heat capacity, (ȡCp)hnf , of the hybrid nanofluid are obtained using 

(Ranga Babu et al., 2017) : 
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 1hnf mw mw p p hnf bf           
                                                 (7) 

        1p mw p p p hnf phnf mw p bf
C C C C                                                    (8) 

The volume coefficient of thermal expansion of the hybrid nanofluid, ȕhnf , is 

calculated as: 

 1hnf mw mw p p hnf bf                                                                     (9) 

However, as the coefficient of thermal volume expansion of solids is one or two orders 

of magnitude smaller than that of liquids, ȕhnf is approximated as  1 hnf f   Following the 

Maxwell model (Ranga Babu et al., 2017), the electrical conductivity of the hybrid nanofluid 

is also evaluated as:  

   
   

2 2 2

2 2 2

mw mw p p

bf mw mw p p hnf bf

hnf hnf

bf mw mw p p

bf mw mw p p hnf bf

hnf

   
      

 
    

      



   




   

 

                                                     

                                 (10) 

where indeed  1 1 2 2 hnf    accounts for the effective electrical conductivity of hybrid 

particles. The electrical conductivity of some base fluids and nanoparticles has been reported 

in (Lewis and Wright, 1968; Sarojini et al., 2013) as ıEG=10.7×10-7Sm-1, ıMgO= 5.392×10-

7Sm-1, and ıMWCNT=10×10-15Sm-1 , 

Following (Ghalambaz et al., 2015) two types of porous media are adopted in the 

present study, the aluminum foam as a high thermal conductive porous space and the glass 

ball as a low conductive porous space. The thermophysical properties of the nanoparticles 

and the porous media are summarized in Table 2. 

 

Table 2: Thermophysical properties of the porous medium matrix, the nanoparticles and the 

base fluid (Abu-Nada and Chamkha, 2010; Afrand et al., 2017; Ghalambaz et al., 2015; 

Kalidasan and Kanna, 2016).   

 

Aluminum 

foam 

Glass 

ball 

MgO MWCNT Ethylene Glycol 



 

13 

 

 

Cp (Jkg-1K-1) 897 840 879 711 2415 

k (Wm-1K-1)  205 1.05 30 3000 0.252 

Į×10-7 (m2s-1) 846.4 4.63 95.3 20092.42 0.940 

ȕ×10-5 (K-1)  2.22 0.9 3.36 4.2 57 

ȡ (kgm-3)  2700 2700 3580 2100 1110 

 

Now, the following non-dimensional parameters are utilized to transform the 

governing equations into a non-dimensional form: 

* ** *

, ,

* 2

2

,

,

2 2 2
, , R , ,

2 2
, .

, , ,hnf hnf

hnf hnf

eff bf eff bf

hnf c i o m
hnf i o m

bf eff bf h c

l s
l s

r r r
R R

L L L

r r
D D

L L

u L v Lx y
x y u v

L L

T Tp L
p

T T

     
 




  

 

   


 


   

            (11a) 

Using Eqs. (6) and (11a), the non- dimensional form of Eqs. (1)- (4) are obtained as: 

Continuity equation: 

0hnf hnfu v

x y

 
 

 
  

                                                   (12) 

Momentum equations in x and y directions: 

     

2 2

2 2 2

22

1 1 Pr
Pr

Pr sin cos sin

hnf hnf hnf hnf hnf hnf hnf
hnf hnf

bf bf bf

hnf
hnf hnf

bf

u u u up
u v u

x y x x y Da

Ha v u

  
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   


     
               


 

(13) 
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      

2 2

2 2 2

22

1 1 Pr
Pr

Pr sin cos cos Pr

hnf hnf hnf hnf hnf hnf hnf
hnf hnf

bf bf bf

hnf hnf hnf
hnf hnf

bf bf bf
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u v v

x y y x y Da

Ha u v Ra

  
    

      
  

     
               

 

 

     

   

(14) 

Thermal (energy) equation: 

2 2
,

2 2

,

4

3

eff hnfhnf hnf hnf hnf
hnf hnf R

eff bf

u v N
x y x y

   


      
               

 (15) 

Moreover, the non- dimensional form of boundary conditions are as below:  

0hnf   for curved (outer) wall 

1hnf    for center (inner) wall 

                                                                            

                                                                  (16) 

0hnf hnfu v   for all walls  

The numbers and non- dimensional parameters are defined as: 

