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Abstract: Due to their high numerical e�ciency, homoge-

nization models are often employed in the analysis of cor-

rugated laminates. They are usually derived assuming pe-

riodic behavior in the corrugated direction and general-

ized plane strain in the out-of-plane direction, which cor-

responds to the assumption of in�nite dimensions of the

structure. As a consequence, any in�uences of edge e�ects

are not mapped, although they can have a signi�cant im-

pact on the mechanical behavior of a given structure. The

objective of this manuscript is to investigate the in�uence

of boundary conditions - a combination of free-edges and

clamping - on the structural sti�ness of corrugated lami-

nates. A total of six load cases are investigated which cor-

respond to the line loads considered in the classical theory

of laminated plates. The results of this parameter study al-

low the identi�cation of several critical loading situations,

where free edges can signi�cantly alter structural sti�ness.

The given investigations hence contribute to the investiga-

tion of the validity range of homogenization models.

Keywords: corrugated laminate, compositematerials, free-

edge e�ects

1 Introduction

Thegeometric e�ects of cylindrical corrugations can create

highly anisotropic structural properties with respect to in-

plane extension or bending of corrugated sheets. Decades

ago, corrugated metal sheets were used for airplane de-

sign, were the local bending sti�ness of the corrugations

replaces the ribs (wing) or stringers (fuselage) to increase

buckling strength [1–4]. The book by Mornement and Hol-

loway describes use of corrugated iron in civil engineering
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[5]. During recent decades, the increasing research interest

in corrugated laminates has been motivated by a range of

applications as well as by modeling challenges.

1.1 General investigations of corrugated

laminates

Thurnherr et al. have investigated interlaminar stress in

corrugated laminates [6]. The geometrically nonlinear be-

havior of corrugated laminates was studied by Thurnherr

et al. [7, 8], Bai et al. [9], Kress and Filipovic [10] and by

Soltani et al. [11]. The peculiar vibration behavior of corru-

gated laminates was studied by Thurnherr et al. [12], Ma-

likan et al. [13] and by Nguyen et al. [14]. A planar FEM for-

mulation for simulating the response of corrugated lami-

nates to transverse shear line force was developed by Fil-

ipovic and Kress [15]. The question of how to manufac-

ture high-amplitude corrugated laminates with circular-

sections corrugation shapewas addressedbyFilipovic and

Kress [16].

1.2 Applications

The review by Dayyani et al. [17] considers a range of appli-

cations as well as the mechanical behavior of composite

corrugated structures.

1.2.1 Flexible skin in morphing-wing design

Themorphingwing can change its airfoil shapewithout us-

ing the current-technology rigid �aps and slats [18]. Poten-

tial advantages of the concept include savings ofmass and

reduction of the number of parts aswell as improved �ight-

mission performance [19]. A review of modeling and anal-

ysis of morphing wings was given by Li et al. [20]. Thill et

al. [21] gave a review dedicated to the subject of morphing

skins. Some morphing-wing design concepts call for sec-

tions of �exible skin, that should contribute to the wing-

skin sti�ness along the span and have high compliance

and deformability along the chord directions where early

design studies were performed by Thill et al. [22] and by

Ghandi and Anusonthi [23]. A literature survey on com-
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posite corrugated laminates for morphing applications is

given by Airoldi et al. [24]. Previtali et al. [25] considered a

particular corrugated-shape design with enhanced bend-

ing sti�ness about the span direction for morphing wings.

Takahasi et al. [26] et al. developed a variable-camberwing

with morphing leading and trailing sections using corru-

gated structures. Bai et al. [27] suggest a �exible-skin de-

sign for morphing applications where two corrugated lam-

inates are bonded together so that a symmetric structure

results. Henry et al. [28] and Gong et al. [29] consider a

morphing-wing concept with distributed piezoelectric ac-

tuation and a corrugated �exible-skin section.

Thurnherr et al. [30] investigated the static response to

homogeneous pressure of highly anisotropic corrugated

sheets. Ermakova and Dayyani [31] performed shape op-

timization of composite corrugated morphing skins to im-

prove resistance against aerodynamic loads.

Shaw et al. [32] optimized corrugated laminates for buck-

ling in morphing aircraft.

Thill et al. [33] and Xia et al. [34] studied experimen-

tally and computationally the e�ect of a corrugated skin

on the global aerodynamics of an airfoil. Dayyani et al

[35] suggested and investigated a wing design with skins

made from trapezoidal cores coatedwith elastomeric skins.

Dayyani and Friswell [36] considered static as well as aero-

dynamic aspects within their multi-objective optimization

for the geometry of trapezoidal corrugatedmorphing skins.

Filipovic and Kress [16] suggested a corrugation design

and manufacturing method for corrugated laminates with

a circular-sections corrugation shape and added scales for

an aerodynamically smooth surface.

1.2.2 Structural load-carrying behavior

With hind-side to applications as �exible skins in

morphing-wing design, Thurnherr et al. [30] studied the

structural response of high-amplitude corrugated lami-

nates to pressure.

1.2.3 Energy absorbing potential

The corrugations transform in-plane elongation transverse

to the corrugation into local bending which creates in-

terlaminar stress and provokes delamination failure with

high energy-absorption potential. The phenomenon was

also observed in the experimental part of the work by

Soltani et al. [11]. Ren et al. [37–39] have contributed to

damage progression modeling to predict crashworthiness

of corrugated laminates and strut structures.

1.2.4 Sandwich corrugated core design

Buannic et al. [40] developed a homogenization model

of corrugated core sandwich panels. Aboura et al. [41]

performed an experimental and analytical study on

the elastic behavior of cardboard. Biancolini [42] evalu-

ated equivalent sti�ness properties of corrugated board.

Talbi et al. [43] developed an analytical homogenization

model for �nite-element modeling of corrugated card-

board. Kazemahvazi and Zenkert [44] modeled corrugated

all-composite sandwich structures and Kazemahvazi et al.

[45] performed experiments to study failure mechanisms

in such structures. Abbès and Guo [46] found an analytic

homogenizationmodel for torsionof orthotropic sandwich

plates. Dayyani et al. [47] developed equivalent models

of composite corrugated cores with elastomeric coatings

for morphing aircraft. Bartolozzi et al. [48, 49] invented a

general analytical method for �nding the equivalent prop-

erties for corrugated cores of sandwich structures. Cheon

and Kim [50] contributed an equivalent model for corru-

gated sandwich panels. Isaksson and Carlson [51] ana-

lyzed the out-of-plane compression and shear response of

paper-based web-core sandwiches.

