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Abstract
Combined QM/MM methods provide an accurate and efficient energetic description of complex
chemical and biological systems, leading to significant advances in the understanding of chemical
reactions in solution and in enzymes. Progress in QM/MM methodology and application will be
reviewed, with a focus on ab initio QM based approaches. Ab initio QM/MM methods capitalize
on the accuracy and reliability of the associated quantum mechanical approaches, however at a
much higher computational cost compared with semiempirical quantum mechanical approaches.
Thus reaction path and activation free energy calculations based on ab initio QM/MM methods
encounter unique challenges in simulation timescales and phase space sampling. Recent
developments overcoming these challenges and enabling accurate free energy determination for
reaction processes in solution and enzymes will be featured in this review, along with applications.
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INTRODUCTION
Understanding chemical reactions in solution and in enzymes is of ultimate importance. The
majority of chemical reactions for synthesis or manufacture takes place in solution.
Investigating solvent effects on reaction mechanisms has long been and continues to be an
area of important and challenging inquiry. In biological systems, most biological functions
are accomplished through the binding of ligands with proteins and/or a series of chemical
reactions catalyzed by specific enzymes with different efficiency and specificity. The
structure-function relationship and the catalytic role of enzymes is thus one of the most
fundamental subjects in biochemical research. It is also essential for the development of new
or better inhibitors and enzymes, which have important practical applications ranging from
drug design to the development of novel catalysts in industrial processes. As an increasing
amount of structural information for proteins and enzymes becomes available, the structure-
function relationship becomes an even more important link in biological science.
Quantitative tools such as simulations will make key contributions to the investigation of
this topic.

In the process of chemical reactions, only a small number of atoms directly participate in
bond forming or breaking processes. Many other atoms in the system do not undergo
changes in electronic structure, but instead serve as a steric and electrostatic environment to
influence the properties and reactivity of the active site. The QM/MM approach, first
developed by Warshel and Levitt [1], is a multiscale/multiresolution simulation approach:
the interesting part of the system, such as the active site of an enzyme, is described at the
electronic level with quantum mechanics, while the rest of the system is described at the

NIH Public Access
Author Manuscript
Annu Rev Phys Chem. Author manuscript; available in PMC 2013 July 30.

Published in final edited form as:
Annu Rev Phys Chem. 2008 ; 59: 573–601. doi:10.1146/annurev.physchem.59.032607.093618.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



atomistic level with molecular mechanics. This combined quantum mechanical/molecular
mechanical methodology allows reliable electronic structure calculations for enzymatic
reactions with a realistic and atomistic description of enzyme environment. Such an
approach takes advantage of the applicability and accuracy of the QM methods for chemical
reactions in systems of several tens of atoms and of the computational efficiency of the MM
description for the rest of the enzyme and solvent, which normally consists of many
thousands of atoms. Development of combined QM/MM methods has enabled simulations
of complex chemical and biological processes, leading to significant advances in our
understanding. In particular, simulations have generated considerable insight into chemical
reaction mechanisms in solution and in enzymes, as discussed in several recent reviews [2,
3, 4, 5, 6, 7, 8].

The QM/MM approach can be classified into two types according to the level of QM theory
used. One type involves the use of semiempirical methods such as MNDO, AM1, PM3,
empirical valence bond (EVB), and the recently developed self-consistent charge density
functional tight binding (SCC-DFTB) method [9, 10, 11, 12]. The majority of the work in
the field is carried out with these methods. The computational efficiency of semiempirical
QM/MM is such that direct MD sampling is readily affordable, and thus free energy and
reaction dynamics calculations can be routinely performed.

The other type of QM/MM calculation [13, 14, 15, 16, 17, 18, 19, 20, 7] uses ab initio QM
via wavefunction theory or density functional theory. DFT is the most popular approach
because of the optimal balance of efficiency and accuracy [21, 22, 23]. Recent development
in approximate functionals has resulted in even better accuracy at a similar computational
cost [24]. However, because ab initio QM calculations are computationally much more
demanding than semiempirical methods, rigorous statistical mechanics sampling and
reaction dynamics calculations with an ab initio QM/MM method are most challenging.

In the present review, we focus on the theoretical development and application of ab initio
QM/MM free energy simulation methods for chemical reactions in solution and in enzymes.

Reaction free energy and rate
The fundamental properties of a chemical reaction process include the equilibrium
distribution of states, kinetics, and the reaction mechanism. Thermodynamic laws tell us that
equilibrium in a reaction process is determined by the free energy difference between the
reactant and product states. This free energy difference determines the equilibrium, but not
the reaction rate in general.

Reaction rate can be determined rigorously using theory based on classical statistical
mechanics or quantum statistical mechanics. The exact classical rate constant k(T) at
temperature T is [25, 3, 2]

(1)

where γ(T) is the transmission coefficient, β = 1/kBT, kB is the Boltzmann constant, and
ΔG‡(T) is the molar activation free energy, i.e. the free energy difference between the
reactant and TS. Within the transition state approximation, γ(T) = 1 , and ΔG‡(T) then
determines the rate.

TS is a special state of the reacting system whose population controls how rapidly the
system is able to transfer from the reactant valley to the product valley. If the dynamics of a
system is projected onto an order parameter, or reaction coordinate, that characterizes the
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reaction process, TS is the point with the highest (free) energy on this one-dimension PMF.
Identification of TS is crucial not only for the rate determination, but also for the
understanding of the reaction mechanism.

