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Abstract

This paper addresses the development of a free energy model for magnetostrictive transducers
operating in hysteretic and nonlinear regimes. Such models are required both for material and system
characterization and for model-based control design. The model is constructed in two steps. In
the first, Helmholtz and Gibbs free energy relations are constructed for homogeneous materials with
constant internal fields. In the second step, the effects of material nonhomogeneities and nonconstant
effective fields are incorporated through the construction of appropriate stochastic distributions.
Properties of the model are illustrated through comparison and prediction of data collected from a
typical Terfenol-D transducer.
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1 Introduction

Magnetostrictive transducers are being considered for a number of high performance industrial, au-
tomotive, biomedical and Department of Defense applications due to their capability for generating
large force inputs over a broad frequency range. As detailed in [4, 5, 14], applications utilizing mag-
netostrictive transducers include, among others, active vibration and noise control, micropositioning
in high force regimes, medical and industrial ultrasonics, non-contact torque sensors, and tuned vi-
bration absorbers. As the field of magnetostrictive materials becomes more mature, it is anticipated
that a growing number of actuator and sensor applications will benefit from the multifunctional
characteristics and robust operation that these materials can provide.

An inherent property of all existing magnetostrictive materials, however, is the presence of hys-
teresis and constitutive nonlinearities in the relation between input fields and the generated magne-
tization and strains as illustrated in Figure 1. While the effects of hysteresis and nonlinearities can
be reduced through the choice of stoichiometry [21] and feedback mechanisms, the modeling of these
effects in a manner compatible with subsequent control design can yield significant improvements in
performance.

To illustrate issues pertinent to model development and control design for a typical magnetostric-
tive transducer, we consider the device depicted in Figure 2. Input to the system is provided by a
current I(t) applied to the solenoid which generates a field H(t). This causes magnetic moments
in the Terfenol-D rod to rotate which produces the strains and stresses output by the device. The
prestress mechanisms serve two purposes; they further align magnetic moments to improve perfor-
mance and they maintain the Terfenol rod in a state of compression. The surrounding permanent
magnet provides a bias field H0 necessary to achieve bidirectional strains and can also be designed to
optimize flux paths through the rod. The hysteretic data plotted in Figure 1 is typical for this type
of Terfenol-D transducer and hence it represents criteria that must be accommodated in models to
be employed for design, analysis and control development.

A number of techniques have been considered for quantifying the hysteresis and constitutive
nonlinearities inherent to the relation between input field H and the generated magnetization M

and strain e. For Terfenol-D transducers, these include Preisach models [15, 17] and domain wall
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Figure 1. Hysteretic data measured in a Terfenol-D transducer as reported in [6]: (a) field-
magnetization relation, and (b) Field-strain relation.
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Figure 2. Cross section of a typical Terfenol-D magnetostrictive transducer.

models [1, 6, 7] based on the magnetic theory of Jiles and Atherton [9, 11]. For transducer char-
acterization and control design, crucial requirements for the models include automatic closure of
biased minor loops, flexibility with regard to temperature and frequency, and sufficient efficiency to
permit real-time implementation. The Preisach techniques guarantee minor loop closure but require
a large number of nonphysical parameters for accurate biased minor loop characterization. Fur-
thermore, modifications to the classical Preisach theory are required to accommodate temperature
dependence, reversible changes in the magnetization observed at low drive levels, or to relax con-
gruency requirements to ensure that minor loops remain inside major loops [8, 12]. This limits the
feasibility of control techniques based on Preisach models to a limited number of applications. Con-
versely, the physical basis for domain wall models makes them applicable to a broader performance
space. However, although techniques have been developed to guarantee closure of biased minor loops
when turning points are known a priori [2, 10], the closure of minor loops when these points are
not know a priori, as will be the case in closed loop feedback design, is not guaranteed by present
domain wall models. This proves a serious detriment in control design.

In this paper, we quantify hysteresis and constitutive nonlinearities inherent to Terfenol-D mag-
netostrictive transducers through the development of a free energy model. In the first step of the
development, we derive appropriate relations for the Helmholtz and Gibbs free energies at the lattice
or domain level. This yields a local magnetization model for homogeneous, single crystal materi-
als. The effects of material nonhomogeneities and nonuniform effective fields are then incorporated
through consideration of stochastic distributions. This yields a macroscopic model which quantifies
the hysteretic relation between H and M . A more general free energy relation that includes magne-
toelastic interactions is then employed to develop nonlinear constitutive relations which predict the
nonlinear relation between fields H and strains ε.