1.3 Homogenized substitute-plate models

Homogenized substitute-plate, or equivalent models, de-

scribe the global structural response of periodically cor-

rugated structures. Such models eliminate the need for

detailed numerical mapping of the corrugated geometry

of large structures with many corrugations and enable

thus numerically e�cient simulations and structural op-

timization processes. The equivalent models take advan-

tage of both, the periodicity and the assumption of large

extension transverse to the corrugations. In 1986, Brias-

soulis [52] derived equivalent orthotropic properties of a

corrugated sheet. Shimansky and Lele [53] considered the

sti�ness transverse to the corrugations of a sinusoidally

corrugated metal sheet. Later, Yokozeki et al. [54] calcu-

lated such properties for corrugated strictly orthotropic

laminates. Kress and Winkler [55] worked out exact thin-

shell-theory solutions for corrugated symmetric cross-ply

laminates, where the corrugation shape consists of circu-

lar segments. The same authors considered in-plane exten-

sion and in-plane shear aswell as bending and twistmacro

deformations to �nd the entries of a substitute ABDmatrix.

Xia and Friswell [56] invented a concept that can calculate

the substitute sti�nesses for any corrugation shape. Xia

et al. made further contributions in [57]. Mohammadi et

al. [58] developed an equivalent model for trapezoidal cor-
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rugation shapes. Wang et al. [59] consider laminates with

axial and bending coupling. Nguyen-Minh et al. [60] use

existing homogenization models in their analysis. Moro et

al. [61] reviewed the model by Kress and Winkler [55] and

extended it for more general laminate designs. However,

thin-shell theory cannot account for the through-thickness

e�ects that have an in�uence on the behavior of corru-

gated laminates. This problem was circumvented by Kress

and Winkler [62] by inventing a planar �nite-element for-

mulation that maps only the cross-section of one periodic

cell of the corrugated laminates. This model takes into ac-

count all mechanical e�ects and is not restricted to thin

laminates; it can calculate three-dimensional stress states

accurately and produces a substitute-plate ABDmatrix for

arbitrary laminates at low numerical cost. Park et al. [63]

evaluated homogenized e�ective properties for corrugated

composite panels. Aoki and Maysenhölder [64] provide a

critical review on existing substitute-plate models.

The same assumptions that enable all of the e�cient

substitute-plate or equivalent-plate models to exist,

namely very long extension alongboth in-planedirections,

restrict the solution space to the inner solution.

1.4 Free-edge e�ects

Research on free-edge e�ects has played a prominent role

for better understanding the mechanics of composite ma-

terials. It is helpful to imagine tensile tests on rectangular

laminate coupons: the elastic coupling e�ects of the layers

made from anisotropic materials constrain each other in

the laminate so that stresses appear not only in the load-

ing direction but also in the inplane transverse direction.

The latter stress components must vanish at the free edges

which necessarily leads to stress gradients. Consequently,

local equilibrium gives rise to interlaminar stresses and

cross-sectional warping.

Pioneering work on free-edge e�ects has been done by

Pipes and Pagano [65] and Hsu and Herakovich [66]. The

interlaminar stresses can lead to edge delamination the

progress of it can be predicted by fracture-mechanics con-

cepts. O’Brien [67] invented a quite simple model for cal-

culating the total strain energy rate from a global energy

balance to be evaluated by means of the classical the-

ory of laminated plates. Analytical solutions stem from

Wang and Choi [68] and Whitcomb and Raju [69]. Kress

developed a planar �nite-element formulation to be able

to study the edge e�ects in arbitrary laminate designs

and their e�ects onmeasured-sti�ness [70] andmeasured-

strength [71] predictions. Becker found closed-form solu-

tions for free-edge e�ects in cross-ply laminates [72] and

Becker and Kress [73] considered the sti�ness reduction in

laminate coupons due to the free-edge e�ect. More recent

research is due to Mittelstedt and Becker [74], Dhanesh et

al. [75], and Hajikazemi and Paepegem [76].

We mention this research on �at laminates as an introduc-

tory analogy becausewe did not �nd a systematic study on

free-edge e�ects of corrugated laminates. The onlywork re-

�ecting in�uence of support conditions and aspect ratio

on corrugated sheet metal known to us is the comprehen-

sive analytical and experimental study on the stability of

anisotropic plates performed by Seydel [77].

1.5 Contents and structure of the present

work

The objective of this work is to illuminate the in�uence

of boundary conditions on structural sti�ness of corru-

gated laminates with circular-sections corrugation shape.

Analog to our work on substitute-plate models [55, 62] we

distinguish six di�erent load cases corresponding to the

line loads considered in the classical theory of laminated

plates. We perform structural analysis with FEM on rect-

angular corrugated sheets where two opposite edges are

clamped and the other two edges are free. The parameters

include the distance between the supports and the corru-

gation amplitude. We present structural sti�ness values

normalized with respect to the respective substitute-plate

properties found with [62].

2 FEM modeling

In the following examples, corrugated laminates where

the reference con�guration is a periodic corrugation pat-

tern consisting of circular sections are considered. The

laminates are much thinner than the circular-sections

radii, which enables the comparison of the simulation re-

sults to homogenization models which are based on thin-

shell theory.

2.1 Unit cell geometry

The geometry of a corrugation pattern consisting of circu-

lar sections is shown in Figure 1. Center-line points are de-

scribed with

y(0)(ξ2) = Rsin∆ψ

z(0)(ξ2) = R [1 − cos∆ψ] − c,
(1)
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Figure 1: Unit-cell geometry and coordinate conventions

where

∆ψ = ψ − ψ0 =
ξ2
R

− ψ0 = κ
0ξ2 − ψ0 , (2)

where the angle ψ0 is a shape characteristic depending on

the normalized corrugation amplitude c/P:

ψ0 = acos
(

1 −
c

R

)

. (3)

Speci�ed periodic length P and corrugation amplitude c

determine the mid-plane curvature radius R:

R =
16c2 + P2

32c
(4)

where the condition that the reference con�guration must

not penetrate itself limits c to

0 ≤ c ≤
P − t +

√

(P − t)
2
−
P2

4
2

, (5)

where t is laminate thickness.

2.2 Simulation setup

The �nite element simulations were carried out using the

commercial softwareANSYS©, version 19.2 [78]. TheAPDL

input �les, which contain all the relevant data on nodal

points, meshing, elements and boundary conditions, were

generated in a MATLAB © [79] routine and then transmit-

ted to the FE program using the batch mode.

In order to be able to accurately map the occurring ef-

fects, the Solid186 element, which contains 20 nodes and

quadratic shape functions,was used. The drawback is that

the chosen element is quite costly, leading to a high com-

putational e�ort for large simulations. This problem was

mitigated by using a mesh data base in MATLAB©, where

nodal-point positions were stored for the selected con�g-

urations, allowing to refrain from recalculating them for

every simulation. Furthermore the number of cores in AN-

SYS© was increased in order to speed up the simulations.

In the given study, only linear simulations were per-

formed, which ensures comparability to existing homoge-

nization models. Hence, the resulting sti�ness values can

be considered initial values, which re�ect reality at the be-

ginning of the deformation.

2.3 Boundary conditions

Homogenization models simulate interior solutions that

appear in large and homogeneously loaded corrugated

sheets far away from their edges. Interior solutions are

marked by periodicity of state variables that is simulated

by applying a combination of boundary conditions and pe-

riodicity conditions to a unit cell.