Modeling enzyme catalysis
For enzymatic reactions, experimental studies provide crucial and indispensable information
concerning the reaction mechanism, thermodynamics and kinetics. However, experimental
data is often insufficient for determining the detailed reaction mechanism [26]. Most
importantly, experimental study cannot directly determine the structure of the transition
state, which is crucial for biomedicinal research such as inhibitor or drug design.

Complementary to experimental study, simulations can yield atomistic or even electronic
information regarding the effects of site-specific interactions on the reaction process, the
reaction path, and the structure of the transition state[14, 6, 2, 3, 12, 4, 27, 16]. Simulation
studies of many enzymatic processes have addressed and also raised many important issues
in enzyme catalysis such as covalent catalytic mechanisms [28, 29], contribution of the pre-
organized electrostatic environment of enzymes[30, 31], the effects of strain and
conformational dynamics of the enzyme-substrate complex, non-equilibrium dynamical
effects, and quantum tunnel ling effects[32, 33].

Despite numerous simulation studies, the origin of enzymatic proficiency remains a current
topic of interest because the contributions from different sources may vary in different
enzymes [26, 34]. Accurate simulation methods will definitely help the understanding of
those complex interactions in the enzymatic catalysis.

Unique role of solution reactions
Solvent molecules play significant roles in chemical reactions in solution [9, 35, 36, 33].
Energetically, the complex electrostatic interactions between the solvent and solute
molecules create a reaction environment drastically different from gas phase, resulted in
different chemical equilibrium and reaction rate. Dynamically, fluctuation and diffusion of
the solvent molecules serve an energy bath to the motions of the reaction moieties, resulted
in different relaxation and barrier-crossing dynamics. Last but not least, direct participation
of the solvent molecule in the reaction not only creates a concentration effect, but also may
alter the reaction path.

Solution reactions are important references for enzymatic reactions. In most cases, the slow
reaction rate of the non-catalyzed solution reaction is the evolutionary driving force for
enzymes; the exceptional proficiencies of enzymes are usually determined by the degree of
difficulty of the solution reaction [37]. From this perspective, understanding enzymatic
proficiency requires determining the differences between the enzyme catalyzed reaction and
its corresponding solution reaction.

Solution reactions are often simulated with varying levels of approximation, particularly for
simulations employing ab initio approaches. One common practice is to simplify the
description of the solvent by using a continuum representation. This reduces the number of
degrees of freedom in the simulation, but the isotropic continuum-medium model cannot
always correctly reproduce the anisotropic, site-specific interactions between the solute and
solvent molecules. To make reliable comparison, both the solution and enzymatic reactions
must be simulated at the same level of accuracy.
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QM/MM POTENTIAL ENERGY SURFACE
The first requirement for simulating a reaction process is a potential energy surface that
accurately describes the chemical changes with the redistribution of electrons. To account
for this effect, in general quantum mechanics becomes necessary.

With currently available computing resources, a high-level ab initio QM description of the
entire system is affordable only for small systems of less than 100 atoms. For reactions in
solution or in enzymes, too many electronic degrees of freedom of the system make it
difficult, if not impossible, to describe the whole system quantum mechanically. Although
semiempirical QM methods using a linear scaling method such as the divide-and-conquer
approach have been applied to large proteins and enzymes [38, 39, 40, 41, 42, 43], the
computational speed is still a factor and the results may be less reliable because of the
semiempirical approximations.

An effective and attractive solution to the energetic description of macromolecules is found
in the combined QM/MM method [1, 11]. By partitioning the entire system into QM and
MM subsystems, the total internal energy of the QM/MM system can be written as

(2)

The first two terms on the right hand side are the QM internal energy and the electrostatic
energy between the QM and MM subsystems, for which the calculation is described in next
section. The remaining three terms are the van der Waals energy between the QM and MM
subsystems, the covalent interaction energy between the two subsystems, and the purely
MM interaction energy of the MM subsystem, respectively, which are described with a
given MM force field.

Due to the diversity in their forms and parameters, simulations performed with different
MM force fields may show somewhat large discrepancies in the results [44]. Instead of MM
force fields, an effective fragment potential method has been developed to derive a simple
potential energy function for complex systems from ab initio QM calculations [45].

QM/MM electrostatic interactions
Computing the first two terms on the right hand side of Eq. (2) is the core of the QM/MM
methods. A straightforward procedure is to compute the two terms together by including the
electrostatic potential from the MM atoms in the QM calculation; that is

(3)

where Heff is the effective QM Hamiltonian including the MM electrostatic potential. In this
charge embedding scheme, the QM internal energy and the QM/MM electrostatic energy are
computed together in a self-consistent manner. In other words, the polarization of the QM
subsystem due to the presence of the MM subsystem is captured at the same level of QM
theory.

