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Euclidean wormholes—geometries which connect disconnected boundaries—present a challenge to a
standard quantum mechanical interpretation of the theory. One potential resolution is that the gravitational
path integral computes the ensemble average of many theories. The connected topologies contribute to the
simplest possible observable: the free energy, which is computed using a replica trick. This is distinct from
the replica trick used to compute entanglement entropies and appears in the computation of any extensive
quantity. We argue that both JT gravity and a simplified version of CGHS admit a regime where the
contribution of connected replica wormholes to the free energy is larger than that of disconnected
topologies. In both theories we find evidence of replica symmetry breaking, which is reminiscent of the
behavior of certain spin glasses. We discuss possible insights about ensemble averaging in gravity from this
perspective.
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I. INTRODUCTION

The process by which information escapes from the
black hole interior is a pivotal question in the study of
quantum gravity. Recent work has brought to light two
important points on this front. The first is that at least in
some gravitational models the Euclidean gravitational path
integral (GPI) exhibits traces of unitarity: a GPI calculation
of the entropy of the Hawking radiation reproduces the
unitary Page curve [1–9]. This hinges crucially on the
contribution from Euclidean replica wormhole saddles that
connect disconnected boundaries. The inclusion of such
wormholes implies that absent some further UVeffects, the
GPI would not factorize across disconnected boundaries
[10–14]. In this case, the GPI cannot be interpreted as
computing the partition function of a standard quantum
mechanical theory. One possible explanation is that the GPI
should instead be interpreted as computing the ensemble
average of many different quantum theories (see also
[15–18] for related discussions). Another possibility is
that additional contributions should be included, which
would lead to the expected factorization of the Euclidean
partition function on disconnected surfaces.

Our goal in this paper is to understand more systemati-
cally how Euclidean wormholes influence the physics of
the GPI. We will put aside for the time being any further
potential UV effects (such as certain doubly nonperturba-
tive effects in JT gravity) which might be necessary to
describe the dual of an individual quantum theory. We will
investigate the contribution of Euclidean wormholes to a
more general—and in a sense simpler—class of observ-
ables than the entropies described above. We find that,
completely independently of any considerations of black
hole physics, these wormholes make important (and appa-
rently indispensable) contributions to the dynamics of
the theory.
To understand how Euclidean wormholes contribute, let

us imagine computing a Euclidean GPI where we sum over
geometries with a particular choice of boundary B:

PðBÞ≡
Z
∂M¼B

Dge−S: ð1:1Þ

We will take B to be a connected surface, so this is usually
interpreted as giving the gravitational computation of a
partition function ZðBÞ. One can also consider the integral
over geometries with boundary Bm ¼ B ∪ … ∪ B:

PðBmÞ≡
Z
∂M¼Bm

Dge−S: ð1:2Þ

If Euclidean wormholes contribute, then PðBmÞ ≠ PðBÞm
and the resulting partition function (or, more generally,
correlation functions) do not factorize. One potential
interpretation is that the GPI computes ensemble averages:
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PðBÞ ¼ ZðBÞ; PðBmÞ ¼ ZðBÞm; ð1:3Þ

where the overline denotes the average over a family of
unitary quantum theories and ZðBÞ is the partition function
of a member of this family.1 Here we will remain agnostic
on whether this ensemble average is genuinely a feature
of the gravitational theory, or whether it merely appears as
an approximate contribution to the low-energy effective
description of some UV-complete theory. Nevertheless, we
will continue to interpret the GPI as an ensemble average,
bearing in mind that this interpretation may be valid only in
some effective description. We will revisit these issues in
more detail in Sec. VI.
Our first observation is that if Euclidean wormholes

contribute to the GPI, then they should contribute to even
the most basic observable of the theory: the free energy
F ¼ −T lnZ evaluated at a particular temperature T. In
particular, let us imagine computing the free energy via a
GPI, where T enters through the choice of B (for example,
in a two-dimensional theory of gravity, B is a circle of
length β≡ 1=T). Naïvely, of course, one might try to
compute it by simply taking

F ¼ Fann ≡ −T lnPðBÞ ¼ −T lnZðBÞ: ð1:4Þ

This, however, is in tension with the ensemble interpreta-
tion: since ZðBÞ involves an integration over the random
variables defining a particular instance of the ensemble, we
may interpret ZðBÞ as the partition function of a theory in
which the random variables themselves are permitted to
fluctuate and come into equilibrium. In condensed matter
systems, the free energy Fann defined above is therefore
interpreted as an annealed free energy. Instead, what one is
really interested in is the quenched free energy, in which
the random variables defining a particular instance of the
ensemble are not allowed to equilibrate. In other words, the
free energy F ¼ −T lnZðBÞ is computed in a particular
instance of the ensemble, and then the average is taken:

F̄ ¼ −TlnZðBÞ: ð1:5Þ

In general the annealed and quenched free energies will be
different. Indeed, from the gravitational point of view one
might expect that lnZðBÞ ≠ lnZðBÞ whenever Euclidean
wormholes are present in the theory, for the same reason
that Z̄m ≠ Zm.
In order to understand exactly how Euclidean wormholes

contribute to (1.5), one needs to compute F̄ from the GPI
using a replica trick that involves considering the GPI onm

copies of the boundary B and then analytically continuing
to m ¼ 0. This replica trick is distinct from the one that is
employed to compute the von Neumann entropy (which
instead considers the GPI defined by an n-sheeted boun-
dary manifold and then continues to near n ¼ 1), and a
completely consistent calculation of entanglement entropy
must implement both replica tricks. This version of the
replica trick will be reviewed in Sec. II and is common in
the condensed matter literature, especially in the study of
spin glasses. In fact, although we have focused on the free
energy, this new replica trick will apply to the computation
of any extensive observable. For example, in the calculation
of the Renyi entropy Sn of a pure state from the GPI in [5],
the result vanishes to leading order only if this additional
replica trick is not implemented: the Renyi entropy van-
ishes identically only when the calculation correctly imple-
ments both replica tricks.
This additional replica trick means that F̄ becomes sen-

sitive to the contribution of wormholes connecting the
replicas and leads to the conclusion that it is not consistent
to simultaneously interpret PðBÞ as computing an ensemble
average and to compute the free energy (or more generally,
any extensive obervable) without including contributions
fromEuclideanwormholes. If the free energy computation is
dominated by the disconnected topology, then the ensemble
averaging leaves no visible footprint, and the quenched free
energy coincides with the annealed free energy: F̄ ≈ −
T lnPðBÞ. However, if in some regime replica wormholes
contribute nontrivially to F̄, then ensemble averaging is
important for the computation of any observable in that
regime. Failure to properly compute the free energy via the
replica trickabovewill erasesubtlesignaturesof theensemble.
Of course, the skeptical reader may be concerned that

replica wormholes might never actually make an appreci-
able contribution to F̄, at least in those regimes in which we
have some control over the gravitational theory. Indeed,
although it has now been verified that replica wormholes
are important in the study of black hole entropy, it need not
follow that such wormholes will be important in the
computation of F̄.
To address this potential concern, in Secs. III and IV we

compute the free energy in two different models of two-
dimensional (2D) gravity.We find that the naïve calculationof
theannealed freeenergyFann exhibitspathologicalbehaviorat
a sufficiently low temperature. Specifically, it is nonmono-
tonic with temperature, implying a negative thermodynamic
entropy S ¼ −∂F=∂T. We then use the replica trick to
investigate thecontributionof replicawormholes to F̄, finding
that this contribution becomes larger than that of the dis-
connected topologywhen theannealed free energy exhibits its
unphysical behavior. The inclusion ofwormholes ameliorates
the pathological behavior of the free energy at low temper-
ature, at leastwithacertain implementationof the replica trick.
The gravitational systems that we consider are dCGHS

[23,24] and JT gravity [25,26], and importantly we

1The details of the ensemble and how it is computed will
depend on the gravitational theory. In a specific case such as JT
gravity, we interpret ZðBÞ as Tre−βH where H is a random
Hermitian matrix over which we average to get ZðBÞ [19]; see
[20–22] for somewhat similar examples in one higher dimension.
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compute the free energy using the full GPI (computed

for dCGHS in [27] and JT gravity in [19]), rather than a
saddle-point approximation. In both models, we find that
replica wormholes substantially change the behavior of the
free energy at a sufficiently low temperature. Interestingly,
in JT gravity, we find that the temperature at which the
pathological behavior of the disconnected free energy
manifests, and the temperature at which contributions
from replica wormholes dominate, both scale as e−2S0=3

(where e−S0 controls the JT gravity genus expansion). Since
the gravitational theory is under control only for large S0,
one might be concerned that the contribution of the replica
wormholes happens in a regime of the theory in which we
have no perturbative control. In fact, working at large S0 but
with Te2S0=3 of order unity puts us in the so-called Airy
limit, where the system is controlled by the universal
behavior of the edge of the classical density of eigenvalues
ρ0ðEÞ.2 In this limit, the genus expansion can be summed,
providing a handle on doubly nonperturbative corrections
(in S0). We find that these corrections are unimportant in
part of the regime where replica wormholes dominate, so
we can conclude that they genuinely do contribute even
when doubly nonperturbative corrections do not. This story
is entirely analogous to the replica wormholes narrative in
the context of black hole evaporation: some parameter k
parametrizing the entropy of matter must become non-
perturbatively large in S0 in order for replica wormholes to
dominate, and this transition happens right at the edge of
validity of the semiclassical approximation. In our context,
the parameter that must become large for wormholes to
dominate is instead the inverse temperature β.
In an intriguing turn of events, while the replica worm-

holes do mitigate the pathologies in the free energy, we
cannot show that they remove them entirely. We argue that
this is due to the inherent ambiguity in the analytic
continuation that defines F̄. To gain more insight into this
ambiguity, in Sec. V we point out that an extremely similar
phenomenon happens in spin glass systems, where a
quenched disorder can allow for the spontaneous coupling
of replicas used to calculate F̄. In that context, we review
the Sherrington-Kirkpatrick (SK) model of spin glasses
and note that similar to our gravity calculations, at high
temperature the free energy is dominated by a paramagnetic
phase in which the replicas are uncorrelated, while at
sufficiently low temperatures the system enters a spin glass
phase in which the replicas correlate.3 A replica-symmetric
analysis of the spin glass phase exhibits the same sorts of

pathologies that we see in the quenched free energy ofdCGHS and JT gravity; it turns out that in the SK model,
replica symmetry breaking (RSB) is the key structure that
“fixes” the analytic continuation in the replica trick and
gives the correct free energy down to zero temperature.
Motivated by the parallels between spin glasses and our
gravitational results, we conjecture that the same sort of
RSB is needed in the gravitational case to fully capture the
correct behavior of F̄ at low temperature. Importantly, the
RSB that we discuss is notably different from the sort of
RSB ordinarily discussed in the context of gravitational
calculations of Renyi entropies. We make more exploratory
comments about possible parallels between gravity and
spin glasses in Sec. VI, but we also note that our results
should not necessarily be interpreted as indicative of a
literal gravitational spin glass phase.
Relation to prior work: In the context of JT gravity,

preludes of the transition in which we are interested can be
found in analyses of the two-point correlator Zðβ1ÞZðβ2Þ,
which is relevant for studies of the spectral form factor.
For instance, the authors of [28,29] find that at tempera-
tures lower thanOðe−2S0=3Þ, the contribution of the cylinder
topology to this correlator can become larger than that of
the disk; see also [30,31] for the same behavior in non-
perturbative completions of JT gravity, without needing to
work at large S0. See also [32] for an analogous transition
in a Gaussian matrix model. Our purpose here is specifi-
cally to investigate the contributions of connected topol-
ogies to the quenched free energy via the replica trick
for lnZ.
While we emphasize that we do not claim a bona fide

spin glass phase in JT gravity, the behavior is suffi-
ciently similar that further comment is warranted given
recent studies on SYK. These investigations show that
SYK does not exhibit a spin glass phase; that is, a
saddle-point analysis of the replica trick in the large-N
limit (see e.g. [33,34]) indicates that no saddles corre-
lating different replicas dominate the correlators Zm at
any temperature [33,35–43]. Here we point out that
(i) we do not work in a saddle-point approximation, and,
in fact, we expect that the behavior we study would be
invisible in such a limit; and (ii) JT gravity is only dual
to a low-energy regime of SYK, and as shown in [39]
an appropriate IR limit of SYK can exhibit a different
phase structure than the full SYK system. Hence there is
no tension with our results.
More generally, attempts to model spin glasses holo-

graphically, such as [44,45], typically manually turn on a
correlation between the different replica boundaries in
order to induce a spin glass phase transition; this is
analogous to the correlation between replica boundaries
that occurs in computations of the entropy of Hawking
radiation (due to tracing out a subsystem), or to the
coupling of two boundaries in the traversable wormhole
setup of [46,47]. Here we are specifically interested in