The present study investigates complete solutions where

interior solutions are perturbed with clamping as well as

free-edge e�ects. The essential boundary conditions are

chosen to simulate the e�ects of realistic clamps: All de-

grees of freedom along a clamped edge are prescribed.

Clamped edges are indicated in Figures 3 through 8 with

dark shaded areas.

2.3.1 Load cases

The load information is speci�c for each of the thin-plate

load cases shown in Figure 2 used for establishing homog-

enized substitute-plate models [55, 62, 63]. For the individ-

ual load cases addressed in the following paragraphs, the

inhomogeneous essential boundary conditions will be ex-

plicitly stated and it will be implied that all other degrees-

of-freedom at the same boundary underly homogeneous

essential boundary conditions.

�

�

�

�

�

�

�

	


Figure 2: Load cases illustration (after [55])
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In the following explications, Lx corresponds to the length

of the corrugated laminate transverse to the corrugations,

P to the unit cell width (as de�ned in Chapter 2.1) and n to

the number of cells modeled in the simulation.

2.3.1.1 Load case 1

For this load case the edges at x = ±Lx/2 are clamped with

the rigid clamps being moved apart as Figure 3 indicates.

�
�

Figure 3: Load case 1 illustration (for n = 1).

This situation is simulated with the speci�ed displace-

ments:

x = −
Lx
2

: ûx = 0 : ûy = ûz = 0

x =
Lx
2

: ûx = Lxε
0
xx : ûy = ûz = 0

(6)

2.3.1.2 Load case 2

For this load case the edges at y = ±nP/2 are clamped

whereas the rigid clamps are moved apart as Figure 4 in-

dicates. Modeling only one unit cell (n = 1) is expected to

give an upper bound for the in�uence of edge clamping.

�
�

Figure 4: Load case 2 illustration

The situation can be simulated by specifying the following

displacements along the clamps:

y = −
nP

2
: ûy = 0 : ûx = ûz = 0

y =
nP

2
: ûy = Pnε

0
yy : ûx = ûz = 0

(7)

2.3.1.3 Load case 3

For this load casewepropose that the rigid clamps at edges

y = ±nP/2 are moved along x in opposite directions as Fig-

ure 5 indicates. Increasing the aspect ratio Lx/(n · P) will

lead to a higher in�uence of clamping, while a reduction

of the same parameter is expected to facilitate free-edge ef-

fects.

�
�

Figure 5: Load case 3 illustration

The situation can be simulated by applying the following

essential boundary conditions, speci�ed at the clamps:

y = −
nP

2
: ûy = 0 : ûx = ûz = 0

y =
nP

2
: ûy = Pnε

0
yy : ûx = ûz = 0

(8)

2.3.1.4 Load case 4

For this load case we propose that the edges at x = ±Lx/2

are clamped and that the rigid clamps are rotated by φy =
Lx
2 ε

1
yy as Figure 6 indicates.

�
�

Figure 6: Load case 4 illustration

This situation is simulated by specifying the following es-

sential boundary conditions at the clamps:

x = −
Lx
2

:

ux = −
Lx
2
zε1yy uy = 0 uz = −

1

2
(
Lx
2
)2ε1yy

x =
Lx
2

:

ux =
Lx
2
zε1yy uy = 0 uz = −

1

2
(
Lx
2
)2ε1yy

(9)

2.3.1.5 Load case 5

For this load casewepropose that the rigid clamps at edges

y = ±nP/2 are rotated about x in opposite directions as

�
�

Figure 7: Load case 5 illustration
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Figure 7 indicates. This situation is simulated by applying

the rotation φx =
nP
2 κ̂y along x at the clamps:

y = −
nP

2
:

ux = 0 uy = −cos(ϕ)φxz3 uz = sin(ϕ)φxz3

y =
nP

2
:

ux = 0 uy = cos(ϕ)φxz3 uz = −sin(ϕ)φxz3
(10)

where the angle ϕ describes the inclination of the edges

with respect to the z-axis and z3 the distance to the lami-

nate mid-plane.

2.3.1.6 Load case 6

For this load case we propose that the rigid clamps at the

edges y = ±nP/2 are rotated about the y-axis as Figure 8

indicates

�
�

Figure 8: Load case 6 illustration

This situation is simulated with the following essential

boundary conditions applied at the edges:

y = −
nP

2
:

ux =
1

2
yzε1xy uy =

1

2
xzε1xy ûz = −

1

2
xyε1xy

y =
nP

2
:

ux =
1

2
yzε1xy uy =

1

2
xzε1xy ûz = −

1

2
xyε1xy

(11)

2.4 Structural sti�ness evaluations

As the loading is applied in terms of speci�ed strain or

curvature, which may be translated to speci�ed displace-

ments or rotations, the calculation of structural sti�ness

requires the evaluation of nodal reactions to form line

loads or line moments.

The fully constrained versions of the six load cases are ex-

pected to reconstruct the substitute-plate ÃB̃D̃matrix that

can also be calculated with homogenized-substitute-plate

models, in the limiting case of a �at laminate thiswould be

the laminated-plate ABD matrix. As the fully constrained

cases thus give opportunity for model veri�cation, the less

constrained casesmap free-edge e�ects, therebyproviding

information on the applicability limits of existing inner so-

lutions.

Depending on the load case, the line loads need to be eval-

uated either along the line x = −Lx/2 or along y = −nP/2.

In the �rst case, the average line loads can be calculated

from the nodal reactions as follows:

Nx = −
1

nP

Nnx
∑

k=1

fxk

Nxy = −
1

nP

Nnx
∑

k=1

fyk

Mx = −
1

nP

Nnx
∑

k=1

fxk zk

Mxy = −
1

nP

Nnx
∑

k=1

(fzk yk − fyk zk)

(12)

where fi are the nodal forces and Nn the number of evalu-

ated nodes.

Similarly, the reactions along the line y = −nP/2 are

evaluated as follows:

Ny = −
1

Lx

Nnx
∑

k=1

fyk

Nyx = −
1

Lx

Nnx
∑

k=1

fxk

My = −
1

Lx

Nnx
∑

k=1

(fyk zk + fzk yk)

Myx = −
1

Lx

Nnx
∑

k=1

(fzk xk − fxk zk)

(13)

The measured sti�ness re�ects resistance against a combi-

nation of uniaxial stress and clamping e�ects. For concise-

ness, the geometry parameters L* and t*, normalized with

respect to periodic length P, L* = Lx/(nP) and t* = t/(nP),

are introduced.

2.4.1 Load case 1 sti�ness measurement

The sti�ness measurement of load case 1, C0x , is obtained

with the line force Nx in (12):

C0x =
Nx
εx

(14)

For large L*, load case 1 obtains, for a homogeneous mate-

rial, it’s Young’s modulus E, and for a �at or corrugated
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laminated an apparent averaged Young’s modulus. For

small L*, load case 1 approximately obtains, for a �at lam-

inate, the sti�ness A11 and a higher value than that for

a corrugated laminate, respectively, as the displacement

�eld is constrained at the clamps.