In the mechanical embedding approach represented by the class of ONIOM methods[46],
the systems are hierarchically split into different layers that are described at different levels
of theory. The energy function of the outer layer automatically includes the energy of the
inner layer but it is described with a lower-accuracy method.
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QM/MM boundary
When one or more covalent bonds connect the QM and MM subsystems, how to handle the
boundary between the QM and MM subsystems becomes an important question. Several
approaches have been developed [11][13, 47][48, 19, 49, 20, 50]. Traditionally, “link”
hydrogen atoms are added to the MM-bonded QM atoms to saturate the valence orbital of
the QM subsystem[11]. Using additional hydrogen atoms to cap the QM subsystem is easy
to implement, but the resulting system is thermodynamically different from the original one
because the total number of atoms is different.

In contrast, two other approaches, namely the pseudobond method [13, 47] and the frozen
local orbital method [48, 19, 49, 20, 50], do not bear such problems. In the pseudobond
method, the MM-bonded QM atoms are assigned a special basis set and an effective core
potential that is designed to mimic the correct covalent bonding involving the boundary QM
atoms. By making such atoms with a free valence of 1, there is no need for additional atoms
to saturate the QM/MM covalent bonds. Several methods, following the pseudobond method
in using effective core potentials, have subsequently been developed, including: the quantum
capping potential method [51, 52], the effective group potential technique [53], effective
Hamiltonians from a minimum principle [54], variational optimization of effective core
potentials for molecular properties [55] and multicentered valence-electron effective
potentials [56].

In the frozen local orbital method, a set of specially designed local orbitals are assigned to
the boundary QM or MM atoms to maintain closure of the QM subsystem. In different
implementation schemes, the magnitude of the neighboring MM charges, the positions of
the MM point charges, and the positions of the frozen orbitals can vary.

In connection with this QM/MM boundary problem, another important issue is how to
compute the electrostatic interactions between the QM subsystem and the nearby MM
atomic charges, in particular those MM atoms in covalent contact with the QM atoms.
Direct inclusion of those MM point charges in the QM effective Hamiltonian can cause
charge penetration and off-balance polarization of the QM electrons. To address this
problem, rescaling of the MM charges [13] or smearing the MM charges by Gaussian
distributions have been developed [57].

Long-range QM/MM electrostatic interactions
The importance of the correct description of long-range QM/MM electrostatic interactions
has not been explored in most simulations, as many QM/MM simulations have been
performed with stochastic boundary conditions. The inclusion of long-range QM/MM
electrostatic interaction is not trivial because the well-established Ewald summation method
may not be directly applicable. In fact, several technical concerns must be addressed.

The first issue concerns the treatment of a periodic QM subsystem. In biomolecular
simulations, usually the simulation box must be large enough so that the interaction between
the QM subsystem, which is often charged, with its images is negligible. The second
concern is how to consider the periodically distributed MM charges in the QM calculation if
the charge-embedding scheme is used. Even though Ewald-type methods have been
developed for semiempirical methods[58, 59], a similar development for ab initio QM/MM
methods is still lacking.

No doubt the long-range electrostatic interaction is important for stabilizing the enzyme
structures and may also be important for enzyme functions. However, the key question in
both concerns might be whether or not the long-range polarization is significant for QM
subsystem. It has been observed that even for a charge-transfer reaction, the QM
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polarization effects are small when the MM point charges are more than 9 ~ 14 Å from the
QM atoms [60]. Beyond this distance, the MM point charges merely contribute by providing
a static electrostatic potential. Therefore a simple technical scheme has been adopted in our
simulations with periodic boundary condition [61, 62, 60] in which a cutoff of 9 ~ 14 Å was
used for selecting MM charges for the QM SCF calculation. The QM calculation yielded
polarized QM ESP charges that were in turn used to represent the QM subsystem during MD
simulations with the long range electrostatic interactions treated by the Particle-mesh Ewald
Method [63].

To avoid the technical difficulties associated with periodic QM/MM systems, Cui and co-
workers have made important progress in approximating long-range QM/MM electrostatic
interactions by implementing a stochastic generalized solvent boundary with the SCC-DFTB
method [64, 65]. York and co-workers have developed a variational electrostatic projection
method that employs a continuum solvent model for the long-range electrostatic interactions
[66].

REACTION PATHS
A reaction path provides a clear picture of a chemical reaction mechanism as well as
quantitative energetic information regarding the reactant, transition state, and product, which
are required for reaction rate calculations. A reaction path also serves as the structural basis
for the detailed analysis of site-specific interactions involved in the reaction process and can
be used in the design of new inhibitors.

For reactions of small molecules in the gas phase, reaction paths can be determined as MEP
on the total PES. The TS on the PES of the entire system plays the most important role for
the rate. The free energies of the reactant and the TS can be determined with the harmonic
approximation, based on QM calculations of frequencies.

For reactions in solution and in enzymes, the TS on the PES of the entire system only
represents one of many such states, because there are many degrees of freedom (e.g. for the
solvent and the protein) that are not directly related to the chemical changes but modulate
the shape of PES. In such cases, the progress of a reaction can also often be marked by the
structural changes of a reduced set of atoms, e.g. the solute conformation for solution
reactions or the conformation of the substrate plus certain active site residues for enzymatic
reactions. Quite conveniently, the reduced set of coordinates can be the same as the QM
subsystems. Thus, one can construct the MFEP, a reaction path defined on the PMF of a
reduced set of coordinates [61, 67, 68, 69, 70]. The contributions from the rest of the system
are ensemble-averaged quantities obtained during MD simulations.