  3 3

02

, , ,

4
Pr ,Da , , ,

bf bf h cbf bf SB c
R

bf eff bf bf eff bf bf R eff bf

g T T L TK
Ra Ha LB N

L a

   
     


       (17) 

Effective Nusselt number as a criterion of heat transfer modes (conduction, convection, 

and Radiation) for every point on the hot wall is,  

,

,

4

3

eff hnf hnf
l R

on hot walleff bf

k
Nu N

k n  

           
  (18) 

and an average value of the non- dimensional Nusselt number is provided via: 

1

2
Avg l

in s

Nu Nu ds
R

     (19) 

Average Nusselt number Ratio is introduced as: 
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 ,

Avg

ratio

pure fluid no radiation no porous

Nu
Nu

Nu   

   (20) 

The average Nusselt number ratio shows the effect of the presence of porous media 

and radiation on the heat transfer rate in the cavity. 

The average velocity in the cavity can be introduced as: 

Avg

VdA
V

dA


 


  (21) 

where A is the element area of the cavity and V is the velocity field defined as V= (uhnf
2+vhnf

2)1/2. 

3. Numerical method and grid check and validation 

3.1 Numerical method 

The governing equations of Eqs. (12)-(15) along with the boundary conditions of Eq. 

(16) are transformed into their weak form and then solved using the finite element method. A 

fully coupled Newton iteration method is utilized to integrate the equations. The iteration 

process continues until the residuals error for all variable be less than 10-6. Details of the 

utilized finite element method are well described in the literature (Basak et al., 2006; Reddy, 

2018).  

The finite element method is employed to solve the set of partial differential equations. 

As the continuity equation is a constraint for the velocity, a penalty approach is utilized to 

satisfy the continuity equation. Thus, the continuity equation is incorporated in the form of a 

penalty constraint for pressure in the momentum equations. So, the pressure term is 

introduced as:     

hnf hnfu v
P

x y

  

     
         (22) 

where Ȗ is the penalty coefficient which is a large number, Ȗ>10+7. Substituting Eq. (22) for 

pressure term in momentum equations results in: 
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            (23) 
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            (24) 

By considering the large value of penalty coefficient Ȗ, the continuity equation will be 

ensured. Now, the velocity components in x and y-direction and temperature are expanded 

using the basis of  
1

N

k k



 in the domain of solution.  

 

     
1 1 1

N N N

hnf hnf ,k k hnf hnf ,k k hnf hnf ,k k

k k k

u u x , y , v v x , y , x , y .    
  

       (25) 

Now, by employing the finite element method, the non- linear residuals for momentum 

in x and y directions as well as the and energy equations are introduced as follows:   
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            (28) 

The integral terms in the above equation are calculated using three points Gaussian 

method. The two-point Gaussian method is employed to calculate the related penalty terms. 

In order to minimize the residual, the calculations have been continued iteratively until the 

residual error of 10-6 achieved for all of the equations.    

3.2 Grid check 

In the present study, a non-uniform triangle mesh is utilized. Due to the importance of 

velocity and temperature gradients next to the cavity walls, a very fine grid is utilized to 

capture the important gradients properly. A view of the utilized grid consists of 151218 

meshes is depicted in Fig. 3 (a). The internal parts of the domain are meshed using triangular 

grids. Three magnified views of the utilized grid are depicted in Figs 3 (b)-(d). In order to 

check the effect of the utilized grid on the accuracy of the solution, six different grid sizes are 

utilized. The results for the average Nusselt number and average fluid velocity are reported in 

Table 3. As seen, as the Rayleigh number increases, a finer grid is required to maintain good 

accuracy. Based on the results of Table 3, The grid size of 151218 provides an accuracy 

sufficient for most of the engineering application. Hence, the results of the present study are 

reported for this gird size. 
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Table 3: Grid independency for average values of Nusselt number and velocity in different 

values of Rayleigh number (Pr=155.261, NR=0.5, İ=0.5, Da=1, 0.4=ࢥ%, Ȧ=0o, Ha=10, Ro=1, 

Ri=0.3, Rm=0.5, Dl=0.2 and Ds=0.1 for glass ball)  

 

 Average Nusselt Number Average Velocity 

Mesh Size Ra=10+5 Ra=10+6 Ra=10+7 Ra=10+5 Ra=10+6 Ra=10+7 

47314 17.1451 18.4316 29.9890 3.1594 29.5434 177.9710 

73206 17.1442 18.4303 29.9842 3.1613 29.5614 178.0560 

98860 17.1441 18.4303 29.9821 3.1618 29.5669 178.0870 

124860 17.1436 18.4300 29.9798 3.1626 29.5728 178.0970 

151218 17.1434 18.4297 29.9789 3.1631 29.5789 178.1035 

176656 17.1434 18.4296 29.9793 3.1630 29.5770 178.0873 

 

 

      (a) 
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(b) 

 

(c) 

  

(d)   

Fig. 3: selected grid size for a star-shaped enclosure. 

