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Here we present a new paradigm of free-electron–bound-electron resonant interaction. This concept is

based on a recent demonstration of the optical frequency modulation of the free-electron quantum electron

wave function (QEW) by an ultrafast laser beam. We assert that pulses of such QEWs correlated in their

modulation phase, interact resonantly with two-level systems, inducing resonant quantum transitions when

the transition energy ΔE ¼ ℏω21 matches a harmonic of the modulation frequency ω21 ¼ nωb. Employing

this scheme for resonant cathodoluminescence and resonant EELS combines the atomic level spatial

resolution of electron microscopy with the high spectral resolution of lasers.
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The reality of the quantum electron wave function and its

interpretation have been a matter of debate since the

inception of quantum theory [1,2]. Recent developments

in ultrafast electron microscopy, and particularly photon-

induced near-field electron microscopy (PINEM) [3–10]

demonstrated the possibility of modulating the energy

spectrum of single quantum electron wave packets

(QEW) at discrete energy sidebands ΔEn ¼ nℏωb by

interaction with a laser beam of frequency ωb. The

interaction is made possible by a multiphoton emission

or absorption process in the near field of a nanostructure

[9,11], a foil [8,10], or a laser beat (pondermotive potential)

[12,13]. It was also shown that due to the nonlinear energy

dispersion of electrons in free space drift, the discrete

energy modulation of the QEW turns into a tight bunching

density modulation at attosecond short levels, correspond-

ing to high spectral harmonics contents ωn ¼ nωb in the

expectation value of the QEW density hjΨðr; tÞj2i. The
physical reality of this sculpting of the QEW in the time and

space (propagation coordinate, z) dimensions can be

demonstrated in the interaction of such modulated

QEWs with radiation [14,15]. Such bunching-phase-sensi-

tive resonant stimulated radiative interactions (acceleration

or deceleration) of QEW have been demonstrated recently

experimentally with a second laser beam, phase-locked to

the bunching frequency or its harmonic [10,12,16,17].

Here we propose a new concept of free-electron–bound-

electron resonant interaction (FEBERI) based on the idea

that optical frequency density modulated QEWs can

interact resonantly with quantum electron transitions in

matter at harmonics of its modulation frequency. Such

interaction is shown schematically in Figs. 1(a) and 1(b) for

the simple case of interaction with a single two-level

system (2-LS) of a bound electron, e.g., in an atom,

quantum-dot structure, defect center in crystal, etc. The

interaction would lead to resonant transitions between the

quantum levels 1 and 2 and corresponding energy loss or

gain in the free electron energy. The resonant interaction

can be monitored by measurement of the electron energy

loss or gain spectrum (EELS, EEGS) [18], or by measuring

the fluorescence due to excitation of the bound electron to

the upper level 2 and its radiative relaxation to the lower

level 1 or possible other levels. In this sense, the effect will

be a resonant cathodoluminescence (RCL) effect, showing

enhanced CL [19] emission of the sample when the

harmonic frequency of the interacting QEW nωb matches

the transition energy nℏωb ≅ ΔE ¼ ℏω1;2. Such a scheme

can have a major impact on electron microscopy and

material spectroscopy, combining the atomic level spatial

resolution of electron microscope with the high spectral

resolution of the laser. Such resolution can be instrumental

also in quantum computing, addressing Q-bits based on

2-LS defect centers in crystals [20,21]. Furthermore, with

intense localized pumping of atomic or nanometric 2-LS

systems and microresonators, one may even consider

development of microscopic single atom lasers [22].

(a)(b)(c)

FIG. 1. A density-modulated quantum electron wave packet

(a) passing near a two-level system (2LS) target (b), and exciting

transitions and luminescence. (c) Enhanced excitation by a train

of modulation-phase correlated QEWs.
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A possible way of analyzing the proposed interaction