Reaction coordinate
Usually defined as a set of geometric or energetic parameters, the reaction coordinate
characterize a reaction as the one-dimensional profile connecting reactants to products. The
choice of the reaction coordinate is critical. It has been shown that the improper choice of a
reaction coordinate can bias the simulation and yield slower convergence [71]. The problem
of an inappropriately chosen reaction coordinate is more severe in simulations using
coordinate driving techniques in which the choice of the reaction coordinate not only
strongly influences the efficiency of sampling the phase space, but also causes technical
difficulties in generating continuous reaction path. In many cases, the determination of the
reaction coordinate is non-trivial, especially for many complicated reactions catalyzed by
enzymes as the changes in specific geometrical quantities (e.g. interatomic distances) might
be stepwise or nonlinearly correlated. Furthermore, the environmental degrees of freedom
may also contribute to the reaction coordinate as dynamic effects [25].
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Reaction path optimization
The mathematical methods for determining reaction path are the same for the MEP on the
total PES as for the MFEP on the PMF surface of the QM subsystem. The classical method
for determining a reaction path is the intrinsic reaction coordinate method in which the
steepest descent path is computed from the TS by following the gradient downhill. This
method is not efficient for macromolecular systems and also requires knowledge about the
structure of the transition state, which is a difficult task without prior knowledge of the
reaction path.

Several algorithms have been developed for the determination of reaction paths for large
systems in which a chain of conformations along the reaction coordinate is simultaneously
optimized. Commonly used methods include the nudged elastic band (NEB) method[72], the
Ayala-Schlegel second order minimum energy path method[73], and the string methods
[74]. Our experience indicates that the NEB method is simple to implement but converges
slowly and has difficulty locating transition states. The Ayala-Schlegel method can converge
to the correct path but its application to large molecular systems is troublesome because it
requires an initial guess that is enough close to the exact path. As an alternative, a quadratic
string method (QSM) was developed in our laboratory which has been shown to yield better
performance than the NEB method [75]. It has also been found that for large systems it is
often important to select a small subset of coordinates as the chemical metric to define the
path length for properly positioning the states along the reaction path [76].

One key component of MEP determination is the minimization of the QM/MM total energy,
in which the QM calculation of energy and gradient is the bottleneck. To reduce the number
of QM energy and gradient evaluations, Zhang, Liu, and Yang first developed an efficient
iterative optimization for such a minimization in which the QM and MM subsystem
optimizations are carried out sequentially, rather than concurrently [14]. The key is to use a
simplified, often QM ESP charge based, energy function during the optimization of the MM
subsystem. Friesner and co-workers introduced a correction term to improve the ESP charge
approximation [20], and a similar method was proposed by Thiel and co-workers [77]. To
improve the ESP charge approximation, Morokuma and co-workers have employed multiple
QM calculations in the MM optimization process, as well as ESP multipoles [78].

Transition path sampling
Instead of classical rate theory that depends on the determination of the TS, the reaction rate
can be determined by the probability ratio of finding successful dynamic reaction paths in
multi-dimensional phase space, following the transition path sampling method [79]. The
simulation of a large scale conformational transition in an enzyme has also been reported
[80]. The major obstacle for the application of this method to reaction processes is the high
computational cost for ab initio QM/MM calculations because a large number of paths must
be sampled to ensure a converged ratio of successful/unsuccessful paths.

Reaction Path Potential based on ab initio QM/MM methods
The calculation of the QM internal energy and QM/MM electrostatic interactions in Eq. (3)
is the bottleneck for QM/MM calculations. In the charge embedding scheme, rigorous
treatment of this term requires a SCF calculation for each different QM or MM
conformation, which is quite costly for ab initio QM methods. It would be desirable if one
can develop an approximate, ab initio-based QM/MM energy function for phase space
sampling and long timescale simulations without the need for SCF calculations.

Lu and Yang developed the ab initio RPP method [81]. The approach involves separating
the QM energy into two components: a QM internal energy and an electrostatic interaction
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energy between the QM and MM subsystems. Each component is then expanded
analytically in terms of both the fluctuations of the QM geometry and the MM electrostatic
potential. The resulting RPP provides a simple, analytic expression for the QM/MM total
energy that is valid in the vicinity of the reaction path.

RPP approximates the electrostatic term as the Coulombic interactions between the QM ESP
charges (and multipoles) and the MM atomic charges, i.e.

(4)

Here, Qi(rQM, rMM) is the ESP fitted charge of QM atom i, and qj is the point charge of MM
atom j from the MM force field. Whereas the MM atomic charges are constant in common
force fields, the QM electrostatic charges are clearly dependent on both rQM and rMM. The
QM internal energy, E1(rQM, rMM), is then defined as

(5)

This QM internal energy is the energy of the QM system in the presence of the electrostatic
potential of the MM atoms, minus the Coulombic interactions between the QM ESP charges
and MM atomic charges. The QM energy also depends on both rQM and rMM. Obviously,

the term  captures the essence of the electrostatic interactions between the
QM and MM subsystems. The significance of this QM ESP charge expression is that it
provides us great flexibility as the interactions are now expressed in a classical pairwise MM
form. To improve the accuracy of ESP fitting, we can add electrostatic multipoles to each
atom or bond.