The model quantifies hysteresis in the relations between H and M and H and ε for temperature
invariant and quasistatic operating conditions. Although certain relaxation mechanisms are included,
the model presently neglects eddy current losses and hence it should be employed for low frequency
regimes. Furthermore, the model is developed for transducer configurations in which prestress lev-
els are sufficiently high to dominate crystalline anisotropies and thus in this initial development,
anisotropy energy is neglected. Finally, it is illustrated that the model ensures the closure of biased,
nested minor loops in both the H-M and H-ε relations.

The nonlinear magnetization model is developed in Sections 2.2 and 2.3 and the full constitutive
relations are developed in Section 2.4. The accuracy of the model is illustrated in Section 3 through
comparison and prediction of data collected from a typical Terfenol-D transducer. The capability of
the model to ensure closure of biased minor loops is illustrated through a numerical example.
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2 Model Development

To motivate the development of a hysteresis model for Terfenol-D, we summarize first pertinent
properties of its crystalline structure. This is facilitated by vector conventions in which planes are
denoted by round brackets and directional indices are represented by square brackets. Hence the faces
of a cube are denoted by (100), (010), (001), (1̄00), (01̄0), (001̄) whereas the vertices are specified by
[100], [010], [001], [1̄00], [01̄0], [001̄]. In both cases, 1̄, indicates a negative direction. Finally, pointed
brackets are used to summarize an entire set of indices.

In present manufacturing processes, Terfenol-D crystals are grown in dendrite sheets oriented in
the [112̄] direction as depicted in Figure 3. At room temperature, the easy axes lie approximately
in the 〈111〉 set of directions and the greatest strains occur when the magnetization M rotates from
[111] to [111̄].

The changes in magnetism that result from an applied field H are primarily due to two mech-
anisms: the rotation of moments and the movement of domain walls. To illustrate, consider a
demagnetized specimen which is subjected to a magnetic field oriented in the [112̄] direction as
shown in Figure 4. At low field levels, the change in magnetization is due primarily to domain wall
motion so that favorably oriented domains are enlarged. As the field is increased, moments rotate
to orient with the easy [111̄] axis. This produces a burst region in the H-M or H-ε curve in which
small changes in field produce large changes in magnetization or strain. In the final stage depicted in
Figure 4d, the material acts as a single domain as moments rotate coherently from the easy axis into
the direction of the applied field. This produces the saturation behavior exhibited by the material.

Strains are generated by the material when moments rotate to align with an applied field. For
general configurations, the magnetomechanical coupling which produces these strains is highly com-
plex and dependent upon factors such as the applied stress and crystalline anisotropies. However, in
the case of materials in which a prestress perpendicular to the moment direction is sufficiently large
to dominate crystalline anisotropy, the preferred orientation of domains is shifted from the original
eight 〈111〉 magnetic easy axes to the two axes [111] and [111] perpendicular to the [112̄] direction.
In this regime, strains are due primarily to moment rotation and the free strain, or magnetostriction,
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Figure 3. Orientation of Terfenol-D crystals.
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Figure 4. Magnetization process in the (11̄0) plane of single crystal Terfenol-D due to an applied
field H in the [112̄] direction. (a) Demagnetized state, and (b) growth of domains due to domain
wall motion. (c) Rotation of moments to the easy [111̄] axis, and (d) Rotation of moments to align
with the applied field.

can be modeled by the quadratic relation

λ =
3

2
λs

(
M

Ms

)2

(1)

where λs and Ms respectively denote the saturation magnetostriction and magnetization. As dis-
cussed in [1, 9], the prestress levels needed to optimize transducer performance are often of a mag-
nitude such that stress anisotropy dominates crystalline anisotropy and the relation (1) adequately
models the strain generated by the material.

To model the hysteretic behavior of the material, we first quantify the nonlinear relation between
input fields H and magnetization M . We then develop constitutive relations that incorporate the
quadratic behavior (1) to provide an initial model for the strain produced by the transducer.