2.4.2 Load case 2 sti�ness measurement

The sti�ness measurement of load case 2, C0y , is obtained

with the line force Ny in (13):

C0y =
Ny
εy

(15)

For small L*, load case 2 obtains, for a homogeneous ma-

terial, it’s Young’s modulus E, and for a �at or corrugated

laminate an apparent averaged Young’s modulus. With in-

creasing length L*, C0y increases asymptotically to A22.

2.4.3 Load case 3 sti�ness measurement

The sti�ness measurement of load case 3, C0xy, is obtained

with the line force Nxy in (13):

C0xy =
Nxy
γxy

(16)

For large L*, load case 3 obtains for a �at or corrugated

symmetric and balanced laminate the apparent averaged

shear sti�ness Ã66. With decreasing aspect ratio L*, C0xy
tends to zero.

2.4.4 Load case 4 sti�ness measurement

The sti�ness measurement of load case 4, C1xx, is obtained

with the line moment Mxx in (12):

C1xx =
Mx

κxx
(17)

For large L*, load case 4 obtains for a �at or corrugated

symmetric laminate the apparent bending sti�ness,

C1xx ≈ D11 +
2D12D16D26 − D22D

2
16 − D66D

2
12

D22D66 − D
2
26

. (18)

For small L*, load case 4 obtains in case of corrugated lam-

inates values higher thanD11 because of the clamping con-

straint of uy = uz = 0.

2.4.5 Load case 5 sti�ness measurement

The sti�ness measurement of load case 5, C1yy, is obtained

with the line moment My in (13):

C1yy =
My

κyy
(19)

For small L*, load case 5 obtains for a �at or corrugated

symmetric laminate the apparent bending sti�ness,

C1yy ≈ D22 +
2D12D16D26 − D11D

2
26 − D66D

2
12

D11D66 − D
2
16

. (20)

2.4.6 Load case 6 sti�ness measurement

The sti�ness measurement of load case 6, C1yx, is obtained

with the line moment Myx in (13):

C1yx =
Myx

κyx
(21)

For large dimensions, load case 6 is expected to approach

the apparent averaged twist sti�ness D̃66 for a �at or corru-

gated symmetric and balanced laminate.

3 Parameter Study

The structural analysis considers materials and laminates

as well as corrugation amplitudes c, where the �at plate

c = 0 allows veri�cation with the results of the classical

theory of laminated plates.

3.1 Materials

We consider a homogeneous corrugated sheet made from

aluminum as well as several laminates made from the

highly anisotropic carbon-�ber reinforced plastic (CFRP)

with GY70 carbon �bers. The properties of aluminum are

given with E = 70000MPa and ν = 0.3 whereas those

of the unidirectional and transverse isotropic CFRP com-

posite are given in Table 1, where the subscript 1 indicates

�ber direction and subscripts 2 and 3 the directions trans-

verse to the �bers.

Table 1: Relevant material properties of unidirectional GY70/epoxy

with �ber-volume fraction vf = 0.6 (moduli in MPa). Source:

DORNIER SYSTEM GmbH

E1 E2, E2 ν23 ν13, ν12 G23 G13, G12

290000 5000 0.2 0.41 2083 5000
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3.2 Laminates

The isotropic and homogeneous aluminum sheet of thick-

ness t = 1mm serves as a reference for the various

anisotropic CFRP laminates that explore the materials de-

sign space. The selected lay-ups were chosen due to their

di�ering properties:

1. [04] high extensional sti�ness transverse to the cor-

rugated direction

2. [904]high extensional sti�ness along the corrugated

direction

3. [±45]s high shear, low extensional sti�ness

Each laminate consists of four layers having a thickness

h = 0.25mm so that all sheets or laminates have a total

thickness of t = 1mm.

3.2.1 ABD matrix homogeneous sheets and laminates

Isotropic materials or unidirectional laminates couple

strain in one direction with line force along the other re-

spective direction and bending about one direction with a

bending line moment about the other respective direction.

These couplings are due to Poisson’s ratio.

A11 A12 0 0 0 0

A12 A22 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 0

0 0 0 D12 D22 0

0 0 0 0 0 D66

(22)

3.2.2 ABD matrix symmetric angle-ply laminate

Symmetric angle-ply laminates are balanced but exhibit

an additional coupling between bending curvature and

torque or twist and bending moment, respectively.

A11 A12 0 0 0 0

A12 A22 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 D16

0 0 0 D12 D22 D26

0 0 0 D16 D26 D66

(23)

3.2.3 Resistances against sheet laminate deformations

Table 2 compares plate-sti�nessmatrix entries with the ap-

parent sti�ness values re�ecting lack of deformation con-

straint. Figure 9 gives a visual impression of the relative

di�erences between constrained and unconstrained sti�-

ness values. It appears that those di�erences are extremely

small for the unidirectional composites and rather large

for the laminate [±45]s. It is only for the latter laminate

that the torsional sti�nesses are di�erent from each other

which is due to the fully coupled bending sti�ness matrix

D indicated in (23). The constrained and unconstrained
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Figure 9: Constrained (darker gray) versus unconstrained (lighter

gray) sti�ness values
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Table 2: Resistances against constrained and unconstrained defor-

mation

C Alu [04] [904] [±45]s

A11 76923.1 290843. 5014.53 79992.3

Au11 70000.0 290000. 5000.00 18749.9

A22 76923.1 5014.53 290843. 79992.3

Au22 70000.0 5000.00 290000. 18749.9

D11 6410.26 24236.9 417.878 6666.03

Du11 5833.34 24166.7 416.667 1461.47

D22 6410.26 417.878 24236.9 6666.03

Du22 5833.34 416.667 24166.7 1461.47

D66 2243.58 416.667 416.667 6078.03

Du66 2243.58 416.667 416.667 2886.38

membrane shear sti�ness values are always the same be-

cause all laminates are balanced.

3.3 Geometries

The unit cell-length is �xed at P = 100mm and the thick-

ness is always t = 1mm. The corrugation shape is always

composed of circular segments as is detailed in Section 2.1.

Corrugation amplitudes include with c = 0mm a �at

plate, with c = 5mm a mildly corrugated sheet, and with

c = 25mm a highly corrugated sheet. This corrugation am-

plitude corresponds with semi-circles and marks the limit

of what can be manufactured with the help of molds.

The non-dimensional geometry parameters, where

the periodic length is used for normalization, are t* = 0.01

and c* = 0, 0.05, 0.25.