The most important advantage of this separation scheme is that we can now introduce
polarization effects into both terms as high-order perturbations. In the RPP model, the QM
ESP charges are assumed to respond linearly to changes in both the external electrostatic
potentials at the atomic sites and the geometries of the QM system, as

(6)

where  is a reference ESP charge for QM atom i. The QM reference charges are

determined at a given QM geometry  and with a given external MM electrostatic

potential  at the position of the QM atoms. After the perturbation of the QM
geometry and the external MM electrostatic potential, the polarized charges are determined
through two response kernels, namely [81, 82],

(7)

and [81]
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(8)

The second kernel can now be computed analytically with a recently introduced ESP fitting

method[83]. Just as in the polarization effects introduced in the term , we
also expand the term E1(rQM, rMM) in a similar manner [81, 62].

The approximate QM/MM total energy becomes

(9)

It has been shown that this linear-polarization QM ESP charge model yields quite accurate
energetics for reaction systems, given a good initial reference state [81, 61]. It is even
possible to further simplify this QM ESP charge model by truncating the polarization effects
of the QM ESP charges [61, 62]. Applications with these simplified QM ESP charge models
in the ab initio QM/MM simulation of reaction processes have been successful.

QM/MM FREE ENERGY
Classical alchemical free energy simulation

Many methods have been developed for computing the free energies of important chemical
processes on the basis of classical statistical simulations. Most popular methods include free
energy perturbation, thermodynamic integration (TI), umbrella sampling, slow growth, and a
recently developed fast growth method [84]. If one is only interested in equilibrium states, a
classical free energy simulation method might be employed together with a so-called
“alchemical” molecular transformation technique to provide the free energy difference
between stationary states of a reaction process[85].

It has been pointed out that the direct application of TI and FEP with a QM/MM energy
function requires special care for handling the end states [86]. In classical MM force fields,
the energy functions are continuous and (almost always) infinitely differentiable with
respect to the variables. As a result, without any difficulty one can create nonphysical states
of the molecule, e.g. partial existence of an atom or a group, in the simulation process.
Nonetheless QM methods in general do not easily allow a direct smooth process of creating
or annihilating atoms. To overcome this difficulty, many methods have been developed
including mixing of energy functions [9, 86], utilization of a reference state [87, 88, 89, 90],
and dual-transformation [91].

Compared to their critical roles in the MM simulations, classical alchemical free energy
simulations are less popular in the QM/MM simulations of the condensed phase reactions.
Two exceptions are the calculations of residue pKa of protein molecules [92] and redox
potentials [86, 89, 60].

PMF calculation along a reaction coordinate
When information regarding the reaction rate or the TS structure is sought, explicit
modeling of the reaction process becomes necessary. Given an appropriate reaction
coordinate, sampling-based free energy calculation methods can be applied to the study of
reaction processes if the QM calculations are fast enough, as in semiempirical QM methods.
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In such cases, the system is driven from one state to another along the reaction coordinate
and the PMF is computed during this driving process.

Umbrella sampling method computes the PMF by improving the sampling of high-energy,
low-probability regions of phase space. Usually the results of umbrella sampling are
processed with the weighted histogram analysis method, which provides reduced statistical
error. Recently, Thiel and co-workers have developed an “umbrella integration” method
which combines the advantages of umbrella sampling and thermodynamic integration [93].

Parrinello and co-workers [94] have developed a meta-dynamics method in which the
energy surface of the target system is gradually modulated to allow enhanced sampling of
rare conformational states.

Slow growth is in fact a variant of TI. Instead of sampling a few fixed points on the reaction/
transformation path and computing a converged free energy gradient for each point, slow
growth slowly drives the system from one state to the other using a very small step size. The
work exerted during this process is summed up to yield an upper-bound estimate of the free
energy difference between the two states. The reverse process yields a lower-bound
estimate. Together, the results of multiple forward and backward processes yield a good
estimate of the free energy difference [95]. When the slow growth method is combined with
the coordinate driving technique, the free energy change with respect to the reaction
coordinate may be obtained.

In analogy to the slow growth method, a “fast growth” method [84] has been developed and
has been used to simulate chemical reactions [96, 97]. Unlike the slow growth method in
which each simulated work is an estimate of the true free energy, in fast growth the
ensemble averaged work is the upper-bound (or lower-bound for the reverse process)
estimate of the true free energy. This estimate slowly converges to the true free energy upon
the convergence of the ensemble. Since each individual simulation is often only in pico-
second timescale range, ab initio QM/MM simulations at this timescale might be possible.
However, the main drawback of the fast growth method is that it requires many simulations
to yield a good estimate of the free energy, which always possess a large amount of
uncertainty [98].

It is important to realize that the phase space sampling methods based on PMF calculation
along a reaction coordinate usually require converged sampling, and of course prior
knowledge about the reaction coordinate. Typically, this method is affordable for
semiempirical QM/MM methods. As for ab initio QM/MM, few simulations have been
reported[99, 62]. With the steady improvement of computer speed, direct sampling methods
may play more important roles in the reaction simulations.