3.3 Validation 

Four different configurations are used to validate the robustness and correctness of the 

present utilized solution procedure. As the first validation case, the results of the present 
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study are compared with those reported by Sathiyamoorthy and Chamkha (2012a) for the 

case of MHD heat transfer in a square cavity. Assuming Darcy number as a very large value 

and considering zero volume fractions of nanoparticles (׋hnf=0), the physic of the present 

study reduces to the study of Sathiyamoorthy and Chamkha (2012a). Considering the 

geometry of a square cavity, Ȧ=0, NR=0, Ha=100, Pr=0.054, Ra=10+5, the temperature 

profiles obtained in the present study are compared with those reported by Sathiyamoorthy 

and Chamkha (2012a). The outcomes are illustrated in Fig. 4, which shows a very good 

agreement between the present results and (2012a).  

As the second validation, the temperature contours of this work are compared with the 

experimental outcomes of Guj et al. (1992) for the case of natural convection heat transfer in 

the space between two horizontal pipes when Pr=0.7, Ra=4.59×104 and other parameters as 

zero except the Darcy number which is considered as a very large number. The results are 

depicted in Fig. 5, which demonstrates a very good agreement with the present numerical 

solution and the experimental outcomes (1992). 

As the third validation case, the study of Sheremet and Pop (2015) is adopted. Sheremet 

and Pop (2015) addressed the natural convective heat transfer of nanofluids in a triangular 

cavity. The results for the average Nusselt number are compared in Fig. 6.  

The final validation case is for the natural convective heat transfer in a square cavity 

filled with a porous medium. The side wall of the cavity is subject to a temperature 

difference. Considering the very low value of Darcy number, the flow in the cavity can be 

reduced to the Darcy model and it would be independent of the value of the Prandtl number. 

Here, the value of Rayleigh (Ra) is indeed the Darcy-Rayleigh number or Da×Ra. 

Considering the other parameters as zero, the average Nusselt number is evaluated and 

reported in Table. 4. The results are compared with works of Baytas and Pop (1999), 

Sheremet and Pop (2014) and Ghalambaz et al. (2017). As seen, the outcomes of the present 

work are in agreement with the literature results.  
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Fig. 4: The non-dimensional temperature profiles in the cavity, present study (continuous 

lines) versus Sathiyamoorthy and Chamkha (2012a) marked by red points (Ȧ=0, NR=0, 

Ha=100, Pr=0.054, Ra=10+5) 

  

Fig. 5: Validation of isotherm contours (a) Present work, and (b) Guj et al. (1992) 

 



 

22 

 

 

 

Fig. 6: Comparison of local Nusselt number between (a) Present work, and  

(b) Sheremet and Pop (2015)  

 

Table 4: Comparison between the Nusselt number values obtained in the presents study and 

those reported in the literature 

Authors 

Ra 

10 100 1000 10000 

Baytas and Pop (1999) 1.079 3.160 14.060 48.330 

Sheremet and Pop (2014)  1.071 3.104 13.839 49.253 

Ghalambaz et al. (2017) 1.080 3.111 13.642 48.561 

Present study 1.080 3.111 13.642 48.563 

 

4. Results and discussion 
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Following the literature works [17,24,23], the range and the default values of the non-

dimensional variables for the results of the present study are summarized in Table 5. The 

Rayleigh number is considered a large value as in this study we are interested in convective 

heat transfer flows. The Prandtl number, outer diameter, inner diameter, and middle diameter 

are fixed as Pr=155.261, Ro=1, Ri=0.3, Rm=0.5.  

 

Table 5: Default values of parameters and range of them.   