2We will discuss subtleties involved in this limit in Sec. IV B.
3We should be quick to note that our gravitational results also

exhibit some important qualitative differences from spin glasses,
notably the fact that we need to go to nonperturbatively low
temperatures to see an exchange of dominance, while the spin
glass phase transition happens at a temperature of order unity and
can be seen in a strictly thermodynamic limit.
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the contribution of replica wormholes to the GPI PðBmÞ
defined by m completely uncoupled boundaries: the cou-
pling happens entirely spontaneously and is an inevitable
consequence of replica wormholes.
On a more tangential note, let us finally point out that

there has been an ongoing discussion of the relevance of
spin glasses to the physics of eternal inflation as well as to
the landscape of string vacua. See e.g. [48] as well as [49]
for an excellent review, and also [50] for more recent work.
In a similar vein, the authors of [51] discussed these topics
in the context of AdS2, and the authors of [52,53] studied a
spin glass phase of black hole microstates (without external
coupling). It would be interesting to explore connections to
our present work.

II. THE REPLICA TRICK FOR lnZ

The purpose of this section is to discuss in more detail
the replica trick necessary for the computation of the free
energy F̄, and more generally the ensemble average of
the generating functional lnZ considered as an arbitrary
function of sources. Since such an average appears in the
computation of Renyi entropies Sn, and hence also of the
von Neumann entropy, we will also discuss the relation to
the replica trick used in the computation of von Neumann
entropy.
The key point is that if the GPI is interpreted as the

ensemble average of a partition function as per (1.3), then it
cannot directly compute the ensemble average of any
extensive quantity, such as lnZ. The replica trick relates
such extensive observables to nonextensive objects via

lnZðBÞ ¼ lim
m→0

1

m
ðZðBÞm − 1Þ ¼ lim

m→0

1

m
ðPðBmÞ − 1Þ;

ð2:1Þ

where Bm denotesm copies of the boundary B and we have
assumed that the pre-average partition function obeys
ZðBÞm ¼ ZðBmÞ; that is, that m copies of the (nonaver-
aged) partition function on the boundary B can equivalently
be expressed as the partition function ofm copies of B [this
is certainly the case if ZðBÞ is the partition function of an
ordinary QFT living on B].
The implementation of this replica trick clearly yields

different behaviors of lnZðBÞ depending on whether
connected topologies contribute nontrivially to PðBmÞ.
In general, we have

PðBmÞ ¼ PðBÞm þ
X

connected
topologies

; ð2:2Þ

where the first term comes from summing over geo-
metries that leave all the replica copies of B disconnected
from one another, while the sum represents integrals
over geometries that connect two or more copies of the

boundary (i.e., replica wormholes).4 We therefore generi-
cally have PðBmÞ ≠ PðBÞm. However, in certain cases one
topological sector may dominate over others. If the dom-
inant contribution is disconnected, then we have

PðBmÞ ≈ PðBÞm: ð2:3Þ

In this case, using (2.1) we see that lnZ ≈ ln Z̄, so the
replica trick has no appreciable effect; in the condensed
matter language used in Sec. I, the quenched free energy
and the annealed free energy approximately coincide. In
particular, we may compute the gravitational free energy by
just taking F̄ ≈ −T lnPðBÞ, as usual. On the other hand, if
a topology connecting multiple copies of B dominates, then
we should expect that

PðBmÞ ≉ PðBÞm; ð2:4Þ

so the quenched and annealed free energies should not even
approximately coincide, and a proper computation of the
gravitational free energy will not coincide with the
annealed free energy: F̄ ≉ −T lnPðBÞ.
Let us now exhibit how the replica trick (2.1) relates to

the one used to compute the von Neumann entropy. This
latter replica trick defines the von Neumann entropy of a
subsystem (say a region R ⊂ B) as a limit of Renyi
entropies,

S ¼ lim
n→1

Sn; ð2:5Þ

where the Renyi entropies Sn are given by

Sn ≡ 1

1 − n
ðlnZðBnÞ − n lnZðBÞÞ; ð2:6Þ

with Bn an n-sheeted geometry consisting of n copies of B
cut along the region R and then cyclically identified along
this cut; see Fig. 1. If R is empty, Bn is just Bn, consisting of
n copies of B.
Suppose we now wish to evaluate the Renyi entropies via

a gravitational path integral, under the interpretation that it
computes an ensemble average of Sn (and hence also of the
von Neumann entropy). Such a computation requires the
ensemble averages lnZðBnÞ and lnZðBÞ, which in turn
require the use of the “extra” replica trick (2.1),

4It is sometimes suggested that the factorization problem of the
GPI can be avoided if either the sum over connected topologies is
supposed to be excluded or somehow it conspires to give a
vanishing contribution to PðBmÞ. Here we adopt the perspective
of [6] that excluding the connected topologies requires a nonlocal
constraint, while having their collective contribution vanish
would require fine-tuning.
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S̄n ¼
1

1 − n

�
lim
m→0

1

m
ðPðBm

n Þ − 1Þ − n lim
m→0

1

m
ðPðBmÞ − 1Þ

�
;

ð2:7Þ

where Bm
n consists of m separate copies of the n-sheeted

geometry Bn, as shown in Fig. 1. A correct calculation of
the von Neumann entropy therefore requires taking the
double limit m → 0, n → 1.
A key distinction to note here is that the m replicated

boundaries Bm
n are completely disconnected; any geometric

connection between them must come spontaneously from
the GPI. On the other hand, when R is nonempty, the
geometry Bn is a single connected geometry, due to the
identification of the n sheets along the cut R. In fact, when
R is the empty set, the Renyi entropies must vanish exactly
(since we are computing the entropy of a pure state); it is
precisely the auxiliary replica trick over m that guarantees
this. To see this, note that if R is empty, Bm

n ¼ Bnm, and
hence

lim
m→0

1

m
ðPðBm

n Þ − 1Þ ¼ ∂PðBnmÞ
∂m

����
m¼0

¼ n
∂PðBm̃Þ
∂m̃

����
m̃¼0

;

ð2:8Þ

so the two terms in (2.7) cancel identically, giving S̄n ¼ 0
for all n. Importantly, the vanishing of the Renyi entropy is
independent of the dominant topology contributing to the
path integral. This should be contrasted with, for example,
the computation of Renyi entropy performed in [5], which
(working in a semiclassical regime) claimed that the
entropy of a pure state vanishes because in that case
the GPI is dominated only by disconnected topologies.
The trouble with that interpretation is that even when the
disconnected topology dominates, the path integral will still
receive subdominant corrections from connected topol-
ogies which would lead to a nonvanishing (but small)
Renyi entropy. The double replica trick makes clear that the
Renyi entropy of a pure state vanishes exactly, and even
when the dominant geometry is a replica wormhole.

Of course, the claim of [5] that (at least in their JT
gravity model) the disconnected topology dominates the
gravitational path integral in a semiclassical limit when R
is the empty set might lead to a concern: even if replica
wormholes make subdominant contributions to the free
energy, they might never be dominant in a regime in which
the gravitational theory is under control. If so, the extra
replica trick (2.1) will in practice never be necessary for
computing leading-order effects. To address this concern,
we will now explore explicit examples of gravitational
models in which connected saddles do make dominant
contributions when the theory is at least somewhat under
control, focusing specifically on computations of the free
energy F̄.

III. FREE ENERGY IN dCGHS

We begin the investigation in gravity with a variant of
standard CGHS dilaton gravity [23], introduced as thedCGHS model in [24] (following [54]). This model is given
by the Euclidean action

S ¼ κ

2

Z
d2x

ffiffiffi
g

p ðΦR − 2Ψþ 2Ψεμν∂μAνÞ þ S∂ ; ð3:1Þ

where S∂ is a boundary term. The equation of motion for Aμ

fixes Ψ to be constant, and it is this constant value that sets
the temperature of black hole solutions, while the equation
of motion forΦ sets R ¼ 0. In fact, even in the path integral
the integration over Φ means that only strictly flat geom-
etries contribute. Hence the only contributions can come
from the disk or the cylindrical topology, corresponding to
one and two boundaries, respectively; see Fig. 2. It is this
simplification that will allow us to make definitive state-
ments about the structure of the replicas and free energy in
this model, without needing to worry about nonperturbative
effects arising from higher-genus contributions. This sec-
tion is therefore a warm-up for the JT gravity calculation in
Sec. IV, which is complicated by contributions from all
topologies.

FIG. 1. A computation of the Renyi entropy (2.7) from the GPI requires an additional replica trick, involving computing the GPI with
the boundary Bm

n shown here. Each of the columns is an n-sheeted geometry Bn constructed by slicing n copies of B along the region R
and then identifying these copies cyclically along the cut. Bm

n consists ofm copies of this multisheeted geometry. The disorder-averaged
von Neumann entropy is computed in the double limit m → 0, n → 1.
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A. Path integrals in dCGHS

The path integrals of the disk and cylinder in dCGHS were
computed in [27]. For the disk with boundary length β, the
result is5

PdiskðβÞ ¼
2π

β2
: ð3:2Þ

Already we can deduce the need for a phase transition. If
the disk were to dominate the free energy, we would have
F̄ ¼ −T lnPdisk, which is clearly a nonmonotonic function
of temperature: it has a local maximum at Tmax ¼ 1=

ffiffiffiffiffiffi
2π

p
e,

corresponding to a negative thermodynamic entropy
−∂F=∂T when T < Tmax (in fact, the entropy is logarithmi-
cally divergent at T ¼ 0). We might hope that the con-
tribution of the cylinder will rectify this low-temperature
behavior.
To that end, the path integral on the cylinder (each of

whose boundaries has length β) is

PcylðβÞ ¼
2π2

β
: ð3:3Þ

Let us use PmðβÞ to denote the GPI defined by m
boundaries of length β. This path integral receives com-
peting contributions from the disk and the cylinder; the
completely disconnected topology gives a contribution of

PmðβÞ ⊃ PdiskðβÞm ¼
�
2π

β2

�
m
; ð3:4Þ

while the topology that connects m=2 pairs of boundaries
with cylinders (temporarily taking m to be even) gives a
contribution

PmðβÞ ⊃ PcylðβÞm=2 ¼
�
2π2

β

�
m=2

: ð3:5Þ

At temperatures larger than Tc ≡ 2−1=3, the contribution
from the disk topology is larger, while for temperatures
smaller than Tc, the contributions from the cylinder top-
ology is larger. So already at the level of this rough analysis
we see a transition: the high-temperature behavior is
controlled by the disconnected topology, while the low-
temperature behavior is controlled by a connected one.6

Importantly, Tc > Tmax, so the contribution from the
cylinder modifies the free energy in the temperature regime
in which the annealed free energy Fann ≡ −T lnPdisk was
pathological.
Now let us be more thorough and compute PmðβÞ

exactly, therefore attempting to obtain the free energy
via them → 0 limit (2.1). Defining r≡ Pcyl=P2

disk, we have

PmðβÞ ¼ Pm
disk

Xbm=2c

m0¼0

�
m

2m0

�
ð2m0 − 1Þ!!rm0

; ð3:6Þ

where the sum counts contributions from all ways of
connecting an even number 2m0 of boundaries together
via cylinders, the binomial coefficient counts the ways of
choosing 2m0 boundaries from the full set of m, and the
double factorial counts how many distinct ways there are of
connecting those 2m0 boundaries pairwise with cylinder
topologies. Expressing the double factorial as

ð2m0 − 1Þ!! ¼ 2m
0ffiffiffi
π

p Γ
�
m0 þ 1

2

�
¼

Z
∞

0

dtffiffiffiffiffi
πt

p ð2tÞm0
e−t;

ð3:7Þ

we find

PmðβÞ ¼ Pm
disk

Z
∞

0

dtffiffiffiffiffi
πt

p e−t
Xbm=2c

m0¼0

�
m

2m0

�
ð2trÞm0

: ð3:8Þ

The sum can be evaluated using the identity7

Xbm=Mc

m0¼0

�
m

Mm0

�
yMm0 ¼ 1

M

XM−1

j¼0

ð1þ e2jπi=MyÞm ð3:9Þ

(a) (b)

FIG. 2. The only topologies that can appear in the dCGHS path
integral are the disk and the cylinder.