scheme is by solving the Schrödinger equation for the

scattering of an incident electron quantum wave packet by

the electrons of an atomic system. This can be done

numerically using a time dependent density functional

theory (TDDFT) formulation based on the time dependent

Kohn-Sham (TDKS) equations [23] (See Supplemental

Material [24] SM-A). Taking an analytical approximation

approach, the problem can be presented in terms of dipole

coupling between the free QEW and the bound electron

through their near-field induced electric fields. In this Letter

we neglect the effect of the 2-LS dipole moment on the

QEWs (neglecting their interaction quantum recoil), and

assume that the bound electron transition is governed by the

Schrödinger equation

iℏ
∂

∂t
Ψbðr;tÞ ¼ ½H0 þ VwpðrÞ�Ψbðr;tÞ; ð1Þ

where Vwp ¼ −eEðtÞ · r, and EðtÞ is the field induced by

the modulated QEW at the 2-LS location. For a single

QEW, modulated at frequency ωb and tightly bunched [9],

we model its density as

neðr; tÞ ¼ fe⊥ðr⊥Þfetðt − t0 − z=vÞfmodðt − z=v0Þ; ð2Þ

where fe⊥ðr⊥Þ is a narrow normalized transverse distribu-

tion, fetðtÞ ¼ exp ð−t2=2σ2etÞ=
ffiffiffiffiffiffi

2π
p

σet, σet is the quantum

wave packet duration, fmodðtÞ ¼
P

∞

n¼−∞ Bne
−inωbt,

and Bn are the coefficients of the harmonics. Maximal

tight density bunching is attained after drift time tD;max ¼
Tb=ð2Δpm=p0Þ past the laser modulation point, where

Tb ¼ 2π=ωb, and Δpm=p0 is the momentum modulation

amplitude of the electron relative to the average momentum

[9,15]. Substantially high amplitude (Bn > 0.3) harmonics

are attainable up to the 20th harmonic [15] and beyond [25]

(see Supplemental Material [24] SM-B).

The self-fields of the charge-modulated QEW are found

from Maxwell equations similarly to the semiclassical

calculation of EELS in electron microscopy [18]. For the

assumption of a transverse distribution fe⊥ðr⊥Þ narrow

relative to the bunching wavelengths and an impact

parameter r⊥ longer than the QEW width, but within the

near field of the modulated QEW [see Figs. 1(a) and 1(b)]:

Eðr; tÞ ¼ e

2πϵ0

fetðt − t0 − z=vÞ
v2γϵϵr

X

n

ωnBngnðrÞeiωn½t−ðz=vÞ�;

ð3Þ

gnðr⊥Þ ¼
�

1

γϵ
K0

�

ωnr⊥

vγϵ

�

ẑ − K1

�

ωnr⊥

vγϵ

�

r̂⊥

�

; ð4Þ

with ωn ¼ nωb, γϵ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵrβ
2

p

, ϵr ¼ ϵ=ϵ0 β ¼ v=c
r ¼ ðr⊥; zÞ, r⊥ ¼ ðx; yÞ and Km are modified Bessel

functions. We then need to solve a simple 2-LS equation

for the bound electron wave function Ψbðr;tÞ ¼
a1ðtÞφ1ðrÞe−iE1t=ℏ þ a2ðtÞφ2ðrÞe−iE2t=ℏ, where φ1ðrÞ,
φ2ðrÞ are the eigenvalues of the noninteracting 2-LS.

This is a standard problem of coherent light interaction

with quantum levels in matter [26,27], except that the field

here is not a laser field, but the near field of the modulated

QEW. It leads to the coupled-modes equations (see

Supplemental Material [24] SM-C):

a0
1
ðtÞ ¼ i

ℏ
V∗
21
ðtÞeiω21ta2ðtÞ; ð5aÞ

a0
2
ðtÞ ¼ i

ℏ
V21ðtÞe−iω21ta1ðtÞ; ð5bÞ

where ω21¼ðE2−E1Þ=ℏ, Vij ¼
R

φ�
i ðrÞVwpðr;tÞφjðrÞd3r,

and it is assumed that V11 ¼ 0 V22 ¼ 0 V21 ¼ V∗
12
.

We use the solution of these equations in two cases of

interest: first, for a π-pulse half period Rabi oscillation case,

in which the interaction Hamiltonian VðtÞ and interaction

time are large enough to produce complete transition of the

bound electron from the ground to top level. Second, for the

case of weak coupling, where we can only calculate the

probability of exciting the upper level in one interac-

tion event.

In the first case, we assume for simplicity a constant

amplitude harmonic field EðtÞ ¼ E0 cosðω0t − φ0Þ ¼
1

2
E0e

iðω0t−φ0Þ þ c:c: and present the solution for the case

of exact resonance, ω0 ¼ ω1;2 ¼ ΔE=ℏ ¼ ðE2 − E1Þ=ℏ,
starting from the ground state a1ð0Þ ¼ 1, a2ð0Þ ¼ 0 (see

solution for the general case in Refs. [26,27]). The

occupation probabilities of the states are

P2ðtÞ ¼ ja2ðtÞj2 ¼ sin2ðΩRt=2Þ;
P1ðtÞ ¼ ja1ðtÞj2 ¼ cos2ðΩRt=2Þ; ð6Þ

where

ΩR ¼ 2jV21j=ℏ ¼ μ21 ·E0=ℏ; ð7Þ
μ21 ¼ −er21 is the dipole moment of the 2-LS transition.