No. Name of parameter Default value Lower bound Upper bound 

1 Rayleigh Number (Ra) 106 105 107 

2 Large diameter (Dl) 0.2 0 0.2 

3 Small diameter (Ds) 0.1 0 0.1 

4 Darcy number (Da) 1 10-4 1 

5 Porosity ( ) 0.5 0.1 0.9 

6 Radiation parameter (NR) 0.5 0.1 0.9 

7 Hartmann number (Ha) 10 0 20 

8 

Volume faction of nanoparticles 

 %(ࢥ)

0.4 0.2 0.6 

 

Figure 7 shows the isotherm contours and streamlines for a pure fluid with no magnetic 

field, radiation, and nanoparticles. Indeed, the results of this figure can be considered as a 

basis for the study of more advanced cases including the radiation effects, magnetic field, and 

hybrid nanofluids.  

Figures 8 (a)-(d) show the local Nusselt number at the hot wall along the length of the 

wall in a counterclockwise direction. The results of this figure represent the local Nusselt 

number corresponding to those results of Fig. 7. The average velocity and Nusselt number of 

each case have been reported in Fig. 7. As seen in Fig. 8, the maximum local heat transfer is 

at the bottom of the hot wall about Nul=38 when Ra=107. The minimum value of heat transfer 
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is at the top of the hot wall about Nul=5.0. Considering Fig. 8, when the Rayleigh number is 

low, the isotherms show conduction-dominant regime in almost circular forms. By the 

increase of Rayleigh number, the natural convection flows get stronger, and the convective 

dominant heat transfer can be observed. By the increase of Rayleigh number, the deflection 

of temperature curves increases and the temperature curves deflect to follow the fluid motion. 

Figs. 8(c) and (d) show that the local Nusselt number gradually increases by moving along 

the hot wall from the bottom to top. Indeed, the fresh could fluid first reaches the bottom of 

the hot wall, and this is where the heat transfer is maximum. After that, due to the interaction 

between the fluid and the hot wall, the fluids get hot and hotter and the temperature gradient 

between the fluid and the surface decreases, which as a results decreases the local Nusselt 

number. The streamlines of Fig. 7 (a) show that when the Rayleigh number is low, the 

convective flows are also weak; in this case, the streamlines precisely follow the cold wall 

shape. Figures. 7 (b) and (d) indicate that the increase of Rayleigh number increases the 

streamlines next to the walls. So, the rise of Ra boosts the flow velocity in the cavity. The 

average velocity and Nusselt number gradually increase by the increase of Ra.  

 

(a)  Isotherms Nu= 10.265   Streamlines V=7.8043 
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(c)   Isotherms Nu=14.23   Streamlines V=58.5200 

 

(c)    Isotherms Nu=26.33   Streamlines V=246.8894 

Figs. 7: Effect of Rayleigh number on the isotherms and streamlines  for ethylene glycol pure 

fluid in simple media (Pr = 155.261, NR  = 0, Ha = 0, İ = 0, Ro = 1, Ri = 0.3, Rm = 0.5, Dl  = 

0.2 and Ds = 0.1): (a) Ra = 105; (b) Ra = 106; (c) Ra = 107 
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(a)       (b) 

  

(c)       (d) 

Fig. 8: Local Nusselt number on the hot wall (a) quarter 1, (b) quarter 2, (c) quarter 3 and, (d) 

quarter 4, for ethylene glycol pure fluid in simple media (Pr = 155.261, NR = 0, Ha = 0, İ = 0, 

Ro = 1, Ri = 0.3, Rm = 0.5, Dl = 0.2 and Ds = 0.1) 

Figures. 9 and 10 illustrate the isotherm and streamlines for two cases of glass ball 

porous space and aluminum foam, respectively. These figures represent the results for three 

different shapes of cavities. The corresponding local Nusselt number for the glass ball and 
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aluminum foam are reported in Figs. 11 and 12 adopting the cavity with the default shape and 

hybrid nanofluid volume fraction of 0.4%.  

Figures. 9 and 10 show that changing the shape of the cavity walls can notably affect 

the isotherm and streamlines inside the cavity. Flattening the cavity edges reduces and 

increases the overall heat transfer rate and fluid velocity inside the cavity, respectively.  

Figures. 11 and 12 show some picks in the local Nusselt number; these picks are due to the 

local circular fluid motions. Based on Figs. 9 and 10, the average Nusselt number of the 

hybrid nanofluid for the case of glass ball porous space is higher than that of metal foam. 