5In the notation of [27] we have chosen units where the
coupling γ (which is related to the boundary value of the dilaton)
has been set equal to one, and where the normalization factor α
which appears in the symplectic form is also equal to 1.

6Because this computation is done using the full path integral,
there is no sense in which we can interpret these as saddles, with
one “dominating” over the other. The point is that both topologies
contribute nontrivially, and for sufficiently large or small temper-
atures one contributes substantially more than the other. The
transition between these two behaviors cannot be expected to be
sharp, of course.

7Equation (3.9) can be shown by expanding the binomials
on the right-hand side and then using the identity for sums of
roots of unity:

XM−1

j¼0

ðe2πji=MÞk ¼
�
0; k ∈ Z and k ≠ 0 ðmod MÞ
M; k ∈ Z and k ¼ 0 ðmod MÞ :
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for any positive integers m and M, resulting in

PmðβÞ ¼ Pm
disk

Z
∞

0

dt

2
ffiffiffiffiffi
πt

p

× e−tðð1þ
ffiffiffiffiffiffiffi
2tr

p
Þm þ ð1 −

ffiffiffiffiffiffiffi
2tr

p
ÞmÞ: ð3:10Þ

To compute lnZ, we want to now continue to m → 0.

B. Continuing to noninteger m

The result (3.10) can naturally be continued to non-
integer m, but it exhibits a curious feature: because the
second term 1 −

ffiffiffiffiffiffiffi
2tr

p
will always become negative some-

where in the region of integration, for noninteger m this
term need not be (and is not) real. Invoking the replica trick
(2.1) at this stage would then yield a complex free energy,
which is manifestly unphysical. Evidently, the obvious
analytic continuation of (3.10) to noninteger m cannot be
the correct one for the replica trick. A more well-behaved
alternative can be obtained by noting the following. For any
analytic function fðzÞ of a complex variable z, let f�ðzÞ be
the function obtained by complex conjugating the Taylor
series coefficients of fðzÞ; then by construction the func-
tion frðzÞ≡ ðfðzÞ þ f�ðzÞÞ=2 is also analytic and is real
whenever z is. If fðzÞ is real when z is a positive integer,
then frðzÞ ¼ fðzÞ when z is a positive integer, and both
fðzÞ and frðzÞ therefore give admissible analytic contin-
uations from the positive integers to general complex z. For
this reason, for the purposes of computing F̄ via the replica
trick we are free to simply use the real part of (3.10) when
m is real, which gives

PmðβÞ ¼ Pm
disk

�Z
∞

0

dt

2
ffiffiffiffiffi
πt

p e−tðj1þ
ffiffiffiffiffiffiffi
2tr

p
jm þ j1−

ffiffiffiffiffiffiffi
2tr

p
jmÞ

− 2sin2
�
πm
2

�Z
∞

1=2r

dt

2
ffiffiffiffiffi
πt

p e−tj1−
ffiffiffiffiffiffiffi
2tr

p
jm
�
:

ð3:11Þ

It may seem that we have pushed the replica trick to a
breaking point. Of course, there was always an infinite
amount of freedom in how to continue the path integral
PmðβÞ from positive integer m to noninteger m near zero,
but the implied hope was that a “natural” analytic con-
tinuation should present itself, and that this continuation
should be the correct one for getting the physically correct
free energy. But the natural continuation of (3.10) gives a
complex free energy, and we had to introduce a rather
ad hoc procedure for modifying the continuation to obtain
(3.11). What prevents us from, say, adding gðTÞ sinðπmÞ to
PmðβÞ with gðTÞ an arbitrary function of temperature, and
therefore getting whatever free energy we want?
This discomfort is well-justified, for there is an even

more serious problem with the continuation of either (3.10)
or (3.11) to general complex m. In order to consistently

interpret PmðβÞ as giving the disorder average Zm of some
power of the partition function, its behavior for purely
imaginary m ¼ iα must be bounded since

jPiαðβÞj ¼ jZiαj ≤ jZiαj ¼ 1; ð3:12Þ
where we have assumed that the disorder average is defined
by a proper probability distribution (i.e., one that is positive
and normalized). But while the terms on the first line of
(3.11) are bounded when m is imaginary, the term on the
second line is not, and indeed it grows arbitrarily large for
large imaginary m. So (3.11) cannot be interpreted as the
analytic continuation to complexm of an ensemble average
Zm with respect to a positive and normalized probability
distribution.
In principle we should therefore look for a different

analytic continuation that is well-behaved for imaginary m
and hope that, say, Carlson’s theorem is sufficient to ensure
uniqueness of this continuation.8 However, the growth of
(3.11) at large real m excludes this possibility. To see why,
note that (3.11) grows faster than exponentially in m at
large real integer m, which can be seen easily by, say,
keeping only the m0 ¼ bm=2c term in the sum (3.6). To try
to prove that the analytic continuation to nonintegermmust
be unique (once we impose boundedness for imaginary m),

suppose we had two different analytic continuations Pð1Þ
m

and Pð2Þ
m , and let us try to show that their difference ΔPm

must vanish. This difference, of course, vanishes on the
positive integers and must also be bounded on the imagi-

nary axis if both Pð1Þ
m and Pð2Þ

m are. To invoke Carlson’s
theorem to conclude that ΔPm must vanish identically, we
therefore only need to guarantee that ΔPm grows no faster
than exponentially in the right half-plane; but this is not a

condition we can enforce via any constraint on Pð1Þ
m and

Pð2Þ
m due to their superexponential growth for integerm, and

hence Carlson’s theorem cannot be invoked.
The ambiguity in finding the “correct” analytic continu-

ation is a substantial obstacle that we will address in much
more detail in Sec. V; it will be interpreted as a signature of
replica symmetry breaking. For the time being, we will
forge ahead by just using (3.11), assuming that the temper-
atures at which the quenched free energy is sensitive to
contributions from the cylinder coincide with the temper-
atures at which the PmðβÞ, and therefore the free energy
obtained from (3.11), are. In proceeding in this way, wewill
be unable to determine what the correct form of the
quenched free energy F̄ actually should be, but we can
still investigate when contributions from the cylinder cause
the quenched and annealed free energies to differ.

8Carlson’s theorem says that if a function fðzÞ is analytic in the
right half-plane ReðzÞ > 0, grows more slowly than sinðπzÞ on
the imaginary axis and no faster than exponentially elsewhere in
the right half-plane, and vanishes on the non-negative integers,
then fðzÞ vanishes identically.
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With this important caveat in mind, the free energy
obtained from (3.11) is

F̄ ¼ −T
�
lnPdisk þ

Z
∞

0

dt

2
ffiffiffiffiffi
πt

p e−t ln j1 − 2rtj
�
: ð3:13Þ

At high temperature T ≫ Tc, r is small, so the second term
is suppressed as OðrÞ and the free energy is controlled by
the disconnected topology. On the other hand, at low
temperature T ≪ Tc, r is large and the integral can formally
be expanded in powers of 1=r, with the leading contribu-
tion given by ð1=2Þ ln r. Hence the behavior of the
quenched free energy is

F̄ ¼ −T
�
2 lnðT=TcÞ þ � � � ; T ≫ Tc

1
2
lnðT=TcÞ þ � � � ; T ≪ Tc

; ð3:14Þ

where the ellipses denote subleading terms of order unity.
At high temperatures, the free energy is the annealed free
energy −T lnPdisk sensitive only to the disk topology,
while at low temperature the leading-order behavior is
modified thanks to the cylinders.
Note that F̄ is still not monotonic in temperature, even

with the cylinder contribution. In particular, while the
cylinder contribution decreases the severity of the loga-
rithmic divergence (in reducing the prefactor of 2 to a 1=2),
it does not eliminate it entirely. As discussed above, since
the calculation of PmðβÞ for integer m was exact and
involved no approximation, the culprit for this unphysical
behavior is the analytic continuation away from integer m.9

This should come as no surprise, as we have already
established that the analytic continuation given by (3.11)
does not behave correctly for imaginary m; clearly it needs
to be modified to remove the pathological behavior entirely.
Nevertheless, the key point is that the replica trick is

required to see that F̄ receives large corrections from the
cylinder topology right around the temperature where the
annealed free energy is badly behaved. Without properly
understanding how the analytic continuation to nonintegerm
is to be performed, we cannot know in precisely what way
these additional corrections modify the free energy; the
analytic continuation given in (3.11) is insufficient to remove
the low-temperature pathology entirely, but we expect that
the correct continuation should give a monotonic free energy

that yields a vanishing entropy−∂F̄=∂T at zero temperature.
We will revisit this issue in Sec. V.

IV. FREE ENERGY IN JT GRAVITY

Wehave seen that the inclusion of connected topologies in
the dCGHS path integral is of paramount importance for the
low-temperature behavior of the free energy. In that model,
the calculation was substantially simplified by the paucity of
two-dimensional flat geometries. We now turn our attention
to a more complex gravitational system: JT gravity.