Aimed to reduce the costs of ab initio QM calculations, two methods have been developed
utilizing the information about the reaction coordinate and path. Jorgensen and co-workers
have developed a QM-FE method, in which the reaction path optimized for gas-phase
reaction process is used to carry out free energy simulation in condensed phase [35].
Warshel and co-workers have developed a QM(ai)/MM method, the key of which is that the
sampling and free energies are first computed with a simplified EVB potential, and then
corrected to ab initio QM level with FEP combined with the linear response approximation
[87, 90].

QM/MM-FE
Realizing the importance of the reaction path, Yang and co-workers have devoted much
effort into developing reaction path optimization and free energy calculation techniques
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based on ab initio QM/MM methods [14, 61, 62]. The first method, termed QM/MM-FE (or
QM/MMFEP) [14], is carried out in two stages: optimization of the reaction path and
calculation of the free energies for the path.

The reaction path determination has been designed as a sequential optimization process. To
exemplify the advantages of this sequential approach, let us first examine the situation
where the QM and MM degrees of freedom are optimized concurrently. In this case, each
change of the QM and/or MM geometries will require a new QM evaluation of the energy
and gradient. While the energy and gradient calculation is computationally inexpensive for
semiempirical QM methods, it is expensive for ab initio QM methods. As it usually takes
hundreds to thousands of minimization steps to obtain an adequately converged structure for
the whole QM/MM system, the cost for ab initio QM calculations would be prohibitive.
Inspired by the fact that in certain types of optimization problems it may be desirable to
break up a process into an iterative sequence of two or more steps, we perform the
optimization as follows: (i) optimize a subset of the system, A, with the rest of the system,
B, held constant; (ii) optimize B with A fixed according to the results obtained in step (i).
Thus in the QM/MM-FE method, instead of a concurrent optimization of the QM and MM
degrees of freedom, an iterative, sequential optimization protocol was developed that has
proven to be effective in reducing the number of QM energy and gradient evaluations. The
main idea is that, starting from a given structure of the QM/MM molecular system, the
optimization is separated into two processes. One first optimizes rQM with fixed rMM, which
is at an approximate minimum in the MM degrees of freedom. Afterwards, the conformation
of the MM subsystem, rMM, is optimized with fixed rQM. To reduce the number of QM

evaluations, an approximate QM/MM total energy, , is used for the MM
optimization. In this approximate QM/MM total energy, the electrostatic interactions
between the QM and MM atoms are approximated by the Coulombic interactions between
the point charges of the MM atoms and the ESP fitted charges of the QM atoms. This
process is then iterated until convergence, which is normally achieved within a few
iterations (often less than 10). Expressed as an algorithm, the ab initio QM/MM-FE
optimization procedure is as follows:

1. Initiate a structure of the QM subsystem , and set the cycle number n = 0;

2. Increase the cycle number n = n + 1;

a. Carry out an MM minimization with QM atoms fixed at 

(10)

b. Carry out a QM optimization with MM atoms fixed at 

(11)

3. Go to Step (2) until converged

This process can be carried out individually for a single point on the reaction path, e.g. the
reactant and product states, or simultaneously for a chain of conformations along the
reaction coordinate with a chain-of-states optimization algorithm such as the NEB method,
the Ayala-Schlegel method, or the superlinearly convergent QSM.

Hu and Yang Page 11

Annu Rev Phys Chem. Author manuscript; available in PMC 2013 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Once the reaction path is determined, a FEP simulation with the approximate QM/MM

energy function  can be carried out for the optimized QM conformations on the
reaction path, similar to the QM-FE method [35]. The validity of QM/MM-FE has been
confirmed by other laboratories [100, 101, 102].

QM/MM-MFEP: Path optimization on a QM PMF surface
The development of the QM/MM-FE method has provided a viable way for computing
accurate free energies of reactions in enzymes. But one limitation has hampered the
application of this method to the simulation of solution reactions. In the QM/MM-FE
method, the reaction path is optimized on the QM/MM PES, starting from a given initial
structure. As a result, the optimized path is influenced by the choice of the initial
conformation. In many enzyme-substrate complexes, the dependence of the initial
conformation may not cause problems because the active site of the enzyme is usually
protected from bulk solvent. When the reaction occurs in solution, or the enzyme active site
is exposed to solvent, this dependence will be significant. The rapid exchange of solvent
molecules can also cause difficulty for the convergence of the path optimization process.
Similar observations have been made for the enzymatic reactions in which the enzyme
undergoes significant conformational changes during the reaction process.

To overcome this problem, the QM/MM-MFEP method has been developed in which the
reaction path is optimized on the PMF surface of the QM degrees of freedom, instead of the
total energy surface [61]. Within the QM/MM context, the thermodynamics of the entire
system is simplified by defining the PMF of a QM/MM system in terms of the QM
conformation as

(12)

where E(rQM, rMM) is the total energy of the entire system expressed as a function of the
coordinates of the QM and MM subsystems, rQM and rMM, respectively. The gradient of the
PMF, also known as the free energy gradient, is then

(13)

which appears conveniently as the ensemble average of the gradient of the QM atoms,
obtained from MD simulations of the MM atoms. In practice, we used the free energy
perturbation method and its associated gradient, instead of Eqs. (12-13) [61, 62].

Our construction of the PMF and PMF gradient is different from other work in terms of the
variables of the PMF. For reasons we have discussed in the section of reaction coordinates,
we allow all of QM degrees of freedom to contribute to the reaction coordinate whereas
others have often used one or a few predefined geometric terms. In the latter case, a
Jacobian term may be required to correctly include the effects of geometrical constraints on
the reaction coordinates.