2.1 Thermodynamic Preliminaries

To provide a common framework for constructing magnetostatic and magnetoelastic energy relations,
we consider general properties of free energy relations. The free energy is assumed to be a function
of temperature T and an order parameter e which is respectively taken to be the magnetization M

in magnetostatic relations and the strain ε in magnetoelastic relations. We let φ̃ denote external
fields that are thermodynamically conjugate to e. For the order parameters M and ε, appropriate
choices for the external field φ̃ are the magnetic field H and stress σ. Finally, we let ψ(e, T ) denote
a general Helmholtz free energy relation.

In the absence of applied fields, thermodynamic equilibria are determined by minimizing ψ with
respect to e which, under the assumption of differentiability, yields the necessary condition

φ(e, T ) ≡
∂ψ

∂e
= 0

where φ denotes the energetic response of the system. For systems subjected to an external field φ̃,
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the total free energy is taken to be

ψ
φ̃
(e, T ) = ψ(e, T ) − φ̃e (2)

which yields the equilibrium condition
φ(e, T ) = φ̃. (3)

The relation (3) can be physically interpreted as providing conditions under which the order pa-
rameter adjusts to balance the internal energy with that of the external field. As will be illustrated
in subsequent sections, (3) also provides the constraints used to specify effective fields as well as
magnetoelastic constitutive relations.

2.2 Magnetic Hysteresis Model

Motivated by the prestressed operating regime which yields the [111] and [111] easy magnetic axes,
we now consider the energy of a magnetic moment with two preferred orientations. This includes the
characterization of the internal and magnetostatic energy. Magnetoelastic interactions are included
in Section 2.4 and used to develop elastic constitutive relations.

We first formulate a Helmholtz potential ψ by considering internal energy contributions due to
moment interactions. These interactions are assumed to be isothermal and hence temperatures in all
subsequent expressions are assumed to be fixed below the Curie point, which implies that the material
under study is in its ferromagnetic phase. This condition, when combined with the assumption that
stress anisotropy dominates crystalline anisotropy, yields material behavior consistent with a double
well potential of the form illustrated in Figure 5. As summarized in [18], statistical mechanics
analysis determines that at fixed temperatures, a first-order approximation to the potential exhibits
quadratic behavior in the neighborhoods of all three equilibria. Hence we employ the piecewise
quadratic definition

ψ(M) =





1
2η(M + MR)2 , M ≤ −MI

1
2η(M − MR)2 , M ≥ MI

1
2η(MI − MR)

(
M2

MI
− MR

)
, |M | < MI

(4)

for the Helmholtz free energy. As illustrated in Figure 5a, MI and MR respectively denote the
inflection point and magnetization at which the minimum of ψ occurs.

From (2), the Gibbs energy is taken to be

G = ψ − HM (5)

which, for increasing field H, is illustrated in Figure 5a. Since the magnetostatic energy is given
by E = µ0MH, where µ0 is the magnetic permeability, a second choice for the Gibbs energy is
G = ψ − µ0HM . However, because the formulation (5) can be viewed as incorporating µ0 into ψ,
the two energy formulations yield equivalent final models, and we employ (5) for simplicity.

For a homogeneous material with effective field He = H, where H denotes the applied field, the
average local magnetization is given by

M = x+ 〈M+〉 + x− 〈M−〉 (6)

where x+ and x− respectively denote the fraction of moments having positive and negative orienta-
tions, and 〈M+〉 and 〈M−〉 are the expected values of the resulting magnetizations. To specify 〈M+〉,
we take

〈M+〉 =

∫
∞

M0

Mµ(G)dM (7)
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Figure 5. (a) Helmholtz energy ψ and Gibbs energy G for increasing field H (H2 > H1 > 0).
(b) Local magnetization M as a function of H for a homogeneous, isotropic material.

where
µ(G) = Ce−GV/kT (8)

quantifies the probability of obtaining the energy level G, k is Boltzmann’s constant, C denotes a
constant chosen to yield a probability of 1 for integration over all possible magnetization values, and
M0 is the critical point corresponding to the unstable equilibrium. The Boltzmann energy balance is
considered over a lattice volume V chosen to yield relaxation behavior appropriate for the material
being characterized. Subsequent evaluation of C yields the average magnetization values

〈M+〉 =

∫
∞

M0

Me−G(H,M)V/kT dM
∫

∞

M0

e−G(H,M)V/kT dM

〈M−〉 =

∫ M0

−∞

Me−G(H,M)V/kT dM

∫ M0

−∞

e−G(H,M)V/kT dM

.