A. Euclidean wormholes can dominate the free energy

We will first do a preliminary analysis of the role of
Euclidean wormholes in the replica computation of the free
energy, beginning with a brief review of the salient features
of the JT gravity path integral (using specifically the results
of Saad, Shenker, and Stanford [19]). The (Euclidean) JT
gravity action is

SJT¼−
S0
2π

�
1

2

Z
M
Rþ

Z
∂M

K

�
−
�
1

2

Z
M
ϕðRþ2Þþ

Z
∂M

ϕK

�
;

ð4:1Þ
where volume elements are left implied and K is the
extrinsic curvature of ∂M. When ∂M consists of a single
circle, the boundary conditions take the length of ∂M to
be β=ϵ and set the dilaton ϕj∂M ¼ γ=ϵ there; after the
introduction of an appropriate counterterm, the limit ϵ → 0
is understood. For simplicity, we will work in units where
γ ¼ 1; this amounts to working with the dimensionless
rescaled inverse temperature and free energy β=γ and γF̄,
respectively. When ∂M consists of several circles we may
specify boundary conditions separately on each, but for our
purposes it will suffice to take all boundary components to
have the same length β=ϵ.
The path integral over the dilaton fixes the path integral

over geometries to include only those with constant
negative curvature; this space of topologies is of signifi-
cantly richer structure than its flat counterpart and leads to
the organization of the path integral in a genus expansion.
For example, if Pconn;2ðβÞ is the path integral over
geometries that connect two boundary components (both
of which have length β=ϵ), pictorially we have

ð4:2Þ

9Another option, of course, is that dCGHS gravity is itself pathological. But since we are merely using it as a toy model to foreshadow
the same sort of behavior that occurs in JT gravity, our main discussion is not enhanced by considering this possibility.
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Explicitly, the path integral Pconn;mðβÞ over geometries that
connect m boundary components is given by

Pconn;mðβÞ ¼
X∞
g¼0

e−S0ð2gþm−2ÞZg;mðβÞ; ð4:3Þ

where the objects Zg;mðβÞ are

Z0;1ðβÞ ¼ ZdiskðβÞ≡ e2π
2=βffiffiffiffiffiffi

2π
p

β3=2
; ð4:4aÞ

Z0;2ðβÞ ¼
Z

∞

0

bdbZtrumpetðb; βÞ2 ¼
1

4π
; ð4:4bÞ

Zg;mðβÞ ¼
Z

∞

0

�Ym
i¼1

dbibiZtrumpetðbi; βÞ
�
Vg;mðb1;…; bmÞ

if ðg;mÞ ≠ ð0; 1Þ or ð0; 2Þ; ð4:4cÞ

here

Ztrumpetðb; βÞ≡ e−b
2=ð2βÞffiffiffiffiffiffiffiffi
2πβ

p ð4:5Þ

and Vg;mðb1;…; bmÞ are the volumes of the moduli spaces
of Riemann surfaces withm geodesic boundaries of lengths
b1;…; bm (we work in the convention where the normali-
zation α of these volume forms is one, corresponding to
V0;3 ¼ 1). The Vg;m can be computed algorithmically
using, for example, Mirzakhani’s recursion relation [55];
a table summarizing the data for small g andm can be found
in [56].
The genus expansion, as well as the contribution of

topologies that connect arbitrarily many boundary com-
ponents, makes the story for JT gravity substantially more

involved than for dCGHS. Nevertheless, even at this heu-
ristic level we can now see that connected topologies
must be included in, and will upon inclusion significantly
affect, the low-temperature behavior of the free energy:
for example, if we were to only consider the contributions
from the disk topology Z0;1 and the “double trumpet” Z0;2,

the analysis would proceed just as in the dCGHS case, and
we would expect the double trumpet contribution to the
free energy to compete with that of the disk whenever
Z0;2=ðeS0Z0;1Þ2 is order unity or larger. For large S0, this
will occur at temperature T ≲ e−2S0=3, so that at suffici-
ently small temperatures failure to include the connected
topologies yields a result that is manifestly wrong, as
those topologies contribute at least as much as the dis-
connected ones.
This observation raises a potential concern. The param-

eter e−S0 is supposed to suppress the contributions from
higher genus, as well as from topologies that connect more
boundary components. But at low temperature β ≫ 1, the

leading-order behavior of the Zg;m scales as βð3=2Þð2gþm−2Þ,
so contributions from higher genus and more-connected
topologies are controlled by β3=2e−S0. The regime in which
Euclidean wormholes contribute to the free energy there-
fore corresponds to the parametric regime in which we lose
perturbative control of the genus expansion. What do we
make of this?
From the perspective of the Euclidean wormholes, the

story is completely analogous to that of quantum extremal
islands in the computation of the entropy of Hawking
radiation [4,5]. In that case, there is an auxiliary parameter
k parametrizing the entropy of matter fields,10 and replica
wormholes lead to the presence of a quantum extremal
island when k is nonperturbatively large: the Page transition
happens at k ∼ eS0 . In the present context, the inverse
temperature β plays the role of k. On the other hand, from
the perspective of the genus expansion we are justified in
being concerned, because without control of the connected
path integral Pconn;m we cannot expect to make any
substantive claim regarding the contribution of Euclidean
wormholes. Fortunately, the regime we are discussing—
that is, taking S0 large but keeping β3=2e−S0 of order unity
—recovers the so-called Airy case of random matrix
integrals, in which the partition function ZðβÞ is governed
by the behavior at the edge of the spectral density ρðEÞ.
This simplification makes it possible to resum the genus
expansion to include doubly nonperturbative (in S0) effects,
which we can use to assess how well-behaved the genus
expansion is. Before proceeding, it will therefore be useful
to discuss this regime in more detail.

B. The Airy limit

Before diving into the details of the Airy case,11 let us
first do a rough analysis of the behavior of the genus
expansion in the regime β ∼ e2S0=3 where we expect
contributions from Euclidean wormholes to become impor-
tant. Recall that the genus expansion (4.3) is asymptotic,
meaning that it does not converge even when β3=2e−S0 is
small. Nevertheless, as with any asymptotic series, the
partial sums in the genus expansion can be used to bound
the free energy. When β3=2e−S0 is not too small, the genus
expansion can still be “under control” in the sense that the
first few terms in the series (4.3) decrease, so that the partial
sums provide a tight bound on the free energy. To that end,
using (4.4) and the explicit forms of Vg;m found in e.g.
Appendix B of [56], in Fig. 3(a) we plot the annealed free
energy Fann ≡ −T lnPconn;1 (corresponding to the discon-
nected topology free energy −T ln Z̄) for S0 ¼ 7 where we
include topologies only up to genus g ¼ 5. The first few

10In the end-of-the-world brane model of [4], k is just the
number of internal states of the brane.

11We are grateful to Douglas Stanford for comments that led to
the development of this section.
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partial sums of the genus expansion do indeed provide
accurate approximations to the free energy for Te2S0=3 ≳
0.3, which crucially includes a local maximum. This is
suggestive that this maximum should also be present in a
full nonperturbative computation of Fann—but as discussed
above, such a maximum is an unphysical feature of the free
energy, which we expect to be resolved by the inclusion of
connected topologies, indicating that inclusion of the latter
is indeed necessary.
To proceed more carefully, we can, in fact, exchange

the asymptotic genus expansion for an asymptotic low-
temperature expansion with Te2S0=3 fixed, verifying that it
reproduces thebehavior exhibited in Fig. 3. To do so, note that
the Weil-Petersson volume forms Vg;m appearing in (4.4) are
polynomials in the bi, and therefore the Zg;m are polynomials
in β of order ð3=2Þð2gþm − 2Þ, as mentioned above,

Zg;mðβÞ ¼ ðβ3=2Þ2gþm−2
X∞
l¼0

β−lPl;g;m; ð4:6Þ

where (up to various constants) the leading-order termsP0;g;m

are the intersection numbers of Chern classes (more generally,
the Pl;g;m are intersection numbers of the first Miller-Morita-
Mumford class with Chern classes [28,57]; more explicit
expressions can be found in Appendix). Inserting this expres-
sion into (4.3), for certain m the sum over genus can be
performed as described in [28,29] to produce a low-temper-
ature asymptotic expansion; for example, form ¼ 1 we have

Pconn;1ðβÞ ¼
exp ðe−2S0β3=24Þffiffiffiffiffiffi

2π
p

β3=2

× eS0
X∞
l¼0

1

l!

�
β

2π2

�
−l
z̃l

�
β3=2e−S0ffiffiffi

2
p

�
; ð4:7Þ

where the first few z̃lðhÞ are given explicitly in [28]. For
βe−2S0=3 of order unity, this asymptotic expansion is under
control for large β. In Fig. 3(b) we show the annealed free
energy computed using (4.7) for S0 ¼ 7 and find that as
expected, the low-temperature expansion agrees with the
first few partial sums of the genus expansion in the region
Te2S0=3 ≳ 0.3. This allows us to conclude that the unphysical
peak in the free energy at Te2S0=3 ≈ 0.7 cannot be eliminated
by either higher order terms in the genus expansion or by
doubly nonperturbative effects.
In fact, there is more we can say in this low-temperature

limit. Since z̃0ðhÞ ¼ 1, the leading-order term in (4.7) is
given by

Pconn;1ðβÞ ¼
exp ðe−2S0β3=24Þffiffiffiffiffiffi

2π
p

β3=2
eS0 þ � � � : ð4:8Þ

This is precisely the partition function in the Airy case of
random matrix theory and topological gravity,

ZðβÞ ¼
Z

dEρ̄AiryðEÞe−βE ¼ exp ðe−2S0β3=24Þffiffiffiffiffiffi
2π

p
β3=2

eS0 ; ð4:9Þ

where the Airy density of eigenvalues is given by [58,59]

ρ̄AiryðEÞ ¼ e2S0=3½Ai0ð−e2S0=3EÞ þ e2S0=3EAið−e2S0=3EÞ2�:
ð4:10Þ

The leading-order behavior (in e−S0) of ρ̄AiryðEÞ is just

ρ0ðEÞ ¼
eS0

π

ffiffiffiffi
E

p
with E > 0; ð4:11Þ

which is the universal behavior of the leading-order
density of eigenvalues near the edge of the spectrum in

(a) (b)

FIG. 3. The annealed free energy Fann for S0 ¼ 7. (a) From top to bottom, the solid blue curves show the result after including up to
genus g ¼ 0, 1, 2, 3, 4, and 5 in the genus expansion (4.3); the dashed red curve shows the result obtained from the low-temperature
expansion (4.7) truncated to l ≤ 2. (b) From top to bottom, the dashed red curves show the result after including up to l ¼ 0, 1, and 2 in
the low-temperature expansion (4.7); the solid blue curve shows the result obtained from keeping up to g ≤ 5 in the genus expansion
(4.3). The local maximum at e2S0=3T ≈ 0.7 is robust against the inclusion of higher order perturbative as well as doubly nonperturbative
effects.
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the double-scaled matrix models of [19]. Hence the low-
temperature expansion (4.7) can be thought of as an
expansion about the low-energy edge of the spectrum,
with the subleading terms capturing deviations from the
exact form (4.11). Concretely, it corresponds to taking
S0 → ∞ while keeping βe−2S0=3 fixed. The contribution to
Pconn;m from this leading-order low-temperature behavior
can be summed over genus for any m using the results of
[60]; we summarize the relevant results in Appendix, and
the relevant expression for Pconn;m is given by (A10).
The fact that the low-temperature limit in which we are

interested is dominated by the universal behavior (4.11)
means that we may gain some qualitative insights into the
competition between connected and disconnected topol-
ogies by considering particularly simple matrix models. For
example, the Gaussian matrix integral has a leading-order
density of eigenvalues given by the Wigner semicircle

ρ0ðEÞ ¼
eS0

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − E2

2a

r
; with − a < E < a; ð4:12Þ

which recovers (4.11) in the double-scaling limit E →
E − a followed by a → ∞ [61]. The exchange of domi-
nance between connected and disconnected topologies in
the Gaussian matrix integral was studied in [32], where it

was found that the connected correlator ZðβÞ2conn becomes
larger than the disconnected correlator ZðβÞ2 at temper-
atures lower than ∼N−2=3 (or ∼e−2S0=3 using JT terminol-
ogy). So the behavior we are exploring is a general feature
of random matrix models.
The upshot is that the low-temperature regime in which

we are interested is quite well-understood; importantly, the
contributions of higher genera (and their associated doubly
nonperturbative corrections) are insufficient to eliminate
the pathological behavior of the annealed free energy.
Therefore, we now turn to a computation of the quenched
free energy via an analytic continuation to near m ¼ 0.