4 Inner solution reference values

veri�cation

The present paper gives us the opportunity to correct amis-

take that went unnoticed when we published our closed-

form shell-theory model for corrugated laminates [55]: the

result stated in there, namely that the torsional sti�ness is

invariant with respect to corrugation amplitude c, D̃66 =

D66, is wrong. The correct solution, which we had found

earlier and was placed in [80], is given with

D̃66 =
ψ0

S(1)
D66 , S(n) = sin (nψ0) , n = 1 (24)

where the theopeningangleψ0 of the circular-sections cor-

rugation shape is de�ned in Figure 1.

We use classical laminated plate theory (CLPT) to cal-

culate the �at (c = 0) plate sti�ness values seen in Table A1

in A. For calculating the homogenized-plate substitute val-

ues of corrugated laminates with corrugation amplitudes

c = 5mm and c = 25mm we use our closed-form model

(CF) after the theory in [55] with the correct result in (24)

and our planar �nite-element model (FE) where the the-

ory is explained in [62], with the adaption that the linemo-

ment used for calculating the torsional sti�ness D̃66 is cal-

culated as follows:

Mxy =
1

P

∫

Ω

(τxyz − τxzy) dΩ. (25)

It can be seen that the agreement between the pre-

dictions of the two di�erent models is excellent for most

value pairs. Themaximumdeviation between the two solu-

tions is 2.2%, except for the case of the torsional sti�ness

D̃66, where the agreement is good for the case of the plate

and then deteriorates for larger corrugation amplitudes.

These larger deviations are traced back to the in�uence of

through-thickness e�ects that are correctly mapped with

the planar �nite-element model and that elude the thin-

plate closed-formmodel. Theproblem is discussed inmore

detail below, where the di�erent results are explained us-

ing the example of the circularly corrugated laminate.

As Table A1 shows, there seems to be a large o�set

between the analytical shell-theory model and the �nite

element routine when it comes to determining the sub-

stitute plate value D̃66 for corrugated laminates. For the

case of the semi-circular corrugated laminate the two so-

lutions di�er more or less by factor two, independently of

the selected lay up. For smaller values of amplitude, the

di�erence is less pronounced and vanishes for �at plates.

This deviation can be explained by studying the evalua-

tionmechanisms inboth cases - in the "shellworld" aswell

as the "solid world".

The resulting stress distribution in a homogeneous

corrugated laminate subjected to torsional loading is quali-

tatively shown in Figure 10 for the case of the semi-circular

corrugation. The shear stresses are linearly distributed

over the thickness, hence, they vanish at the laminatemid-

Figure 10: Stress distribution in a corrugated laminate of "in�nite

width" subjected to torsional loading.
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plane. Since in�nite width of the laminate is assumed,

there are no edge e�ects visible at the ends of the unit cell.

In Figure 11 all the parameters relevant in shell the-

ory are shown. The linear distribution of the shear stresses

over the laminate thickness d can be represented in the lo-

cal s, t-coordinate-system:

τshell(t) = 2 · τmax ·
t

d
(26)

The equation above respects the boundary condition

that the shear stress ismaximumat the surfaces of the lam-

inate. In shell models, a local moment with respect to the

laminate mid-plane is then usually calculated:

M(x)
loc = −

d
2

∫

−
d
2

τshell(t) · t dt (27)

where the moment is de�ned positively about the x-axis.

The total moment about the x-axis in the arc can then be

found by multiplication with the respective arc length:

M(x)
shell = πR ·M

(x)
loc = −

1

6
· πR · τmax · d

2 (28)

where R refers to the distance to the laminate mid-plane.

Figure 11: Stress distribution in a corrugated laminate half-cell sub-

jected to torsional loading. The plot shows the relevant parameters

known in shell theory models.

Now, the situation when using the planar �nite ele-

ment model is investigated, which can be represented us-

ing cylindrical coordinates as de�ned in Figure 12. As be-

fore, the shear stresses are assumed to be linearly dis-

tributed over the laminate thickness:

τcyl(r) = −2 · τmax ·
r

d
+ 2 · τmax ·

R

d
(29)

The totalmoment about the x-axis can then be directly

integrated using cylindrical coordinates:

M(x)
cyl =

R+ d
2

∫

R− d
2

π
2

∫

−
π
2

τcyl(r) · r rdα dr (30)

Figure 12: Stress distribution in a corrugated laminate half-cell sub-

jected to torsional loading. The plot shows the relevant parameters

known in planar models.

Evaluation of equation (30) yields:

M(x)
cyl = −

1

3
· πR · τmax · d

2 (31)

Comparison of the values obtained in equations (28)

and (31) shows that the two di�erent evaluation ap-

proaches will produce resulting moments which di�er by

a factor 2, although the assumption for the shear stress dis-

tribution is identical in both cases. As a consequence, the

calculated torsional sti�ness will also show the same de-

pendency. Note that this deviation can also be observed if

the results of �nite element simulations conducted using

shell elements are compared to results of corresponding

simulations with solid elements.

The results obtained using the shell models can be re-

produced in cylindrical cooordinates by adapting the dif-

ferential of the arc length in a way that the coordinate r is

replaced by the distance to the mid plane R:

R+ d
2

∫

R− d
2

π
2

∫

−
π
2

τcyl(r) · rRdα dr = M
(x)
shell (32)

Hence, one can conclude that in shell models the be-

havior in radial direction is not su�ciently reproduced

since the mid-plane is always taken as the reference. In

combination with the peculiar geometry of the round cor-

rugations, this leads to a quite large deviation in the pre-

diction of the substitute torsional sti�ness D̃66.

4.1 Given Study

The model for analyzing edge e�ects uses �nite solid ele-

ments that alsomap through-thickness e�ects. Thismodel

asymptotically approaches the inner solution for extreme

plate-geometry aspect ratios. Consistently, the agreement

is better with the FEM homogenization model than with

the closed-form solution. Therefore, the FEM homogeniza-

tion model predictions of the inner solution (bold text in

Table A1 in A) are used as a reference for all load cases,

laminate designs, and corrugation amplitudes.
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5 Validity ranges of

substitute-plate sti�ness values

We investigate the in�uence of length Lx transverse to the

corrugations and - if necessary - the number of unit cells

on overall sti�ness. Each of the diagrams in Figures 13

through 22 contains the sti�ness developments for �at

(c = 0), low-amplitude (c = 5mm), and moderately-high-

amplitude (c = 25mm) corrugation shapes. All curves are

normalized with respect to the interior-solution sti�ness

values obtained by our homogenizationmodel [62], so that

results veri�cation canbeobtained from thediagrams. The

respective load case are addressed in the following sec-

tions where each section considers the in�uence of the

sheet material.

5.1 Load case 1: strain in out-of-plane

direction

Load case 1 applies strain transverse to the direction of the

corrugations. For this load case the plate width P remains

constant (width of one unit cell) whereas the distance be-

tween the clamps Lx changes. The corresponding sti�ness

maps can be found in Figure 13.