Because the QM degrees of freedom are coupled with the MM degrees of freedom, a
straightforward minimization algorithm requires each step in the optimization of the QM
conformations to be associated with converged sampling of the MM ensemble. In this
optimization scheme, every QM optimization step to a new conformation on the PMF
surface is followed by a course of MD sampling of the MM conformations, usually with a

Hu and Yang Page 12

Annu Rev Phys Chem. Author manuscript; available in PMC 2013 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



simulation time of 100 ~ 1000 ps. Such extensive MM sampling is required so that the QM
PMF and gradient obtained are sufficiently accurate for successful structure and reaction
path optimization of the QM subsystem. Thus, this method is less efficient in practical
simulations. First, 100 ~ 1000 ps of MD simulations on a system of ~ 10,000 atoms is
expensive. Second, such MD simulations must be repeated for each step in the QM
optimization process. The intrinsic fluctuations and limited simulation times for the MD
sampling may also contribute to slow convergence in the path optimization if a new MD
simulation is always begun immediately after every QM geometry optimization step.

Sequential sampling and optimization for QM/MM-MFEP method
As in the QM/MM-FE method, to improve the efficiency of the QM/MM-MFEP method, we
can reformulate the concurrent optimization of the QM subsystem and the statistical
sampling of the MM subsystem into an iterative step of sequential MD sampling of the MM
system at a fixed QM structure and subsequent optimization of the QM subsystem within the

fixed MM conformational ensemble [62]. The approximate energy function ,
introduced in the QM/MM-FE method and well described in the RPP model, plays a crucial
role in reducing the number of QM energy and gradient evaluations required. In the MD

sampling of the MM conformations,  acts as a reference sampling energy
function to drive the motion of the MM atoms without performing a QM calculation at every
MD step. In the optimization of the QM subsystem within the fixed-size MM
conformational ensemble, it can be used to avoid QM calculations associated with each new
conformation in the MM ensemble.

The algorithm of the QM/MM-MFEP method can be described as follows.

1. Initiate a structure of the QM subsystem, , and set cycle number n = 0.

2. Increase cycle number n = n + 1;

a. Carry out MD sampling of the MM ensemble with QM atoms fixed at

(14)

where τ is the step of the MD simulation, N is the number of MD steps,

the reference QM structure is derived from , the QM geometry from
the previous iteration.

b.
Carry out a QM optimization with the MM ensemble fixed at 
where the object of minimization is the QM PMF (or QM free energy) in
the n-th iteration given by a finite sum representation of free energy
perturbation as

(15)

and the corresponding gradient with respect to the i-th QM coordinate is
also given by the finite sum
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(16)

where

(17)

which accounts for the fact that the samples were obtained from a fixed
MD simulation of a reference state. Eref and Aref are the reference energy
function and reference free energy in the free energy perturbation
expression.

c. Update the reference structure based on the minimized QM structure .

3. Go to Step (2) until converged.

The key feature of our new QM/MM-MFEP algorithm is the iterative QM optimization in a

fixed MM ensemble, Eq. (14) above. Because the MM ensemble, , is

finite and remains fixed throughout the course of the QM optimization for , one can
obtain the precise PMF, Eq. (15), and its gradient, Eq. (16), defined within this ensemble.
This circumvents the difficult and costly convergence problems associated with MM
sampling. The optimization of the PMF can be carried out efficiently using classical

numerical optimization tools. Each optimized QM structure  in turn provides the next

reference QM structure and its energy function, , for the next round of MD sampling of
the MM conformations. Each optimized QM structure should improve on the previous one
by providing a better QM geometry and corresponding ESP charges for the MM simulation
in the next cycle.

The use of a finite, fixed-size ensemble of MM conformations improves the utilization of the
MM conformations and avoids repetitive MD sampling at each step of the QM structure
optimization. Thus, instead of performing excessive MD samplings that likely have
significant overlap with each other, a few cycles of MD simulation are sufficient to yield
converged results in the current method. Applications have shown that our QM/MM-MFEP
method converges as efficiently as the QM/MM-FE method.

BEYOND THE CLASSICAL TRANSITION STATE THEORY
The classical dynamic effects beyond the classical TS theory is described in the transmission
coefficient γ(T), the determination of which requires an MD simulation starting from the TS
[25]. Main quantum mechanical effects can be included in the quantum PMF calculations.
There are only several ab initio QM/MM studies reported so far. Cui calculated γ(T) for the
proton transfer reaction catalyzed in TIM using variational transition state theory [103].
Wang et al. used the reaction path potential, which enables rapid evaluation of the potential
energy around the reaction path, to calculate γ(T) [104] and also the quantum PMF with a
centroid path integral approach [105]. When the reaction path and its TS captures the correct
physics, TS theory is a good approximation, and γ(T) is nearly 1 [3, 103, 104, 105]. Wang’s
calculations on TIM resulted in kinetic isotope effects in excellent agreement with
experiments and revealed that the main QM effect is in the zero-point energy.
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APPLICATIONS OF AB INITIO QM/MM METHODS
Many enzymatic reaction processes have been modeled by QM/MM methods, of which
most were investigated with semiempirical QM/MM methods. As only a small number of
cases have been studied using ab initio QM/MM calculations, the number of applications of
ab initio QM/MM free energy simulations are even fewer because of the difficulty of
combining ab initio QM with statistical sampling. A comprehensive list can be found in Ref
[8]. In this section, we briefly review several enzyme systems whose mechanisms have been
scrutinized by ab initio QM/MM, some in combination with free energy simulation.