(9)

We note that when implementing the model, we typically replace M0 by the inflection points MI

and −MI , respectively, in the relations for 〈M+〉 and 〈M−〉. This simplifies the approximation of the
integrals and can be motivated by observing that if one considers the forces ∂G

∂M due to the applied
field, maximum restoring forces occur at MI and −MI (e.g., see pages 332-333 of [3]). Furthermore,
for materials with low thermal activation, the points M0 and −MI coincide in the limit as thermal
activation is reduced to zero for positive fields while MI and M0 coincide for negative fields as
illustrated in Figure 6.

The moment fractions x+ and x− are quantified by the evolution equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+
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Figure 6. (a) Gibbs energy profile with a high level of thermal activation (– – –) in the Boltz-
mann probability µ(G) = Ce−GV/kT . (b) Local magnetization M given by equation (6) with high
thermal activation (– – –) and limiting magnetization M specified by (12) in the absence of thermal
activation (——).

which can be simplified to
ẋ+ = −p+−x+ + p−+(1 − x+) (10)

through the identity x+ + x− = 1. The likelihoods of switching orientations are specified by

p+− =

√
kT

2πmV 2/3

e−G(H,MI)V/kT

∫
∞

MI

e−G(H,M)V/kT dM

p−+ =

√
kT

2πmV 2/3

e−G(H,−MI)V/kT

∫
−MI

−∞

e−G(H,M)V/kT dM

(11)

where m is the mass of the lattice volume V .
Because the expression (6) for the local magnetization M is probabilistic in the sense that the

moment rotations are determined by (8), the map between the field and magnetization exhibits
both hysteresis and nonlinear transition behavior as depicted in Figure 5b. The degree to which the
transition is mollified is dependent on the ratio between GV and kT in the Boltzmann relation (8);
large values of kT model regimes in which thermal activation is prominent. This in turn yields
smoother transitions since, for a fixed field level, moments have a higher probability of achieving the
thermal energy required to overcome energy barriers.

The complex behavior of M can be simplified in two aspects to facilitate both the qualitative
analysis of the model and its quantitative implementation for regimes in which thermal activation is
negligible. The qualitative behavior can be ascertained by analyzing the equilibrium behavior after
moments have switched. In this regime, the equilibrium condition ∂G

∂M = 0 yields H = ∂ψ
∂M . Hence

the local model predicts a linear relation between H and M after moment switching. Furthermore,

from ∂H
∂M = ∂2ψ

∂M2 , it follows that the slope of the hysteresis kernel in this linear regime is 1
η . The

correspondence between the critical point MR and remanence behavior of a homogeneous single
crystal follows directly from the zero field behavior of the Gibbs energy. The transition point occurs
at the inflection point MI since this is the point of maximum restoring force [3]. In concert, these
equilibrium conditions yield criteria which can be employed to determine initial parameter values for
optimization routines used to estimate parameters in the final transducer models.
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For regimes in which operating time scales make thermal activation negligible, asymptotic re-
lations can be employed to simplify the magnetization relations since jumps in this case can be
considered to occur instantaneously as depicted in Figure 6. In this regime, M = Mmin where
Mmin is obtained through the solution of ∂G

∂M = 0. For the quadratic Helmholtz model (4), the local
magnetization in this limiting case is given by

[M(H; Hc, ξ)](t) =





[M(H; Hc, ξ)](0) , τ(t) = ∅
H
η − MR , τ(t) 6= ∅ and H(max τ(t)) = −Hc

H
η + MR , τ(t) 6= ∅ and H(max τ(t)) = Hc

(12)

where [M(H; Hc, ξ)](0) denotes the initial moment orientation and transition points are specified by

τ(t) = {t ∈ (0, Tf ] |H(t) = −Hc or H(t) = Hc} . (13)

Employing notation used for Preisach models [20], the initial moment orientation is specified by

[M(H; Hc, ξ)](0) =





H
η − MR , H(0) ≤ −Hc

ξ , −Hc < H(0) < Hc

H
η + MR , H(0) ≥ Hc .

(14)

The dependence of M on the local coercive field Hc ≡ η(MR − MI) is explicitly indicated since
parameter η is considered to be distributed for the bulk model developed in the next section.