C. The continuation in m

To compute the contribution of Euclidean wormholes
to the quenched free energy via the replica trick, we need
the JT gravitational path integral PmðβÞ defined by m
disconnected boundary circles, each of length β=ϵ. These
are related to the connected path integrals (4.3) by the usual
relation

X∞
m¼0

tm

m!
PmðβÞ ¼ exp

�X∞
m¼1

tm

m!
Pconn;mðβÞ

�
: ð4:13Þ

In order to continue to near m ¼ 0, we need to express
PmðβÞ in a form analytic in m; this is difficult because
the Weil-Petersson volume forms Vg;m, and consequently
the coefficients Zg;mðβÞ in the genus expansion, are not
known analytically in m. This is true also in the Airy limit

discussed in Sec. IV B where although explicit formulas are
known (see Appendix A for a review), they are not written
as analytic functions of m. We will therefore proceed in an
alternative fashion: we define a “truncated” path integral
Pm;M to be the JT gravity path integral including only
topologies that connect up to M boundaries, with M some
fixed integer [this amounts to truncating the sum on the
right-hand side of (4.13) to m ≤ M]. We then analytically
continue Pm;M to noninteger m withM held fixed, defining
a truncated free energy

F̄M ¼ −T lim
m→0

1

m
ðPm;MðβÞ − 1Þ: ð4:14Þ

Now, for integer m ≤ M, Pm;MðβÞ will, of course, coincide
with the exact result PmðβÞ, and hence for all integer m,
we have

PmðβÞ ¼ lim
M→∞

Pm;MðβÞ: ð4:15Þ

If as M → ∞ the analytic continuation of Pm;MðβÞ to
noninteger m converges to a function Pm;∞ðβÞ which is
also analytic in m, we may take Pm;∞ðβÞ to define the
analytic continuation of PmðβÞ to noninteger m. We can
then express the free energy as12

F̄ ¼ lim
M→∞

F̄M ¼ −T lim
M→∞

lim
m→0

1

m
ðPm;MðβÞ − 1Þ: ð4:16Þ

In practice, we will compute the truncated free energies
F̄M for some relatively small values of M, which by the
argument above we might expect to give us an approxi-
mation to the exact free energy F̄. In particular, F̄1 is just
the annealed free energy shown in Fig. 3, so we are
interested in modifications to the behavior of F̄M as M
is increased, specifically in the regime Te2S0=3 ≳ 0.3.
To obtain the aforementioned continuation of Pm;MðβÞ

to noninteger m, we proceed inductively: noting that for
M ¼ 1 we have Pm;1ðβÞ ¼ Pconn;1ðβÞm, we will suppose
that for arbitrary M we may write

Pm;MðβÞ ¼ ðMÞX
I

ðAðMÞ
I Þm ð4:17Þ

for somem-independent object AðMÞ
I , where the sum ðMÞP

I
(and the corresponding index I) is very schematic and can
include both discrete sums and integrals. We then show that
if Pm;M−1 can be written in the form (4.17), then so can
Pm;M; since (4.17) is true for M ¼ 1, we conclude it holds

for all M. Explicit forms for ðMÞ P
I and AðMÞ

I can then be
generated by iterating the inductive step. The continuation

12Assuming the limits M → ∞, m → 0 commute.
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of (4.17) to noninteger m is immediate, and the free energy
can then easily be obtained.
To perform the inductive step, we wish to express

Pm;MðβÞ as a sum over all possible ways of connecting
m boundaries using topologies that connect no more than
M of them. To do so, we first choose precisely Mm0 of the
boundaries to be filled in by wormholes that connect
exactly M boundaries (there will be m0 such wormholes),

while the remaining m −Mm0 boundaries will be filled in
by topologies connecting no more than M − 1 boundaries.
The m0 wormholes connecting the Mm0 boundaries will
make a contribution ofPm0

conn;M to the path integral, while the
remaining boundaries contribute Pm−Mm0;M−1ðβÞ. The full
path integral Pm;MðβÞ is then obtained by summing over all
possible m0. For example, we would pictorially express
P12;4 as

ð4:18Þ

where dotted lines denote boundaries that contribute to the
indicated path integral Pm;M, and each term in the sum
should come with a factor that counts how many distinct
ways there are of arranging the 12 boundaries into the
corresponding configuration. For general m, M, we have

Pm;MðβÞ ¼
Xbm=Mc

m0¼0

ðcounting factorÞ

× Pconn;MðβÞm0
Pm−Mm0;M−1ðβÞ; ð4:19Þ

where the counting factor is given by

ðcounting factorÞ ¼
�

m

Mm0

�
×

1

m0!

Ym0

j¼1

�
jM

M

�

¼
�

m

Mm0

� ðMm0Þ!
ðM!Þm0

m0!
: ð4:20Þ

The first term in this expression simply counts how many
distinct ways there are of choosing Mm0 boundaries from
the full set ofm. The second term counts how many distinct
ways there are of grouping the Mm0 boundaries into
groups of M; the product over binomial coefficients can
be interpreted as the number of ways of choosing M
boundaries to connect out of the total m0M, multiplied by
the number of ways of choosing M boundaries out of the
remaining ðm0 − 1ÞM, and so on, with the m0! canceling
out the overcounting of the same groupings in different
orders. Invoking the inductive hypothesis (4.17), we there-
fore have

Pm;MðβÞ ¼ ðM−1ÞX
I

ðAðM−1Þ
I Þm

Xbm=Mc

m0¼0

�
m

Mm0

�

×
ðMm0Þ!
m0!

�
Pconn;MðβÞ

M!ðAðM−1Þ
I ÞM

�
m0

: ð4:21Þ

We now write

ðMm0Þ! ¼
Z

∞

0

dte−ttMm0
;

1

m0!
¼ 1

2πi

Z
C
dzezz−ðm0þ1Þ;

ð4:22Þ

where C is any contour that encloses z ¼ 0. Both of these
equations are correct for integer m0; for m0 not an integer,
the first expression is, of course, just the definition of the
gamma function ΓðMm0 þ 1Þ [for ReðMm0Þ > −1], but
due to the branch cut of z−ðm0þ1Þ along the negative real
axis, the second only coincides with 1=Γðm0 þ 1Þ if C is
chosen to be a Hankel countour.13 But since (4.22) are only
required to hold when m0 is a positive integer, there is no
need to require C to be a Hankel contour, and in the
freedom in choosing C we already see a foreshadowing of
the freedom that will manifest in the analytic continuation
to near m ¼ 0.
Using the identity (3.9), we may evaluate the sum over

m0 to obtain

Pm;MðβÞ ¼
1

M

Z
dμðt; zÞ

XM−1

j¼0

ðM−1ÞX
I

�
AðM−1Þ
I

þ e2jπi=M
�
Pconn;MðβÞ

M!z

�
1=M

t

�
m
; ð4:23Þ

where

dμðt; zÞ≡ dtdz
2πiz

e−tþz ð4:24Þ

and the appropriate contours of integration for t and z are
understood. This expression for Pm;MðβÞ is of the form

13That is, if C runs from z ¼ −∞ to z ¼ 0 and back to
z ¼ −∞, looping in the positive direction around the branch cut.

ENGELHARDT, FISCHETTI, and MALONEY PHYS. REV. D 103, 046021 (2021)

046021-12



(4.17) we assumed for our inductive argument, so we have

concluded that (4.17) is consistent, with AðMÞ
I and the

schematic sum ðMÞP
I obeying

ðMÞX
I

¼
Z

dμðt; zÞ 1

M

XM−1

j¼0

ðM−1ÞX
J

; ð4:25aÞ

AðMÞ
I ¼ AðM−1Þ

I þ e2jπi=M
�
Pconn;MðβÞ

M!z

�
1=M

t: ð4:25bÞ

Iterating these from the base case M ¼ 1 (for which the
sum ð1ÞP

I is empty and Að1Þ ¼ Pconn;1), we therefore find

Pm;MðβÞ ¼
Z �YM−1

k¼1

dμðtk; zkÞ
�

1

M!

X1
j1¼0

X2
j2¼0

� � �

×
XM−1

jM−1¼0

AðMÞ
j1;…;jM−1

ðz1; t1;…; zM−1; tM−1Þm;

ð4:26aÞ

AðMÞ
j1;…;jM−1

ðftk; zkgÞ ¼ Pconn;1ðβÞ þ
XM
k¼2

e2jk−1πi=k

×

�
Pconn;kðβÞ
k!zk−1

�
1=k

tk−1: ð4:26bÞ

The analytic continuation to near m ¼ 0 is now straight-

forward; bearing in mind that as in the dCGHS case we must
take the real part, we find

F̄M ¼ −TRe
Z �YM−1

k¼1

dμðtk; zkÞ
�

1

M!

X1
j1¼0

� � �

×
XM−1

jM−1¼0

lnAðMÞ
j1;…;jM−1

ðftk; zkgÞ: ð4:27Þ

As already noted, this free energy depends on the choice of
contours Ck for the integrals over zk introduced in the
analytic continuation (4.22). Specifically, the integrand of
(4.27) exhibits branch cuts in the complex zk planes, and
will therefore be sensitive to where the contour C intersects

(a) (b)

(c)

FIG. 4. The low-temperature behavior of the JT gravity free energy F̄M for variousM; here we take S0 ¼ 7, and the contourC in (4.22)
is the unit circle. From top left to bottom, the energy is computed using topologies with genus up to zero, one, or two. The blue, orange,
green, red, and purple curves correspond to M ¼ 1, 2, 3, 4, 5, respectively.
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these cuts. This is not surprising: as discussed in Sec. III B,
inferring the “correct” analytic continuation to near m ¼ 0
is rather subtle.
We would now like to verify that the corrections from

replica wormholes significantly alter and even dominate
the behavior of the free energy in the regime e2S0=3T ≳ 0.3
with S0 large in which we have shown we have perturba-
tive control of the genus expansion. To that end, we again
use (4.4) (along with the explicit forms of the Vg;m) to
compute F̄M, incorporating contributions up to g ¼ 2 and
M ¼ 5; the results are shown in Fig. 4. Note that in Fig. 4
we take the contour C in (4.22) to be the unit circle for
simplicity. It is clear that in the regime e2S0=3T ≳ 0.3, the
inclusion of replica wormholes can substantially modify
the behavior of the free energy. The unphysical local
maximum appears to be “softened” by the replica worm-
holes contribution, though we should be careful not to
draw any firm conclusions about the quantitative features
of F̄M due to the ambiguity in the continuation to near
m ¼ 0 (including, for instance, whether the M → ∞ limit
even exists). In short, we can ascribe meaning to the fact
that the free energy changes when replica wormholes are
included, but we cannot know its quantitative behavior
until we know how to pick the “right” continuation. To
highlight this point, in Fig. 5 we compare the g ¼ 0 free
energies obtained from the analytic continuation (4.22)
with C the unit circle to another analytic continuation in
which we instead used the gamma function multiplication
theorem to write

ðMm0Þ!
m0!

¼ MMm0þ1=2

ð2πÞðM−1Þ=2
YM−1

k¼1

Γ
�
m0 þ k

M

�
; ð4:28Þ

and then expressed the gamma functions in the product in
their integral form. The qualitative features of the free

energy computed with these two different analytic con-
tinuations agree well, but, of course, they differ quanti-
tatively. At this point we do not know how to specify the
correct prescription, but for reasons that we will describe
in the next section, we expect the answer will involve
replica symmetry breaking in the m → 0 limit.
As a final note, it is interesting to examine the behavior

of F̄M using the leading-order low-temperature behavior
of Pconn;m discussed in Section. IV B and Appendix.
Specifically, using Eq. (A10) for the path integral in the
Airy limit, we obtain the behavior of F̄M shown in
Fig. 6. While again we may not draw any definitive quan-
titative conclusions due to the ambiguity in the analytic
continuation, we see that connected topologies affect the

(a) (b)

FIG. 5. The low-temperature behavior of the JT gravity free energy F̄M obtained using two different analytic continuations to
noninteger m: on the left we used the continuation (4.22) with the contour C taken to be the unit circle [this is the same as Fig. 4(a)],
while on the right we used (4.28). The qualitative features agree, but quantitative details do not. The blue, orange, green, red, and purple
curves correspond to M ¼ 1, 2, 3, 4, 5, respectively, and we take S0 ¼ 7.