However, Figs. 11 and 12 reveal that the Maximum local Nusselt number in the glass ball in 

lower than that of metal foam. The local Nusselt number changes following the shape of the 

outer cavity wall. When the cold wall is next to the hot wall the local Nusselt number 

increases. This is due to the fact that in these area the velocity of the flow is higher, and 

hence, the convection heat transfer is stronger.  

 

(a)   Isotherms Nu=18.6241  Streamlines V=26.1746 
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(b)   Isotherms Nu=18.5552   Streamlines V=27.2954 

 

(c)   Isotherms Nu=18.4295   Streamlines V=29.5789 

Figs. 9: Effect of cavity shape on the isotherms and streamlines (a) Ds=Dl=0 (b) Dl=0.1, 

Ds=0.05 and (c) Dl=0.2, Ds=0.1 (D.V) for glass ball 

 

 

(a)   Isotherms Nu=18.3269  Streamlines V=26.1413 
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(b)   Isotherms Nu=18.2590  Streamlines V=27.2610 

 

(c)   Isotherms Nu=18.1345  Streamlines V=22.5426 

Fig. 10: Effect of cavity shape on the isotherms and streamlines (a) Ds = Dl = 0 (b) Dl  = 0.1, 

Ds = 0.05 and (c) Dl = 0.2, Ds = 0.1 (D.V) for aluminum foam 
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   (a)      (b) 

   

   (c)      (d) 

Figs. 11: Local Nusselt number on the hot wall (a) quarter 1, (b) quarter 2, (c) quarter 3 and, 

(d) quarter 4, for glass ball. 
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   (a)          (b) 

  

   (c)            (d) 

Figs. 12: Local Nusselt number on the hot wall (a) quarter 1, (b) quarter 2, (c) quarter 3, and 

(d) quarter 4, for aluminum foam. 

Average Nusselt number is the important parameter of this study which shows the 

overall heat transfer. Figures. 13-16 are reported to study the average Nusselt number as a 

function of Darcy number, porosity, radiation parameter, and Hartman number, respectively. 

The results are reported for various values of Rayleigh number and two cases of glass ball 

and aluminum foam porous medium. Figure 13 shows the influence of the Darcy number on 

the overall heat transfer rate in the cavity. As seen, the increase in Da increases the heat 
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transfer rate. This effect is more obvious for a larger Rayleigh number, where there is a 

convective-dominant regime. Indeed, by raising of Darcy number the resistance of the media 

to flow motion reduces, and hence, the convective flows get strengthen.    

Figure 14 shows the average Nusselt number as a function of porosity and for three 

values of Rayleigh number. When the Rayleigh number is small, Ra=105, the increase of 

porosity decreases the Average Nusselt number. This is because in this case, the conduction 

effects are dominant, and the increase of the porosity decreases the mass of the solid matrix. 

The thermal conductivity of the fluid is much lower that of the solid matrix. Hence, the rise 

of the porosity decreases the solid mass, which was contributed to the conduction 

mechanism, and hence, result in the decrease of the average Nusselt number. In contrast, 

when the Rayleigh number is high, the heat transfer is convective dominant, and hence, the 

increase of the porosity parameter increases the volume of the fluid and boosts the convective 

heat transfer. As a result, the rise of porosity raises the average Nusselt number. This 

outcome is almost the same for both cases of the glass ball and aluminum foam. The case of 

medium Rayleigh number, Ra = 106, shows a very small pick shape which is the result of the 

two different effects those were discussed.  

Figure 15 shows the average Nusselt number as a function of radiation parameter and 

four three values of Rayleigh number. The increase of radiation parameter NR enhances the 

heat transfer. The effect of the Hartmann number on the heat transfer rate is studied in Fig. 

16. This figure reveals that the augmentation of the magnetic field (Ha) slightly reduces the 

heat transfer rate. In the case of aluminum foam, the influence of the variation of Ha on the 

heat transfer is more obvious compared to that of the glass ball. The effect of the inclination 

angle of the magnetic field on the convective heat transfer was not significant, and hence, the 

results have not been plotted here. 
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Fig. 13: Average Nusselt number as a function of Darcy number for glass ball (left side) and 

aluminum foam (right side) in various Rayleigh numbers. 

 

Fig. 14: Average Nusselt number as a function of porosity for glass ball (left side) and 

aluminum foam (right side) in various Rayleigh numbers. 

 



 

34 

 

 

 

Fig. 15: Average Nusselt number as a function of radiation parameter for glass ball and 

aluminum foam (right side) in various Rayleigh numbers. 