We now extend this model to the case of inducing a

coherent 2-LS transition with a pulse of modulated QEWs

[Eq. (2)]. Such an ensemble of QEWs may excite tran-

sitions in the 2-LS incoherently and randomly, with

probability proportional to Ne. However, when the modu-

lated envelopes of the QEWs are phase correlated, as shown

in Fig. 1(c), the Rabi oscillation process will build up

coherently throughout the entire pulse. The correlated

optically modulated QEWs pulse density can be presented

as a sum of individual QEW densities (2) arriving each at

random time t0j (j ¼ 1 to Ne) at the 2-LS location

neðr; tÞ ¼ fe⊥ðr⊥Þfmod

�

t−
z

v

�

X

Ne

1

fet

�

t− t0j−
z

v

�

: ð8Þ

This scenario [Fig. 1(c)], is similar to the case of

superradiance of a bunched electron beam. In this case
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the bunching of the electrons is modeled in terms of point

particles [28] or quantum wave packets [15], and the

bunched beam radiates at all harmonics nωb of the

bunching frequency in proportion to N2
e, similarly to

Dicke’s atomic superradiance [29,30].

In the present case, the nth harmonic component of the

modulation-correlated electrons interacts coherently with a

2-LS. Consequently, when the modulation phases of the

different QEWs are correlated [see Fig. 1(c)] (for example,

if they were all a priori bunched by the same coherent laser

beam), then the near fields of all wave packets, irrespective

of their arrival times toj, add up coherently, but the sum of

the QEW density distribution in Eq. (8) is replaced by the

temporal distribution of the electron pulse (SM-D).

Assuming for simplicity that the pulse envelope is uniform,

of duration Tp, shorter than the relaxation or the

decoherence time of the 2-LS, we replace feðtÞ with

fpðtÞ ¼ 1=Tp in Eq. (3), and the relevant field component

in Eq. (7) for the nth harmonic is

E0 ¼
1

2πϵ0

eωn

v2γϵϵr
gnðr⊥Þ

BnNe

Tp

: ð9Þ

Interestingly enough the quantum features disappear in

this case and the pulse duration Tp takes the role of the

quantum wave packet size σet. It is noteworthy that the

expressions for the density bunching amplitudes Bn have

been derived independently for a pulse of laser-modulated

particles beam in a point-particles model in connection to

harmonic superradiance in FEL [28]. Here, following

Ref. [9] we used a quantum wave packet model for the

bunching, because the wave packet size σez ¼ v0σet is

usually longer than an optical wavelength in a high quality

TEM [14,31]. The consistency of the quantum and classical

analyses of the bunching process in the case of multiple

electrons is satisfying. Of course, the transition process in

the 2-LS is by itself a quantum effect in any case.

Substituting Eq. (9) in Eq. (7), one can calculate, given

the dipole moment μ12 and the electron number Ne in the

pulse, the condition for complete population inversion:

ΩRTp ¼ 2αωn

cβ2γϵϵr
μ21 · gnðr⊥ÞBnNe;π ¼ π; ð10Þ

with α ¼ ð1=4πε0Þe2=ℏc ¼ 1=137 the fine-structure con-

stant. Note that the pulse duration Tp cancelled out of

condition (10), and it is insignificant, as long as it is shorter

than the relaxation time of the upper level tr. If this

condition can be satisfied, it should be possible to obtain

an efficient resonant CL (RCL) with a finite pulse of Ne;π

modulated QEWs interacting with a single 2-LS atom or a

quantum dot or in bulk.

Another possible scenario is when ΩRTp ≪ π (weak

coupling). In this case, from Eq. (6),

P2ðTpÞ ≈
�

ΩR

Tp

2

�

2

¼
�

αωn

cβ2γϵϵr
μ21 · gnðr⊥ÞBnNe

�

2

:

ð11Þ
Noteworthy is the quadratic dependence on Ne of the

transition probability of coherent resonant FEBERI and

RCL as opposed to the linear dependence in conven-

tional CL.