FIG. 6. The behavior of the quenched free energy F̄M for the
Airy case, including contributions from all genera using the result
(A10). This amounts to taking S0 → ∞ with Te2S0=3 held fixed in
the JT path integral. As in Fig. 4, here we take the contour C in
(4.22) to be the unit circle, and the blue, orange, green, red, and
purple curves correspond to M ¼ 1, 2, 3, 4, 5, respectively.
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behavior of the free energy even when all terms in the genus
expansion are included.

V. REPLICA SYMMETRY BREAKING
AND A SPIN GLASS ANALOGY

We have shown that in computing extensive quantities
such as the free energy in gravitational systems, the
interpretation of the GPI as an ensemble average—
requiring a replica trick for the computation of the
quenched free energy—can lead to a contribution from
replica wormholes that exceeds that of disconnected
topologies. The necessity of these corrections can already
be inferred from the pathological properties of the low-
temperature behavior of the annealed free energy, com-
puted just from disconnected topologies without resorting
to a replica trick. We have also seen that the inclusion of
replica wormholes remedies some of these pathologies
but is not sufficient to remove them entirely; we interpret
this as necessitating a clearer understanding of the correct
analytic continuation to m ¼ 0. Indeed, let us emphasize
that in the simpler case of dCGHS, the (nonperturbative)
calculation that includes all of the allowed geometries
still exhibits a pathological annealed free energy at low
temperatures. This calculation had only one potential
pitfall: the m → 0 analytic continuation. This immedi-
ately implies that it is the choice of the straightforward
analytic continuation that is directly responsible for the
incorrect result.
All of these features—an annealed free energy with

pathological low-temperature behavior, an improvement in
this behavior under the inclusion of connected replicas in
computing the quenched free energy, and the need for a
careful analytic continuation to nearm ¼ 0 to eliminate the
pathological behavior entirely—are exhibited in the well-
studied context of spin glasses. In order to draw an analogy
with these systems, we will now review one particularly
well-known example: the SK model [62]. In this system,
we will see that the nonuniqueness of the analytic con-
tinuation to m ¼ 0 is due to a replica symmetry-breaking
transition that occurs at m < 1, suggesting that a similar
transition likely occurs in the gravitational systems we
have examined, and that it is unlike the usual Zn-replica
symmetry breaking that is discussed in the context of
gravitational calculations of the Renyi entropies. We will
keep the review of the SK model limited to the bare
essentials, but would recommend [63,64] and especially
[65] for more comprehensive treatments.

A. Review of the SK model

The SK model is an infinite-ranged classical Ising model
of N interacting spins σi, with Hamiltonian

HfJijg½σ� ¼ −
X
ðijÞ

Jijσiσj; ð5:1Þ

where the sum runs over all distinct pairs of spins ðijÞ. Each
of the random couplings Jij is drawn from a Gaussian14

distribution PðJijÞ with mean J0=N and variance J2=N. As
above, we will denote averages over the distribution PðJijÞ
via an overline, so that, for instance, the ensemble average
of the logarithm of the partition function is

lnZ ¼
Z �Y

ðijÞ
dJijPðJijÞ

�
ln Tre−βHfJijg½σ�: ð5:2Þ

Note that lnZ is quite difficult to compute directly, but
using the replica trick (2.1) requires us to simply compute
the ensemble average of the m-replicated partition function

Zm ¼ ðTre−βHfJijg½σ�Þm ¼ Trm exp

�
−β

Xm
α¼1

HfJijg½σα�
�
;

ð5:3Þ

where α is a replica index that labels m copies of the spins
σα and the last trace is over all m replica systems. The last
average is quite easy to express in terms of the moments J0
and J of the distribution PðJijÞ:

Zm ¼ Trm exp

�
1

N

X
ðijÞ

�
J0β

Xm
α¼1

σαi σ
α
j

þ ðβJÞ2
2

�Xm
α¼1

σαi σ
α
j

�
2
��

: ð5:4Þ

The fact that the couplings Jij are correlated between the
different replicas has led to the introduction of an effective
coupling between replicas via the ensemble average.
Moreover, by completing the squares in the sums over
spin sites and introducing auxiliary variables sα, qðα;γÞ with
α ≠ γ (sometimes called Hubbard-Stratonovich variables,
collective fields, or mean fields), we may decouple the
spin sites:

Zm ¼ B
Z �Y

α

dsα

��Y
ðα;γÞ

dqðα;γÞ

�
eNHeff ; ð5:5Þ

where B is a prefactor that is subexponential in N (and
therefore will be irrelevant in the thermodynamic limit
N → ∞), the variables sα and qðα;γÞ are all integrated over
the real axis, and the notation ðα; γÞ denotes all distinct
pairs of replicas. Here the effective Hamiltonian Heff is
independent of N and given by

14We could consider a more general distribution, but the
important physics is captured by just the second moment of
PðJijÞ.
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Heff ¼ ln Tr
fσαg

eL½σα� −K; ð5:6aÞ

where the trace is now over all m replicas of a single spin
site and

K≡ βJ0
2

X
α

s2α þ
ðβJÞ2
2

X
ðα;γÞ

q2ðα;γÞ −
m
4
ðβJÞ2; ð5:6bÞ

L½σα�≡ βJ0
X
α

sασα þ ðβJÞ2
X
ðα;γÞ

qðα;γÞσασγ: ð5:6cÞ

At this point (5.5) is still an exact equation, whose
existence is made possible thanks to the all-to-all coupling
of the SK model: the fact that the couplings between all
pairs of sites are drawn from the same distribution allows
for the factorization of different spin sites in (5.4) via the
introduction of the variables sα and qðα;βÞ. We may now take
the thermodynamic limit N → ∞, finding via a saddle-
point approximation that

Zm ∼ exp ðNHeffðsα; qðα;γÞÞÞ; ð5:7Þ

where now sα and qðα;γÞ are solutions to the saddle-point
equations ∂Heff=∂sα ¼ 0 ¼ ∂Heff=∂qðα;γÞ. It is easy to see
that these conditions reduce to

sα ¼ hσαiL; qðα;γÞ ¼ hσασγiL;

where hXiL ≡ TrfσαgðXeL½σα�Þ
TrfσαgeL½σ

α� ; ð5:8Þ

giving sα and qðα;γÞ the interpretation of mean fields fixed
by the self-consistency conditions (5.8). Importantly, the
field qðα;γÞ is interpreted as a coupling between replicas; a
saddle with nonzero qðα;γÞ indicates the spontaneous “turn-
ing on” of this coupling. Because this coupling is our main
focus, from now on we will set J0 ¼ 0 so that Zm becomes
independent of the mean field sα (this excludes the
possibility of a ferromagnetic phase, in which we are
not currently interested).
In order to now compute lnZ (and therefore F̄) in the

thermodynamic limit, we must analytically continue (5.7)
to noninteger m near zero. Because the sums in Heff are
only well-defined for integer m, this procedure requires
positing some ansatz for the matrix qðα;γÞ that is amenable
to the analytic continuation to m ¼ 0. Given the replica
symmetry of the problem (corresponding to the permuta-
tion group Sm), it is natural to take the replica-symmetric
ansatz

qðα;γÞ ¼ q: ð5:9Þ

Indeed, for positive integer m, the dominant saddles do
exhibit this symmetry [66]. The analytic continuation to

near m ¼ 0 is then straightforward, and the free energy
becomes

−βN−1F̄ ¼ ðβJÞ2
4

ð1 − qÞ2 þ
Z

∞

−∞

dyffiffiffiffiffiffi
2π

p

× e−y
2=2 ln ð2 coshðβJ ffiffiffi

q
p

yÞÞ; ð5:10aÞ

where q ¼
Z

∞

−∞

dyffiffiffiffiffiffi
2π

p e−y
2=2 tanh2ðβJ ffiffiffi

q
p

yÞ: ð5:10bÞ

When βJ < 1 (i.e., at sufficiently high temperature), the
only solution is q ¼ 0, and hence the replicas are uncorre-
lated; this is the paramagnetic phase. The free energy
obtained in this phase therefore satisfies lnZ ¼ ln Z̄; i.e.,
we may average Z before taking the logarithm with no loss
of information. Hence the replica trick does not introduce
any novel behavior. As the temperature is lowered, how-
ever, a solution with nonzero q begins to exist once βJ > 1.
This new solution dominates the free energy,15 correspond-
ing to the spin-glass phase in which the replicas sponta-
neously couple.
While the field q was introduced in the context of the

replica formalism, it has an interpretation in the m → 0
limit: it computes the so-called Edwards-Anderson order
parameter qEA defined by the disorder-averaged square
magnetization [67]:

lim
m→0

q ¼ qEA ≡ hσii2: ð5:11Þ

Here independence of the choice of lattice site i follows
from translational invariance (after the disorder average),
and the expectation value is a standard thermodynamic
average taken with respect to a particular sampling of
couplings:

hσii≡ Trσie
−βHfJijg

Tre−βHfJijg
: ð5:12Þ

The nonvanishing of q in the spin glass phase therefore
corresponds to magnetic order for any particular sampling
of the couplings Jij. However, for J0 ¼ 0 the disorder-

averaged magnetization vanishes: hσii ¼ 0. Since this
disorder-averaged magnetization measures the ferromag-
netic order of the system, we see that the spin glass phase
corresponds to a cooperatively frozen magnetic state but
with no ferromagnetic order.

15The number of off-diagonal components of qðα;γÞ is
mðm − 1Þ=2, which is negative for 0 < m < 1; this implies that
the saddle that maximizes Zm with respect to the components
qðα;γÞ actuallyminimizes Zm with respect to qwhenm < 1. Hence
the saddle that dominates the free energy is, in fact, the one that
maximizes it with respect to q.
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B. Replica symmetry breaking in the SK model

As can be seen directly from (5.10a), the free energy of
the paramagnetic phase q ¼ 0 is pathological if we extend
it to arbitrarily low temperature: at large temperatures it
scales as −T, while at low temperatures it exhibits a −1=T
divergence. These behaviors imply that it is nonmonotonic,
with the thermodynamic entropy becoming negative at
sufficiently low temperatures (and, in fact, diverging at zero
temperature). As shown in Fig. 7, the turning on of the spin
glass phase when T=J < 1 is necessary to alleviate these
pathologies, rendering the free energy finite. However,
it is still nonmonotonic: the zero-temperature entropy is
S̄T¼0 ¼ −N=2π. Clearly the calculation remains incom-
plete; from our earlier discussion, we expect that this
missing ingredient involves some nontrivial behavior of
the analytic continuation from Zm at positive integer m to
m ¼ 0.16 How do we understand what the correct analytic
continuation is?
The answer can be gleaned by performing a stability

analysis of the replica-symmetric ansatz (5.9). Indeed,
though (5.9) does give the correct form of the saddles
for computing Zm when m is a positive integer, it becomes
unstable for sufficiently small m < 1: an eigenvalue of the
Hessian ∂2Heff=∂qðα;γÞ∂qðβ;δÞ evaluated on the ansatz

qðα;γÞ ¼ q becomes positive in the limit m → 0 [68]. We
must therefore invoke an alternative ansatz for qðα;γÞ that
avoids this instability as m → 0. The correct analytic
continuation to m ¼ 0 will then be determined by the
behavior of the ansatz for qðα;γÞ which remains stable
down to m ¼ 0; this behavior will undergo a phase
transition at some critical mcðTÞ < 1 [69] that was missed
by just considering the replica-symmetric ansatz (5.9).
The presence of this phase transition means that it is
crucial to analytically continue the saddle-point equations
∂Heff=∂qðα;βÞ ¼ 0 themselves down to m ¼ 0, rather than
first evaluating their on-shell value at integer m and then
analytically continuing the results.
Because the number of components of qðα;γÞ is mðm −