 

Fig. 16: Average Nusselt number as a function of Hartmann number for glass ball (left side), 

and aluminum foam (right side) in various Rayleigh numbers. 
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Figure 17 is plotted to show the effect of volume fraction of hybrid nanoparticles on the 

heat transfer in the cavity. The results of this figure are plotted for the Nusselt number ratio as 

a function of the total volume fraction of hybrid nanoparticles. This figure compares the heat 

transfer due to the presence of nanoparticles with a reference case, in which of the pure fluid 

with zero percent of nanoparticles. As seen, the ratio of heat transfer of hybrid nanofluids to 

the base fluid is higher than unity which shows enhancement of heat transfer by using hybrid 

nanoparticles in the overall chosen range for the volume fraction of nanoparticles. However, 

the increase of volume fraction of nanoparticles generally reduces the heat transfer rate. This 

figure interestingly reveals that using hybrid nanofluids in the glass ball porous space results 

in better thermal enhancement compared to that of the case of metal foam. Finally, this figure 

also shows that the increase in the overall concentration of nanoparticles slightly improves 

the rate of heat transfer enhancement when the Rayleigh number is low, e.g., Ra=10+5. In 

fact, when Rayleigh number is low, the heat transfer is conduction-dominant, and hence, the 

increase of the volume fraction of nanoparticles enhances the thermal conductivity of the 

working fluid and consequently the heat transfer rate in the enclosure. When the Rayleigh 

number is high (e.g., Rayleigh numbers, Ra=10+6 and Ra=10+7), using a higher concentration 

of nanoparticles results in the reduction of the heat transfer enhancement due to the rise of the 

dynamic viscosity.  
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Fig. 17: Nusselt ratio as a function of total volume fraction of nanoparticles for glass ball (left 

side), and aluminum foam (right side) in various Rayleigh numbers. 

 

5. Conclusions 

The natural convection of a hybrid nanofluid, MgO-MWCNTs/EG, in a porous cavity 

is theoretically studied. The partial differential equations, representing the flow and heat 

transfer behavior of the hybrid nanofluid in the porous medium were introduced. Then, the 

governing equations were written in a non-dimensional form using non-dimensional variables 

to generalize the results. The obtained equations were integrated using the finite element 

method. Grid check and validation procedure were performed to ensure the accuracy of the 

results. The effect of the strength and inclination angle of the magnetic field, the type of 

porous medium, volume fraction of the composite nanoparticles, and the porous-spaces 

characteristics such as Darcy number and porosity on the heat transfer in the cavity were 

addressed. The main outcomes of the present study can be summarized as follows: 

1- The geometry of the cavity induces minor effects on the flow and heat transfer 

patterns. A cavity with sharper edges results in a higher heat transfer rate.  

2- The increase of Rayleigh number, Darcy number, and radiation parameter would 

increase the heat transfer rate in the cavity. The behavior of the porosity parameter 

depends on the magnitude of the Rayleigh number. For convective-dominant regimes 

which Rayleigh number is high, the increase of the porosity would increase the heat 

transfer rate.  

3- The presence of hybrid nanoparticles enhances the heat transfer in the cavity. 

However, the increase of the concentration nanoparticles would reduce the magnitude 

of the enhancement. The maximum enhancement was observed for the very low 

volume fraction of nanoparticles, 0.2%=׋. 

4- The enhancement of using hybrid nanofluid is under the significant influence of the 

Rayleigh number. The Rayleigh number indeed indicates the regime of the fluid flow. 

Small values of the Rayleigh number represent a conduction-dominant heat transfer 

regime. The high values of Rayleigh number denote the convection heat transfer 

regime. The results of the present study show that when the Rayleigh number is low, 
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Ra=105, the enhancement ratio of using nanoparticles is very significant about 1.65 at 

 However, as the Rayleigh number increases, the enhancement diminishes. In .0.2%=׋

the case of Ra=107, the enhancement ratio is about 1.15 at 0.2%=׋. 

5- The maximum enchantment ratio corresponds to the case of the porous medium glass 

ball with 1.17 at 0.2%=׋ volume fraction of particles.  

6- The presence of the magnetic field smoothly reduces the heat transfer rate. The 

inclination angle of the magnetic field does not show a notable influence on the heat 

transfer performance of the hybrid nanofluid in the cavity.  
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