As the clamps prevent deformation within the y − z plane,

small clamp distances create loading situations similar to

the assumptions of homogenization models. For this rea-

son the apparent sti�nesses of the �at sheets of all materi-

als agree with the inner solution at small distances Lx be-

tween the clamps. At large distances between the clamps

the loading situation is dominated by uniaxial stress so

that the apparent sti�ness values approach those of the

respective (averaged) Young’s moduli. The di�erences be-

tweenplate sti�ness and the respectiveYoung’smoduli are

particularly small for the unidirectional composites and

quite large for the angle-ply laminate, as seen in the cor-

responding diagrams in Figure 13.

In contrast to that, the apparent sti�nesses of the corru-

gated sheets approach the inner-solution values at large

distances between the clamps and are higher than that

at short distances. This behavior is attributed on the one

hand to the fact that the clampsprevent corrugation-shape

changes and on the other hand to the fact that the high

compliance of corrugated sheets along the directions of

the corrugationsminimizes the e�ect of displacement con-

straint along the latter direction.

For practical purposes, it can be noted that the appar-

ent sti�ness of the unidirectional materials is very close
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Figure 13: Load case 1 normalized apparent sti�nesses versus Lx for constant width P (one unit cell).
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Figure 14: Load case 2 normalized apparent sti�nesses versus Lx
and nunit - for Aluminum and CFRP [04]
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Figure 15: Load case 2 normalized apparent sti�nesses versus Lx
and nunit - for CFRP [904] and CFRP [±45]s
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to the sti�ness predicted of the inner solution as calcu-

lated by homogenization models. For isotropic materials

with Poisson’s ratios of ν = 0.3 or smaller the deviations

are at maximum 15 percent. The highest deviations occur

with the angle-ply laminate where Poisson’s ratio reaches

νxy = 0.875. However, if the distance between the clamps

is equal to or greater than thewidth along the corrugations,

the apparent sti�ness of corrugated (!) sheets matches ac-

curately Ã11 as calculated by the homogenization models.

5.2 Load case 2: strain in the direction of

corrugations

For this load case, the clamping length Lx as well as the

number of unit cells nunit has an in�uence on the nor-

malized sti�ness. The corresponding sti�nessmaps can be

found in Figures 14 and 15, sorted bymaterials and lay-ups.

This load case has shown a higher sensitivity to the num-

ber of elements in the direction of corrugations, wherefore

this parameter needed to be increased for the given simu-

lations.

5.2.1 Influence of out-of-plane length

For the given investigation, the distance between the

clamps is �xed with P whereas the width Lx of the clamps

changes.

In case of plates, edge e�ects are relevant at low clamp

widths. It is therefore that the trends of sti�ness evolution

with Lx seen here are the opposite to those seen in load

case 1. All �at sheets approach the plate sti�ness A22 pre-

dicted by homogenizationmethods with increasing clamp

width. With narrow clamps the respective Young’s moduli

are approached.

In comparison with �at plates, the clamping length only

seems to have a minor e�ect on the normalized sti�ness

of corrugated sheets and laminates, as can be concluded

from the nearly straight level lines in Figures 14 and 15.

Only corrugated laminates with the [±45]s lay-up show a

high clamping length sensitivity due to the said e�ect of

the high Poisson’s ratio. Global extension along the corru-

gations is kinematically connected with local bending κyy,

which in return is elastically coupled with bending in the

other direction. The bottom diagram in Figure 15 reveals a

very high loss of extensional sti�ness if the clamp width

is not signi�cantly larger than the length P. This e�ect is,

again, due the high Poisson’s ratio of the laminate [±45]s.

5.2.2 Influence of number of unit cells

Figures 14 and 15 reveal that the apparent sti�ness of the

corrugated sheets or laminates is usually higher thanwhat

the homogenization models obtain if only a low number

of unit cells is considered. This is due to the fact that the

clamps prevent rotation about the x direction, resulting in

a sti�ening e�ect due to the additionally constrained de-

gree of freedoms. If a larger number of unit cells is consid-

ered, the realistic sti�ness is quite accurately predicted by

Ã22 of the homogenizationmodels for the aluminum sheet

and both unidirectional laminates.

In case of the [±45]s corrugated laminates, the sti�ening

e�ect of the clamps at low unit cell numbers is only visi-

ble at large values of clamping length since the behavior

at short lengths is governed by the Poisson’s ratio (see the

considerations in section 5.2.1).

5.3 Load case 3: in-plane shear

For this load case homogenization models describe an in-

ner solution assuming that shear stresses τxs = τsx remain

constant along x. As the un-clamped edges ±Lx/2must sat-

isfy free-edge boundary conditions, all stresses σxi must

vanish there.

5.3.1 Influence of out-of-plane length

The top and bottom diagrams in Figures 16 and 17 reveal

that the apparent shear sti�ness vanishes at small clamp

width values for all laminates and corrugation amplitudes.

In order to show that the homogenization-model predic-

tions are recovered at high clampwidths, the clamp-width

range - corresponding to the out-of-plane length Lx - was

extended to a high value one order of magnitude higher

than in all other diagrams.

Independent of laminate design, �at sheets retain higher

shear sti�ness than corrugated laminates from where it

can be concluded that edge e�ects increases with increas-

ing corrugation amplitude.

Base-sheet, or laminate-design, show an in�uence on the

given observation, which can be identi�ed by comparing

the shift of the level lines with respect to the clamp width

of the di�erent material con�gurations. Clearly, the direc-

tion of anisotropy has an in�uence: the unidirectional lam-

inate [04] (see Figure 16) shifts the lines towards higher

clamp width, whereas the unidirectional laminate [904]

(displayed in Figure 17) shifts the lines towards lower

clamp width, as compared to the isotropic material whose
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(b) CFRP [04]

Figure 16: Load case 3 normalized apparent sti�nesses versus Lx
and nunit - for Aluminum and CFRP [04]
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(c) CFRP [904]
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(d) CFRP [±45]s

Figure 17: Load case 3 normalized apparent sti�nesses versus Lx
and nunit - for CFRP [904] and CFRP [±45]s
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curves shown with the diagram in Figure 16. The di�erent

behavior of the two unidirectional laminates is also inter-

esting when keeping inmind that they both have the same

value of homogenized shear sti�ness Ã66. The largest edge

e�ects in terms of sti�ness deviation are seen for the lam-

inate [±45]s, see Figure 17, where the homogenization-

model prediction Ã66 is not reached even at the high plate-

aspect ratio L* = 1000.

5.3.2 Influence of number of unit cells

Figures 16 and 17 reveal that increasing the number of unit

cells leads to an increase in the minimum required clamp-

ing width needed for reaching the homogenization model

sti�ness Ã66 which implies a dependence on the aspect ra-

tio L*. Hence, the peculiarities seen in this load case do not

vanish if nunit is increased.

5.4 Load case 4: bending about the

corrugated direction

In this case as well, the number of unit cells is �xed to one,

as the in�uence on the results isminor. It needs to be noted

that for reasons of numerical stability, shell elements were

used for obtaining the plate solutions displayed in Figure

18.