1Þ=2 < 0 when m < 1, it is far from obvious how to
construct a RSB ansatz that is amenable to analytic
continuation. The answer is the well-established Parisi
ansatz [70–73]. To get an idea of how this procedure
works, consider splitting up the m replicas that define Zm

into groups of m1, with m1 an integer that divides m. We
then write qðα;γÞ in a block-diagonal form according to this
grouping:

qðα;γÞ ¼

0
BBB@

Q2 Q1 Q1 Q1

Q1 Q2 Q1 Q1

Q1 Q1 Q2 Q1

Q1 Q1 Q1 Q2

1
CCCA; ð5:13Þ

whereQ1 andQ2 arem1 ×m1 matrices all of whose entries
are q1 and q2, respectively (in this example, we have
m=m1 ¼ 4). This ansatz for qðα;βÞ can be analytically
continued to m ¼ 0 while leaving m1, q1, and q2 free as
variational parameters to be fixed by extremizing the free
energy with respect to them (since 1 ≤ m1 ≤ m, the
analytic continuation of m also continuesm1 to be between
zero and one). This procedure, called one-step RSB (or
1RSB), substantially improves the pathologies in the free
energy shown in Fig. 7, but the zero-temperature entropy is
still negative (though substantially closer to zero).17

To proceed further, we iterate this procedure: we
introduce a new integer m2 that divides m1 and partition
Q2 into the same block-diagonal structure as (5.13),

Q2 ¼

0
B@Q3 Q̃2 Q̃2

Q̃2 Q3 Q̃2

Q̃2 Q̃2 Q3

1
CA; ð5:14Þ

where Q̃2 andQ3 arem2 ×m2 matrices all of whose entries
are q2 and q3, respectively (in this example m1=m2 ¼ 3).

FIG. 7. The free energy of the SK model, computed using the
replica-symmetric ansatz (5.10a). For T=J > 1, there is only the
paramagnetic phase q ¼ 0; continuing this phase to T ¼ 0
(dashed red line) gives a free energy that is nonmonotonic and
divergent at T ¼ 0. The appearance of the spin glass phase q ≠ 0
when T=J < 1 (solid blue line) removes the divergence, but the
free energy is still nonmonotonic. (As mentioned in footnote15, a
feature of the analytic continuation to m ¼ 0 is that the dominant
phase is, in fact, the one that maximizes the free energy.)

16Though we note that unlike the dCGHS case discussed in
Sec. III B, the analytic continuation of the replica-symmetric
ansatz (5.9) in (5.7) to imaginary m does indeed obey the
boundedness condition jZiαj ≤ 1. However, Zm still exhibits
superexponential growth for real m, so Carlson’s theorem is still
inapplicable [66].

17There are other models of spin glasses in which 1RSB is, in
fact, sufficient to obtain a stable ansatz, e.g. the p-spin spherical
model [74–76].
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Repeating this process r times, we may then continue
to m ¼ 0, obtaining an expression for the free energy
that depends on 2pþ 1 variational parameters, mi for
i ¼ 1;…; p and qi for i ¼ 1;…; pþ 1. After the continu-
ation to m ¼ 0 has been made, we may, in fact, take the
limit p → ∞ which turns the ðqi; miÞ into a continuous
function qðxÞ. The free energy is then a functional of qðxÞ
and is obtained by a functional extremizaton with respect
to qðxÞ.
One way of understanding what the p → ∞ limit means

is as follows. For positive integer m, the ansatz (5.13)
breaks the full replica symmetry group Sm into the
subgroup

Sm ⟶
½break�

ðSm1
Þ⊗m=m1 ⊗ Sm=m1

; ð5:15Þ

with the first factor corresponding to the permutation
symmetry of each of the groups of m1 rows and columns,
and the second corresponding to the permutation symmetry
of the m=m1 groups among themselves. The iterative
procedure outlined above amounts to breaking the sub-
group further, into

Sm ⟶
½break�

Sm=m1
⊗ ⊗

p

i¼1
ðSmi=miþ1

Þ⊗m=mi ð5:16Þ

(with mpþ1 ≡ 1), but, of course, we cannot take p arbi-
trarily large if the mi must all be divisors of m. However, if
we analytically continue this group structure to m ¼ 0, we
obtain

S0 ⟶½break�
S0 ⊗ ⊗

p

i¼1
ðSmi=miþ1

Þ⊗0: ð5:17Þ

So we find that S0 contains itself as a subgroup, which
means we may continue to break the symmetry as much as
desired by breaking the S0 factor on the right-hand side.
This is the feature that allows us to take p → ∞ in the Parisi
ansatz after the continuation to m ¼ 0 has been performed.
The point is that RSB is contained in the structure of the

Parisi function qðxÞ: in the replica symmetric ansatz (5.9)
qðxÞ is just a constant q, so nontrivial structure in qðxÞ is
indicative of RSB. Because the Parisi ansatz changes the
naïve analytic continuation to m ¼ 0, we see that RSB is
the mechanism responsible for the phase transition at
m < mcðTÞ, and it answers the question posed above:
how do we correctly continue to m ¼ 0?

C. RSB in gravity à la spin glass

In Secs. III and IV we saw that in simple gravitational
models, the introduction of replica wormholes alleviated
some of the low-temperature pathologies of the discon-
nected free energy, but it did not remove them entirely; we
interpreted this result as the statement that our analytic
continuation to m ¼ 0 (which in the JT gravity case

exhibited considerable freedom) was not correct. Having
now reviewed spin glasses, there is quite an obvious
analogy: since the paramagnetic and spin glass phases
are characterized by correlated and uncorrelated replicas,
respectively, we would like to interpret the “turning on” of
replica wormholes in the gravitational free energy as the
onset of spin glasslike behavior. It is important to note that
the analogy will not be literal: perhaps the most important
distinction is that a spin glass is a bona fide sharp phase
transition that can be seen in the thermodynamic N → ∞,
whereas we did not work in any saddle-point approxima-
tion in our gravitational models (and, in fact, the fact
that the temperature at which connected topologies con-
tributed was nonperturbatively small in S0 suggests that the
transition should be invisible to a semiclassical S0 → ∞
analysis). The most relevant parallel we would like to
highlight has to do with the all-important analytic con-
tinuation: in the spin glass model, a replica symmetric
ansatz remedies some low-temperature pathologies of the
free energy, but it gives the incorrect analytic continuation,
and RSB must be invoked due to a phase transition at small
m. What does this analogy suggest for how to obtain the
correct analytic continuation to m ¼ 0 in the gravita-
tional case?
One of the key lessons to draw from the spin glass

example is that a naïve analytic continuation from the
values of Zm for positive integer m to near m ¼ 0 gives a
wrong answer: we must first analytically continue the
saddle-point equations to near m ¼ 0 with an appropriate
ansatz, and only then do we solve them for the small-m
behavior of Zm. In Secs. III and IV, this is not what we did:
we instead expressed the gravitational path integrals PmðβÞ
for integer m, and then looked for an analytic continuation
to m ¼ 0. For the same reason as the spin glass, we might
expect that in a gravitational theory we must look for RSB
saddle points in order to perform the analytic continuation
correctly.
Let us first be clear on what we mean by “replica

symmetry breaking.” There is a sense in which we could
say that any replica wormhole breaks replica symmetry,
since the symmetry group of m disconnected boundaries
is Sm, which is broken by any gravitational saddle that
connects two or more of these boundaries. But the sort of
RSB that appears in the spin glass example, and which we
expect to determine the correct analytic continuation to
near m ¼ 0, is something more subtle: it is the breaking at
m < 1 of a symmetry that is exhibited by the dominant
saddles when m is a positive integer. For example, if the
m-boundary gravitational path integral is dominated by
disconnected saddles whenever m is a positive integer, the
symmetry group is indeed Sm, and we would say that RSB
occurs if this group is broken for m < 1. But if the path
integral for positive integer m is dominated by, say, a
connected wormhole with Zm symmetry, we would not say
that RSB occurs as m → 0 unless the Zm is broken for
some m < 1.
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Now, since in Secs. III and IV we did not work in a
saddle-point approximation, no equations of motion were
involved in our calculation. Hence it is not immediately
clear what the analogue of the Parisi procedure might be in
these models. It may instead be easier to consider working
in the semiclassical limit of some more general gravita-
tional theory, in which case probing the role of RSB, and
computing the correct analytic continuation to near m ¼ 0,
requires us to look for a RSB ansatz for a gravitational
solution that allows for the continuation of the gravitational
equations of motion to near m ¼ 0. This is still a difficult
task, which is a natural starting point for future work.
Instead, let us compare the approach we have in mind in
this context with that of the Lewkowykz-Maldacena replica
trick used to compute holographic von Neumann entropies
[77]. In the latter case, we are required to compute the gra-
vitational path integral defined by an n-sheeted connected
boundary manifold Bn with Zn symmetry. Assuming the
dominant bulk saddle also exhibits this symmetry, we may
quotient the bulk geometry by Zn, after which the analyti-
cally continued bulk equations of motion are just those on a
manifold with boundary B1 consisting of a single sheet,
except with a conical defect proportional to (n − 1) at the
fixed point of the Zn isometry. For n near one, the bulk
equations of motion can be expanded perturbatively around
the smooth geometry with boundary B1 and no conical
defect, and the condition that the equations of motion hold
near the (perturbative) conical defect reproduces the Ryu-
Takayagani formula for holographic entanglement entropy
[78]. In this context, the “usual” notion of RSB is the
breaking of the Zn for n ≠ 1—but, of course, there is no
breaking of replica symmetry for n ¼ 1, since Z1 is trivial.
According to the alternative definition of RSB that occurs in
spin glasses, RSB would require that the dominant saddles
at positive integer n to exhibit Zn symmetry, but for the
dominant saddles at small n, including n ¼ 0, to break it.
Clearly the LM approach is along the lines we have

in mind, as it continues the gravitational equations of
motion to noninteger n. However, this continuation relies
crucially on two properties. The first is the assumption of
Zn symmetry, without which it would be unclear how to
express the equations of motion on a manifold with a single
boundary [just as in the SK model it was unclear how to
generalize the replica-symmetric ansatz (5.9) until Parisi’s
breakthrough]. The second is that there is a known n ¼ 1
saddle around which the equations of motion can be
perturbed to study the behavior near n ¼ 1; there is no
such saddle with n ¼ 0. These are the two primary
challenges that need to be overcome in order to properly
understand the role of RSB in computing gravitational free
energies, and more generally any extensive quantity.