The coherent buildup of Rabi oscillation by a pulse of

phase-correlated QEWs is demonstrated in Fig. 2(a),

showing simulation (see Supplemental Material [24]

SM-E) of population buildup of level 2 due to interaction

with a pulse of Ne correlated QEWs having the same phase

but arriving at random time t0j. For comparison, simulation

parameters are normalized to accumulate the same

Rabi phase ΦRðtÞ ¼
R

t
0
μ12Ē0ðt0Þdt0=ℏ, on the average.

FIG. 2. Comparison of upper level population probability buildups by the field excitation of a pulse of modulated QEWs.

(a) Excitation of Rabi oscillation with correlated wave packets: Green curve, QEWs arrive at equal time spacing; blue, at random time

t0j; black, a continuous modulated QEW. (b) Same, with uncorrelated modulated QEWs (φ0j random); black is the average of events.
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Therefore, their time is normalized to an effective Rabi

frequency: Ω̄R ¼ ΩRðNeTe=TpÞ. Figure 2(b) shows the

buildup of the occupation probability of level 2 in the case

of uncorrelated QEWs, namely, their phases φ0j ¼ ω0t0j
are random. Evidently the population growth P2 is slower,

and does not arrive to full occupation. The black curve is an

average over several simulation events, confirming the

initial linear buildup of the upper level population as a

function of Ne in the absence of relaxation.

We now go back to present a general solution of Eq. (5B)

in the limit of weak coupling, and apply it to compare the

cases of a single finite size QEW, modulated QEWs, and

the conventional point-particle limit. Whether a single

QEW interaction with matter can be observed and mea-

sured is a fundamental physics question that has been

considered in connection to interaction of QEW with light

[15,32,33]; here we consider it in the case of interaction

with matter.

The first-order solution of Eq. (5B) for a general finite

time field pulse EðtÞ with perturbation Hamiltonian

Vwp ¼ μ21 ·E, under the assumptions a1ðtÞ ≈ a1ð0Þ ¼ 1,

ja2ðtÞj ≪ 1, is

a2 ¼ −
i

ℏ
μ21 ·

Z

∞

−∞

EðtÞeiω21tdt ¼ −
i

ℏ
μ21 ·E

⌣

ðω21Þ; ð12Þ

where E
⌣

ðωÞ ¼ FfEðtÞg.
We first apply this expression for the case of an

unmodulated QEW—Eq. (3) with Bn ¼ δn;0. The proba-

bility of exciting level 2 by Ne uncorrelated QEWs is

PWP
2

¼ Neja2j2 ¼ NeP
par
2
jFeðω21Þj2; ð13Þ

PPart
2

¼
�

αω21

cβ2γϵϵr
μ21 · gnðr⊥Þ

�

2

; ð14Þ

where for a Gaussian wave packet envelope fetðtÞ ¼
ð

ffiffiffiffiffiffi

2π
p

σetÞ−1 expð−t2=2σ2etÞ, one has FeðωÞ ¼ FffetðtÞg ¼
e−ω

2σ2et=2. In the limit σet → 0 of a point particle

PWP
2
→ PPar

2
, as expected. On the other hand, for a long

QEW ω21 ≫ 1=σet the excitation probability decays. This

is evidently a quantum effect, not predictable by a point-

particle model of the electron. It is consistent with previous

conjectures of decay of radiative interaction of a QEW

in the limit ωσet ¼ 2πσez=βλ ≫ 1 with σez ¼ vσet,
λ ¼ 2πc=ω, that are predicted in a semiclassical interaction

model [14,15], but not verified in a QEW analysis of

spontaneous emission by a single QEW [33].

In the interesting case of a modulated QEW, we insert in

Eq. (13) the expression of the Fourier transform of Eq. (3)

of a harmonic frequency n, such that ωn ≈ ω21. For Ne

uncorrelated modulated QEWs this results in

PM−WP
2

¼ Neja2j2 ¼ NeP
par
2
jBnj2jFeðω21Þj2

¼ NeP
par
2
jBnj2e−ðω21−ωnÞ2σ2et : ð15Þ

For very tight bunching it is possible to get high

harmonic amplitudes up to about 20th harmonic [9] and

higher [25], and attain resonant FEBERI transitions at

frequencies ωn ¼ nωb ≫ ωb beyond the cutoff frequency

of an unmodulated finite QEW 1=σet. Comparison of

Eqs. (15) to (13) (with Ne ¼ 1) reveals the special

characteristics of a modulated QEW of finite size.