The enzyme orotidine 5′-monophosphate decarboxylase (ODCase) is one of the most
proficient enzymes known and catalyzes the decarboxylation of orotidine 5′-monophosphate
without any cofactor or metal ions. The solution reaction has been modeled with a
continuum solvent model [106] which supported a carbene intermediate state. Semiempirical
simulations have supported the direct decarboxylation mechanism [107, 108]. However the
reaction barriers computed in later DFT simulations, including a combined CPMD and fast
growth simulation, were still higher than the experimental measurement [109, 110, 97].

The enzyme 4-oxalocrotonate tautomerase (4OT) catalyzes the conversion between 2-oxo-4-
hexenedioate and 2-oxo-3-hexenedioate. Cisneros et al. have carried out extensive QM/MM-
FE simulations on the reaction mechanism and identified the absence of a catalytic acid and
the role of an ordered water and the protein backbone in the catalysis. [16, 111, 112, 113]
Thiel and co-works have also studied the mechanism of the enzyme and its mutant [114].

One enzyme that has undergone extensive characterization is triosephosphate isomerase
(TIM), which catalyzes the reversible isomerization of dihydroxyacetone phosphate (DHAP)
to D-glyceraldehyde-3-phosphate. The mechanism has been examined by semiempirical
QM/MM methods [115, 116]. Later, several DFT-based QM/MM studies were been carried
out [14, 117, 17, 118]. With a higher resolution structure of the enzyme, Friesner’s group
modeled the reaction process and obtained results in good agreement with experimental data
[119]. The correlation between the reaction and the loop motion has been explored in an
interesting way in which the QM/MM simulation is employed in combination with a loop
structure prediction algorithm.

The reaction of catechol O-methyltransferase has been simulated by Kollman and co-
workers with ab initio QM/MM and QM-FE methods [120, 121, 122]. Rod and co-workers
also simulated the reaction mechanism with a recently developed quantum mechanical
thermodynamic cycle perturbation method [101].

Enolase has been simulated by both semiempirical and ab initio QM/MM methods [123, 15].
Chorismate mutase catalyzes the Claisen rearrangement from chorismate to prephenate. In
addition to many semiempirical QM/MM simulations, recently it was modeled by an ab
initio QM/MM method with optimization of reaction path [124, 125, 126]. For its medicinal
significance, β-lactamase has been explored by many groups. Different reaction steps have
been examined in detail [127, 128, 129]. Acetylcholinesterase has been simulated by QM/
MM-FE with an emphasis on the effects of conformational dynamics on the reaction process
[130, 131]. cAMP-dependent protein kinase [132, 133], histone lysine methyltransferase
SET7/9 [134, 135, 136], and bacterial peptide deformylase [137, 138] have been studied by
the QM/MM-FE method. The reaction mechanism of methane monooxygenase has been
explored in detail by Friesner and co-workers[139, 140], as well as the P450cam pathway
[141].
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A large class of protein and enzymes have been investigated with the CPMD/MM method,
including ion channels [142], aspartic protease [143], HIV-1 protease [144], and caspases
[145].

FUTURE PERSPECTIVES
An important issue in modeling enzyme catalysis is the role of conformational dynamics.
Special interest has been raised recently for the contribution of conformational dynamics to
enzyme catalysis [27]. For the study on this topic, a great deal of attention must be focused
on two considerations: the timescale of the conformational dynamics and the coupling
scheme between the enzyme dynamics and the reaction process. As agreement has been
reached that the transmission coefficient in the transition state rate equation is affected by
the stochastic dynamics of the enzyme but its variation has a small effect on the reaction rate
in general [3], the challenge is to understand if/how the collective conformational dynamics
of the enzyme has an impact on the reaction rate [27].

In the current popular form of the QM/MM approach, MM force fields are not polarizable.
As efforts are underway to develop polarizable MM force fields, schemes have been
proposed to combine QM with polarizable MM force fields [146, 147, 148, 149, 150], but
more testings might be needed before a specific scheme is employed. In two scenarios this
issue will become more complicated. One is the mutual polarization at the QM/MM
boundary; the other is the charge transfer effect between the QM and MM atoms. Generally,
the implementation and testing of polarizable MM force fields would be one immediate
important topic in the QM/MM methodology development.

CONCLUSION
With the recent development of ab initio QM/MM free energy simulation methods, realistic
and accurate simulations of reactions in solution and in enzymes become feasible.
Application of such methods will provide comprehensive understanding of reactions in
solution and in enzymes.
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Acronyms

QM quantum mechanics

MM molecular mechanics

FEP free energy perturbation

MFEP minimum free energy path

PMF potential of mean force

TS transition state

MD molecular dynamics

DFT density functional theory

RPP reaction path potential

ESP electrostatic potential
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MEP minimum energy path

SCF self-consistent field

PES potential energy surface
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