VI. DISCUSSION

We have argued that the computation of extensive
quantities via a gravitational path integral should be done

using a replica trick which includes contributions from
connected geometries. The inclusion of these connected
saddle points dramatically changes the behavior of the
theory at very low temperatures, and naturally accommo-
dates the interpretation of semiclassical gravity as dual to
an ensemble average rather than to a particular quantum
theory. Let us now discuss open questions and natural
directions for future work.
Ensemble averaging in higher dimensions As alluded to

in Sec. I, UV corrections to the GPI may remedy the
apparent lack of factorization that motivated the ensemble
averaging interpretation in the first place, as discussed in
the context of randommatrix models and JT gravity in [19].
Such a picture becomes especially crisp in higher dimen-
sions: for example, N ¼ 4 SYM is a single theory, and
AdS=CFT provides numerous other examples of unitary
quantum theories of gravity without the need to ensemble
average. If, however, one would like to apply the tech-
niques of [4,5] to higher dimensions, then we must include
replica wormholes, whose most obvious interpretation is
of an ensemble average. One possibility is that averaging
is only genuinely necessary in certain low-dimensional
theories (as was argued in e.g. [79]). For example, the
low-temperature spectrum of higher dimensional gravity
(and CFTs) is perfectly well-behaved, has a unique ground
state, and does not resemble a spin glass. We do not expect
to see replica wormholes or RSB dominating the free
energy calculation at low temperature. Nevertheless, it is
natural to speculate that replica wormholes will contribute
to lnZ whenever we are in a regime where nonperturbative
quantum gravitational corrections are important: for exam-
ple, after the Page time [80] or at the Hawking-Page phase
transition [81].
Another interesting possibility arises from the phenome-

non of self-averaging: in a chaotic theory, the average over
an ensemble of theories is often essentially harmless, as
each individual instance of the ensemble is representative
of the ensemble as a whole, at least for relatively coarse-
grained observables. The ensemble average in this case is
interpreted as a useful calculational trick to construct a
universal effective theory which governs the dynamics at
low energy, but, of course, the UV dynamics of each
individual instance of the ensemble is that of a unitary
quantum theory. Perhaps any gravitational theory which
includes Euclidean wormholes should be understood as
a low-energy effective theory in this sense; in this inter-
pretation, the GPI plays the role of a convenient calcula-
tional trick for computing observables in a semiclassical
limit. Such a possibility was discussed in various forms
in [4,82,83].
Nonperturbative completions At the end of Sec. I, we

briefly mentioned that although a large-N analysis of SYK
does not exhibit a spin glass phase, the authors of [39]
showed that in a large-coupling (or low-temperature) limit
that reduces to an EFTof the low-energy dynamics of SYK,
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saddles that correlate replicas in the computation of Zm

become dominant both at positive integer m and in the
m → 0 limit, and therefore lead to a spin glasslike phase
transition in this low-energy EFT. This observation may
raise a concern: if a spin glass phase can only be obtained
from the SYK model by excluding the UV, is the phase
transition that we have found in JT gravity eliminated by a
good UV completion? Our study of the Airy limit in
Sec. IV B shows that a nonperturbative completion of JT
gravity cannot eliminate the effect we have studied, since it
is dominated by the universal behavior of the edge of the
spectral density ρðEÞ. Indeed, the recent discussion of such
completions in [31] explicitly finds that the two-point

correlator ZðβÞ2 is controlled by the contribution of
connected topologies at sufficiently low temperatures, even
in a nonperturbative completion.
More generally, the results of [19] suggest that a good

nonperturbative description of JT gravity should be available
in the form of a matrix model (though this completion is not
unique). Because the behavior we have studied in this paper
is due to universal behavior at the spectral edge (at least at
sufficiently low temperatures), we might investigate it more
thoroughly by working in a toy matrix model such as the
Gaussian matrix integral investigated in [32]. To this end, it
would be interesting to compute lnZ in such a model by
expressing lnZ ¼ ln Tre−βH and then explicitly computing
an average over the random matrixH, without resorting to a
replica trick. We should expect to find a monotonic free
energy all theway to zero temperature,with a free energy that
agreeswith the annealed free energy of theAiry case once the
temperature becomes sufficiently (but not too) large.
The emergence of semiclassical gravity A long-standing

question in quantum gravity is how the (semi)classical
metric gab emerges from an underlying quantum theory. In
the SK model, the partition functions Zm can be expressed
exactly via the introduction of the mean fields sα and qðα;γÞ
in (5.5). In a large-N limit, the phase structure of the system
is determined by the saddle-point equations for these fields.
Importantly, they appear purely as a consequence of the
disorder average; they are not fundamental in the pre-
disorder theory. [In the SYK case, the analogous fields are
the auxiliary fields Gαβðτ1; τ2Þ and Σαβðτ1; τ2Þ.]
If we are to interpret the GPI as computing a disorder

average (either genuinely or in an effective description for
the purpose of probing appropriately coarse-grained
observables), is there a sense in which the metric should
then be thought of as a mean field, with the GPI analogous
to the right-hand side of (5.5)? That is, rather than being a
fundamental field of the underlying theory, is the metric a
field whose existence relies fundamentally on the ensemble
average? In such a case we would interpret the “turning on”
of connected geometries between disconnected boundaries
as analogous to the “turning on” of the matrix qðα;γÞ in the
SK model. This would give a clear meaning to the sum over

topologies in the path integral, but even in the 2D models
we have studied here it is unclear how this interpretation
would incorporate a UV completion.
RSB and the Parisi ansatz in gravity In the 2D models

studied in this paper, the need for replica wormholes in the
free energy (or more generally, any extensive quantity) is
clear, and we have discovered hints of RSB. These sug-
gest that gravity has some features analogous to a glassy
phase just at the edge of semiclassicality. Since the
gravitational path integral is in general—and in this regime
in particular—of clear interest, clearly one important
extension of our analysis would be the construction of a
gravitational analogue of the Parisi ansatz for RSB. Of
course, because we did not work in any saddle-point
approximation, we did not consider classical equations
of motion. The resulting lack of any saddles to analyze for
stability or to continue to m ¼ 0 makes it difficult to
explore the structure of RSB in any detail. In particular, the
fact that (pure) JT gravity replica wormholes do not exist as
solutions to any classical equations of motion suggests that
there may be no way to study RSB in JT gravity in a way
analogous to conventional spin glass systems (though
admittedly the possibility of a phase transition at m < 1
means that the lack of on-shell wormholes for integer m
does not necessarily exclude on-shell analytically contin-
ued wormholes for m near zero). A natural question, then,
is whether there exist models of gravity that are sufficiently
simple to allow for the continuation of classical equations
of motion tom ¼ 0, but sufficiently complex to still exhibit
a phase transition. In other words, it would be valuable to
find a gravitational model in which the effects of Euclidean
wormholes can be disentangled from those of disconnected
geometries with higher genus (analogous to the case ofdCGHS, in which higher genera do not appear at all).
In such a model, we might imagine that the correct

“gravitational” Parisi ansatz is a multibranched wormhole
connecting the various disconnected boundaries with worm-
holes of different sizes, with these sizes left as variational
parameters with respect to which the free energy should be
extremized. In the case of a near-extremal black hole (and
consequently low temperature), the picture might be remi-
niscent of AdS fragmentation [84], in which the AdS2 throat
can fragment into many throats or disconnected universes.
Understanding how this story works in gravity would be
especially illuminating because the Parisi function qðxÞ,
which plays the role of an order parameter for the spin glass
phase transition in the SKmodel, also probes the structure of
microstates of the model. An analogous function in gravity
could shed light onto the details of the underlying (that is,
pre-disorder-average) theory.
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APPENDIX: AIRY LIMIT

In order to make this paper more self-contained, in this
Appendix we briefly review the relevant results on the low-
temperature limit of JT gravity discussed in Sec. IV B.
The starting point is Mirzakhani’s formula for the Weil-

Peterson volumes Vg;m appearing in (4.4c) [85]:

Vg;mðfbigÞ ¼
1

ð3g − 3þmÞ!

×
Z
Mg;m

�
2π2κ þ 1

2

Xm
i¼1

b2iψ i

�
3g−3þm

ðA1aÞ

¼
X
α;p

jαjþp¼3g−3þm

ð2π2Þp
2jαjα1! � � � αm!p!

b2α11 � � � b2αmm

×
Z
Mg;m

ψα1
1 � � �ψαm

m κp; ðA1bÞ

where Mg;m is the Deligne-Mumford compactification of
the moduli space of constant-negative curvature Riemann
surfaces of genus g with m geodesic boundaries of lengths
bi, the ψ i are Chern classes, κ is the first Mumford-Morita-
Miller class on Mg;m, and we use the notation α ¼
fα1;…;αmg and jαj ¼ P

m
i¼1 αi; see e.g. [56] for a review.

The quantity in parentheses in Eq. (A1a) is the Weil-
Peterson symplectic form on the moduli space of bordered
Riemann surfaces. Because Vg;mðfbigÞ is a polynomial in
the bi, when inserted into (4.4c) we may explicitly perform
the integrations over the bi to obtain

Zg;mðβÞ ¼
X
α;p

jαjþp¼3g−3þm

ð2π2Þp
p!ð2πÞm=2 β

3g−3þ3m=2−p

×
Z
Mg;m

ψα1
1 � � �ψαm

m κp: ðA2Þ

At low temperatures, the leading-order behavior of Zg;m

comes from the terms in the sum with p ¼ 0; keeping only
these terms, (4.3) gives

Pconn;mðβÞ ¼
�
βe−2S0=3

2π

�m=2X∞
g¼0

X
α

jαj¼3g−3þm

ðβe−2S0=3Þ3g−3þm

×
Z
Mg;m

ψα1
1 � � �ψαm

m þ � � � ; ðA3Þ

where the ellipses denote terms that are subleading at low
temperature.
The sum over genus was computed in [60]. To express it,

introduce the function

EðmÞðx1;…; xmÞ≡ expðPm
i¼1 x

3
i =12Þ

ð4πÞm=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

m
i¼1 xi

p
×
Z
si≥0

dms exp

�
−
Xm
i¼1

ðsi − siþ1Þ2
4xi

−
1

2

Xm
i¼1

ðsi þ siþ1Þxi
�
; ðA4Þ

where we identify smþ1 ≡ s1. By construction EðmÞðfxigÞ is
invariant under cyclic reorderings of the xi; let us therefore
define the function

EðmÞ
symðx1;…; xmÞ ¼

1

m

X
σ∈Sm

EðmÞðxσð1Þ;…; xσðmÞÞ; ðA5Þ

which by construction is invariant under any permutation of
the xi (here Sm is the permutation group of order m). Next,
let Πm be the set of all partitions of f1;…; mg into disjoint
unions of subsets, for any q ∈ Πm let lðqÞ be the number of
blocks in q, and let xq be the set of size lðqÞ formed by
summing the xi over the blocks of q. For example,

Π3 ¼ ff1; 2; 3g; f1; 2g⊔f3g; f1; 3g⊔f2g; f2; 3g⊔f1g;
f1g⊔f2g⊔f3gg; ðA6Þ

and if q ¼ f1; 2g⊔f3g ∈ Π3, lðqÞ ¼ 2 and xq ¼ fx1þ
x2; x3g. Using this notation, we now define

GðmÞðx1;…; xmÞ≡
X
q∈Πm

ð−1ÞlðqÞþ1EðlðqÞÞ
sym ðxqÞ; ðA7Þ

so for instance

Gð2Þðx1; x2Þ ¼ Eð1Þ
symðx1 þ x2Þ − Eð2Þ

symðx1; x2Þ; ðA8aÞ

Gð3Þðx1; x2; x3Þ ¼ Eð1Þ
symðx1 þ x2 þ x3Þ − Eð2Þ

symðx1 þ x2; x3Þ
− Eð2Þ

symðx1 þ x3; x2Þ − Eð2Þ
symðx2 þ x3; x1Þ

þ Eð3Þ
symðx1; x2; x3Þ: ðA8bÞ

The main result of [60] can then be expressed as

FREE ENERGY FROM REPLICA WORMHOLES PHYS. REV. D 103, 046021 (2021)

046021-21



X∞
g¼0

X
α

jαj¼3g−3þm

xα11 � � � xαmm
Z
Mg;m

ψα1
1 � � �ψαm

m

¼ ð2πÞm=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
m
i¼1 xi

p GðmÞ
�

x1
21=3

;…;
xm
21=3

�
: ðA9Þ

Applying this result to (A3) with xi ¼ βe−2S0=3 for all i, we
thus obtain

Pconn;mðβÞ ¼ GðmÞ
�
βe−2S0=3

21=3
;…;

βe−2S0=3

21=3

�
þ � � � :

ðA10Þ

The low-temperature subleading corrections to (A10) were
computed for the m ¼ 1 case in [28] and are expressed
schematically in (4.7); the m ¼ 2 corrections were com-
puted in [29].
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