The significant enhancement of FEBERI transition with

a pulse of modulation correlated QEWs, as compared to

conventional (point-particle) interaction, is evident when

one compares Eq. (11) to Eqs. (14), (15) (for the case

Ne;π ≫ Ne ≫ 1). In this case, the probability of excitation

of the upper level byNe modulated QEWs can be written as

P2ðTpÞ ¼ B2
nN

2
eP

par
2
, namely, there is an enhancement

factor B2
nNe relative to the excitation probability with Ne

uncorrelated point-particle interaction events. This

enhancement may amount to many orders of magnitude,

and it would be also the enhancement ratio of resonant

cathodoluminescence in a two-level system, whether the

excited electrons relax radiatively to the ground level or to

other quantum levels.

We can now estimate the viability of our new concepts of

FEBERI and RCL, referring to real parameters of a material

target of interest, such as NV defect centers in diamond. We

first check how many phase-correlated modulated QEWs

would be required to produce a full π-phase Rabi transition

and satisfy Eq. (10). In diamond NV centers there is a 2-LS

quantum transition of ΔE ¼ 1.945 eV [21], and it thus can

be excited resonantly by the second harmonic

field component of a pulse of QEWs, modulated by an

infrared laser of λb ¼ 1.27 μm. With a rough estimate

½gnðr⊥ÞBn=β
2γεεr� ≈ 1, one obtains Nπ ¼ 2.2 × 104, which

corresponds to 3.7 × 10−15 Coulomb. This may be exces-

sive charge for the femtosecond laser driven photoemission

techniques used in PINEM [9,34], and one may be

concerned about energy spread and loss of modulation

coherence due to Coulomb interaction scattering in the

electron pulse [35]. However, since the relaxation time of

the 2-LS can be quite long (tr ¼ 13.5 × 10−9 sec for a

diamond NV center [21]), one may resort to distributing the

charge over longer electron pulses or employing high

rep-rate mode locked laser techniques [36], in order to

mitigate the Coulomb scattering problem. Alternatively, if

one operates in the weak coupling regime with a smaller

number of correlated modulated QEWs (say, Ne ¼
102⟪Nπ), one can still attain an enhancement factor of

RCL by a factor Ne relative to the conventional CL from

the same number of electrons.

The new concepts of FEBERI and RCL with single

QEWs and with an ensemble of correlated QEWs, were

presented here in the framework of a simplified semi-

classical model. They should lead to more elaborate

theoretical formulation and experimental studies in both

fundamental and applied physics research. The reality of

the size and shape of a single electron wave function in its
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interaction with radiation has raised new interest in the old

question of particle-wave duality [14,31–33,37]. The CL

process provides an alternative way for probing the reality

of the single electron wave function through interaction

with a well defined 2-LS quantum transition. In this Letter

we proposed that the interaction of a single electron with an

atomic system in matter can depend, and thus be controlled,

by the modulation of its quantum electron wave function by

a coherent laser beam and by the history of its transport to

the interaction point. In the case of interaction with single

QEWs, this picture may be contrasted by an argument of

collapse of the wave function to a point particle at the single

interaction event [38]. In the case of an ensemble of

identical correlated modulated QEWs, the wavepacket

modulation resonant enhancement effect is well justified

[39] and consistent with classical point-particle bunching

analysis.

These ideas are expected to lead to a new way for

studying fundamental questions of quantum theory. On the

application side, the combination of these concepts with the

atomic scale spatial resolution of electron microscopes can

lead to development of a new kind of electron microscopy

and spectroscopy on the level of single atom resolution.

Besides diagnosis on the basis of the emitted radiation

(RCL), the imprint of the resonant interaction on the

free electrons spectrum can be revealed in a TEM instru-

ment also through EELS measurement [resonant EELS

(REELS)]. This, as well as other applications such as

addressing individual 2-LS targets as Q bits (for example,

diamond NV centers in quantum computer schemes [20]),

resonant CL in bulk (rather than isolated atoms), quantum

dots, etc, resonant directed superradiant emission in a

grating configuration [40], and possibly localized lasing

in microcavity lasers [22], are promising directions of

further development of the new concepts presented here.

This Letter presented only the theoretical principles of a

new interaction scheme. Their realization in the laboratory

may require dedicated development of electron microscopy

technology for improving the quality of the modulated

QEW, controlling the electron emission from the cathode,

mitigating the deleterious effect of Coulomb scattering

[35], and improving the efficiency of QEW modulation by

laser beam.
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