The trends seen in bending κxx are the same as seen in load

case 1, where the strain ε0xx is applied. The isotropic refer-

ence as well as all laminates show a clamping e�ect for

short out-of-plane lengths Lx in presence of a corrugation

amplitude. For the unidirectional laminates shown in Fig-

ures 18b) and 18c) the calculated sti�ness values are very

close to the predictions obtained using the homogeniza-

tion model. Even for the corrugated laminates [±45]s, see

Figure 18d), good agreement with D̃11 is reached for larger

lengths Lx ≥ 100.

5.5 Load case 5: bending transverse to the

corrugated direction

Similarly to load case 2, the convergence study for the

given simulations has shown a higher sensitivity to the

number of elements in the corrugated direction. As a con-

sequence, this parameter was increased compared to the

other load cases.

The results presented in Figures 19 and 20 show a strong

reduction of the bending sti�ness compared to the unit
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Figure 18: Load case 4 normalized apparent sti�nesses versus Lx
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(b) CFRP [04]

Figure 19: Load case 5 normalized apparent sti�nesses versus Lx
and nunit - for Aluminum and CFRP [04]
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(c) CFRP [904]
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(d) CFRP [±45]s

Figure 20: Load case 5 normalized apparent sti�nesses versus Lx
and nunit - for CFRP [904] and CFRP [±45]s
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(a) Aluminum
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(b) CFRP [04]

Figure 21: Load case 6 normalized apparent sti�nesses versus Lx
and nunit - for Aluminum and CFRP [04]
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(c) CFRP [904]
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(d) CFRP [±45]s

Figure 22: Load case 6 normalized apparent sti�nesses versus Lx
and nunit - for CFRP [904] and CFRP [±45]s
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cell value for small clamp widths Lx. The intensity of the

deviation can be observed to be proportional to the mate-

rial’s averaged Poisson’s ratio, as the e�ect is much more

pronounced for the [±45]s laminate. The latter once again

loses much of its bending sti�ness for small values of Lx.

Larger clamp-width values let the inner solution, which

describes cylindrical bending, dominate so that the sti�-

ness under realistic conditions approaches D̃22 at clamp-

ing widths Lx ≥ 100.

Note that the diagrams also indicate that the in�uence of

the number of unit cells is less pronounced for the corru-

gated examples.

5.6 Load case 6: torsion

The sti�ness maps displayed in Figures 21 and 22 indicate

that in case of plates with a su�cient out-of-plane length

Lx, a torsional sti�ness deviation of100%, hence twice the

sti�ness D66 predicted by the inner solution, is reached -

regardless of the material used. Similarly, a reduction of

the calculated sti�ness is visible for short values of Lx.

In contrast to the behavior seen in the results of the plates,

corrugated sheets with a corrugation amplitude of c =

25mm showno remarkable sti�ness deviation at large val-

ues of Lx. Only a small in�uence of the number of unit cells

aswell as a reduced sti�ness for short out-of-plane lengths

can be identi�ed. Similar observations can be made for

c = 5 mm.

In accordance with the aforementioned observations,

sheets and laminates with a corrugation amplitude of c =

5mm and large dimensions show amaximum sti�ness de-

viation of 60%−80%, which is between the values for the

plate (factor 2) and the semi-circular corrugated structure

(factor 1).

6 Discussion

6.1 Load cases with fast decay of boundary

e�ects

Themajority of the load cases presented in this study show

a fast decay of the e�ects caused by the load introduc-

tion (clamping) on the relative sti�ness of corrugated struc-

tures.

For both load cases 1 and 4, the clamps show a sti�-

ening e�ect for small out of-plane lengths Lx. For Lx ≥

1000mm the sti�ness agrees well with the values calcu-

lated with the homogenization model. In these load cases,

only one unit cell with a width of P = 100 mm is consid-

ered, hence, the interior solution is already accurate for a

minimum length of ten times that of the unit cell.

(a) Clamped boundary condition

(b) Simply supported boundary condition

Figure 23: Scaled displacement of a corrugated panel subjected to

loading in the direction of corrugation (LC 2). The plots highlight the

influence of support conditions on the resulting deformation.

For load case 2 the sti�ening e�ect of the clamps is

visible if the number of corrugations is low. Note that the

given selection of boundary conditions with clamps rep-

resents the upper bound of edge constraints. Additionally,

it has been shown to induce axial and bending coupling

[59]. In the given implementation, vertical de�ection of the

corrugated panel is impeded at both end supports due to

the chosen displacement boundary conditions. As a con-

sequence, a reaction moment at the clamping is induced,

which contributes to the sti�ening e�ect and also has an

an in�uence on the resultingdeformation. This is shown in

Figure 23, where the relation between support conditions

and the resulting displacements is visualized. If the panel

is clamped (Subplot 23a)), the induced vertical de�ection

in the left and right part of the structure is of opposite sign,

whereas there is no out-of-plane displacement in the cen-

ter part of the laminate due to reasons of symmetry. If the

panel is simply supported at the midplane (Subplot 23b))

instead, the vertical displacement is uniformly distributed

in all areas and no additional bending is induced. As a con-

sequence, the in�uence of edge e�ects on structural sti�-

ness is also less pronounced.

6.2 Load case 3: corrugated laminates

subjected to in-plane shear loading

The in-plane shear load case has shown to be really sensi-

tive to boundary e�ects. As can be seen in Figures 16 and 17

there is a large range of the out-of-plane length Lx where
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(a) Lx = 1000 mm,
A66
Ã66

= 0.23, nunit = 2 (b) Lx = 3000 mm,
A66
Ã66

= 0.66, nunit = 2

(c) Lx = 3000 mm,
A66
Ã66

= 0.52, nunit = 3

Figure 24: Scaled deformation of di�erent corrugated laminates with CFRP [904] lay-up and 1 mm thickness subjected to shearing. The color

bar indicates the deformation in y-direction (in-plane deformation).

basically no sti�ness Ã66 at all is detected. The problem

intensi�es if the number of unit cells is increased, hence

implying a dependency on the aspect ratio L*.

Figure 24 shows the resulting deformation of several

corrugated laminates with di�erent geometric parameters

subjected to shear loading. As can be clearly seen, the free

edges exhibit displacements both in in-plane- and in out-

of-plane-direction. These kinds of deformations lower the

e�ective shear sti�ness of corrugated laminates. They are

more likely to occur for structures with a high corruga-

tion amplitude, which explains the increase of the critical

length Lcritx with increasing amplitude, seen in all cases in

Figures 16 and 17.

The homogenization model used for providing the in-

terior solution sti�ness value Ã66 assumes that the corru-

gated laminate is subjected to a shear strain ϵxy only. Such

a state of deformation is only found in the green area in

the middle of the laminates seen in Figure 24. Increasing

the length Lx causes the respective area to grow and the

sti�ness to increase, while adding unit cells increases the

free-edge e�ects and leads to a reduction in shear sti�ness.

The fact that corrugated laminates show a relatively

low in-plane shear sti�ness in a large range of geometry is

not necessarily a drawback from a structural point of view

- it can be exploited where needed. Hence, we e.g. propose

the use of said structures as bearing or damping elements.

6.3 Load case 6: corrugated laminates

subjected to torsional loading

The results presented in section 5.6 show that the torsional

sti�ness of �nite-width plates is twice the value calculated

using the classical theory of laminated plates (CLPT). As

can be seen in Figure 25, interlaminar shear stresses can

be found in �nite-width plates as a result of the free edges.

Whitney [81] thoroughly investigated the in�uence of

transverse shear and plate thickness on anisotropic plates

subjected to torsional loading by introducing a modi�ed

shear deformation theory. He used CLPT as a benchmark,

however, modi�ed with a correction factor as it can be

shown that transverse shear contributes half to the result-

ing torque in case of homogeneous lay-ups. As a result, the

sti�ness doubles:

Dactual66 = 2 · DCLPT66 . (33)

Note that Equation 33 is only valid for thin laminates

as the distribution of transverse shear stresses shows a

large dependency on the plate thickness [81, 82]. In the

given case, a correction factor of2has shown tobe valid for

a thickness of t = 1 mm (as used in the numerical study),

whereas the correction factor has reduced to 1.874 for the

example shown in Figure 25, where the plate thickness is

t = 10 mm.
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Figure 25: Shear stress distribution in a CFRP [04] laminate sub-

jected to torsional loading. For better visibility, we have increased

the laminate thickness to t = 10 mm. The results for the �nite-

width plates were produced using the code presented in [62] with

deactivated periodicity boundary condition.

The results of the parameter study indicate that the

torsional sti�ness of corrugated laminates approaches the

unit-cell value as the amplitude is increased.

Figure 26 shows the shear-stress distribution in a semi-

circular corrugated laminate consisting of one unit cell. As

in case of the plate, the presence of free edges leads to in-

terlaminar shear stresses. For the given con�guration the

value of the local interlaminar stress τxt ismaximumat the

free edges (z = 0) where it corresponds to τxy. The contri-

bution of the interlaminar stresses to the total torque can

then be estimated as follows:

Tintralaminar =

∫

A

(τxz · y − τxy · z) dA ≈ −

∫

A

τxy · z dA ≈ 0 .

(34)

Hence, the free edges do not a�ect the torsional sti�-

ness D̃66 in case of a semi-circular corrugation shape. This

is also seen in Figure 27, where the evolution of the correc-

tion factor for a thin CFRP [04] laminate with increasing

corrugation amplitude is shown. Note that for a laminate
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Figure 26: Shear stress distribution in a CFRP [04] semi-circularly

corrugated laminate subjected to torsional loading. For better

visibility, the laminate thickness was increased to t = 10 mm. The

results for the �nite-width plates were produced using the code

presented in [62] with deactivated periodicity boundary condition.
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Figure 27: Evolution of the normalized sti�ness Dactual
66

· (DCLPT
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)−1

with increasing corrugation amplitude. The lay-up is CFRP [04], with

a total thickness of t = 1 mm and a unit cell width of P = 100 mm.

The results for the �nite-width plates were produced using the code

presented in [62] with deactivated periodicity boundary condition.

with an even larger corrugation amplitude (c > 0.25 · P)

the torsional sti�ness of the laminate with �nite width ac-

tually drops below the unit cell value.

7 Conclusion

In order to reduce the numerical cost, the structural re-

sponse of corrugated laminates is often calculated using

homogenization models, which provide substitute plate
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properties of the given structure. As they assume period-

icity of the state variables - which is usually enforced by

applying periodicity boundary conditions - they are used

to calculate the interior solution, which only maps the

global behavior of the structures. Thus, any edge e�ects,

e.g. caused by the supports or by free edges, are not consid-

ered. In order to establish the range of validity of homoge-

nization models we have therefore performed a numerical

study which provides insight on the in�uence of clamping

and free edge e�ects on the structural sti�ness.

In most load cases the in�uence of edge e�ects re-

mains limited to a small range of geometrical parameters

whichmayhardly ever be used in practical applications. In

contrast to that, the in-plane shear sti�ness of corrugated

laminates has shown to be highly in�uenced by free-edge

e�ects. The latter show a strong dependency on the geo-

metrical parameters: they become more dominant if the

corrugation amplitude is increased and/or the aspect ratio

of the corrugated sheet is reduced. As a result, the actual

shear sti�ness is smaller than the corresponding inner so-

lution value in a large range of geometry. Hence, the use of

homogenization models in case of the given loading situa-

tion is problematic and should be examined from case to

case.

Similarly to the case of plates, the torsional sti�ness of

corrugated laminates is in�uenced by interlaminar shear

stresses at the free edges. The deviation is maximum for

the plate (up to a factor of two for thin laminates) and re-

duces as the corrugation amplitude is increased. For semi-

circular corrugated laminates the sti�ness o�set vanishes,

which is a result of the peculiar geometry.

In general, the study has shown that homogenization

models perform quite well in a large part of the investi-

gated cases. Regarding the exceptions and peculiarities

identi�ed, the present work may serve as a guideline for

assessing their in�uence on structural sti�ness.
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A Inner solutions

Table A1: Inner solutions

c A/D alu [04] [904] [±45]s

0 A11 76923 290842.9 5014.5335 79992.3

A22 76923 5014.53 290842.94 79992.3

A66 26923 5000.0 5000 72936.4

D11 6410.3 24236.9 417.8778 6666.03

D16 − − − 4466.07

D22 6410.3 417.8778 24236.9 6666.03

D26 − − − 4466.07

D66 2243.6 416.6667 416.6667 6078.03

CF FE CF FE CF FE CF FE

5 A11 71894.0 71894.0 297678. 297678. 5132.37 5132.80 19618.0 19576.4

A22 467.345 467.282 30.4657 30.4616 1767.01 1728.63 485.992 478.248

A66 26222.9 26222.9 4871.13 4871.12 4871.13 4871.22 71056.5 71052.9

D11 960705. 961309. 3977805 3980300 68582.9 68625.0 262151. 262790.

D22 6245.03 6244.99 407.107 407.104 23612.2 23581.9 6494.21 6491.89

D66 2302.94 2530.85 427.690 470.016 427.690 469.711 6238.84 6849.36

25 A11 109957. 109957. 455531. 455531. 7853.98 7855.93 29462.6 29452.5

A22 13.0571 13.0558 0.851180 0.85094 49.3684 48.5100 13.5781 13.4556

A66 17139.7 17142.0 3183.10 3183.52 3183.10 3183.52 46432.7 46416.6

D11 34366000 34375300 142372440 142410000 2454697 2455880 9208302 9219390.0

D22 4080.90 4080.81 266.029 266.024 15429.7 15296.3 4243.73 4233.50

D66 3524.21 7001.42 654.498 1300.27 654.498 1300.26 9547.35 18945.00
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