2.3 Nonhomogeneous Materials and Effective Fields

The local magnetization models (6) or (12) are derived under the assumption that the lattice and
hence domain structure in the materials is completely homogeneous so that free energy profiles
for different regions in the material are identical. However, this typically is not the case due to
material defects, nonuniformities in the crystalline structure, and polycrystallinity. Furthermore,
the models assume that the effective field He at the domain level is exactly the applied field H

and hence they ignore magnetic interactions or Weiss field effects. Through the incorporation of
appropriate stochastic distributions, we extend the local model to obtain a bulk magnetization model
for nonhomogeneous materials with nonconstant effective fields.

To accommodate general material nonhomogeneities, we assume that materials exhibit a distri-
bution of free energy profiles which produce variations in the width of the hysteresis kernels predicted
by (6) or (12) as depicted in Figure 7. Nonhomogeneities are incorporated by assuming that the
parameters MR, MI or Hc = η(MR − MI) are manifestations of an underlying distribution rather
than constants as assumed in Section 2.2. For this initial model, we consider Hc to be normally
distributed with mean Hc. In this case, the total magnetization is given by

M(H) =

∫
∞

0
M(H; Hc, ξ)f(Hc)dHc (15)

with the density

f(Hc) = C1e
−(Hc−Hc)2/b. (16)

Here, C1 and b are positive parameters and M is specified by (6) or (12). We note that in (15), the
lower limit of 0 reflects the requirement that hysteresis kernels have nonnegative width. Alternatively
f can be specified as a log-normal density to reflect the positivity of the kernel widths.
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Figure 7. (a) Free energies associated with nonuniform moment distributions. (b) Variations in the
local coercive field Hc for the hysteresis kernel due to differing free energies.

The second extension addresses the incorporation of mean field effects due to interdomain cou-
pling. In the models of Jiles and Atherton [9, 11] and subsequent magnetostrictive transducer models
[1, 6, 7], this coupling was modeled by an effective field of the form

He = H + αM (17)

where α is a constant mean field parameter. The effective field (17) is analogous to the Weiss
mean field which quantifies interatomic interactions. Rather than assume a constant interaction
coefficient α, we assume that the effective field can exhibit variations due to nonhomogeneities in the
distribution of magnetic moments. To incorporate these field variations, we consider the effective
field to be normally distributed about the applied field. For fixed Hc, the magnetization in this case
is given by

M(H) =

∫
∞

−∞

C2M(H; Hc, ξ)e
−(H−H)2/b̄dH. (18)

The variations in the effective field produce domain switching in advance of the remanence point in
accordance with observations from experimental data.

The full magnetization model for nonhomogeneous polycrystalline materials with variable effec-
tive fields then becomes

[M(H)](t) = C

∫
∞

0

∫
∞

−∞

[M(H + H, Hc, ξ)](t)e
−H2/b̄e−(Hc−Hc)2/bdHdHc (19)

with M again given by (6) or (12). We note that for implementation purposes, the integrals are
truncated using high-order Gaussian quadrature to achieve low-order systems which facilitate efficient
implementation.

Although the model (19) does incorporate certain relaxation mechanisms, it does not yet incorpo-
rate eddy current losses so its use should be restricted to low frequency drive regimes. The inclusion
of eddy current losses and variable temperature operating regimes to accommodate Ohmic heating
can be addressed by including appropriate terms in the energy relations.
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2.4 Magnetoelastic Constitutive Relations

The Gibbs relation (5) incorporates the internal energy and magnetostatic energy exhibited by
isotropic materials at the domain level. However, it neglects the magnetoelastic coupling which
provides the materials with magnetostrictive capabilities. Motivated by experimental evidence that
suggests a quadratic dependence of strain on magnetization, we consider the magnetostrictive relation
(1). Although this relation is customarily employed in magnetostrictive transducer design due to
its simplicity, it can only be justified theoretically in applications where material stresses are such
that stress anisotropy overwhelms crystalline anisotropy. In this case, magnetoelastic coupling can
be incorporated through consideration of the magnetoelastic Helmholtz free energy relation

ψe(M, ε) = ψ(M) +
1

2
Y Mε2 − Y MγεM2 (20)

and corresponding Gibbs energy

G(H, M, ε) = ψ(M) +
1

2
Y Mε2 − Y MγεM2 − HM − σε (21)

where ψ is specified by (4). Here Y M denotes the Young’s modulus at constant magnetization and
γ is a magnetoelastic coupling coefficient.

For regimes in which thermal activation is significant, the local magnetization M is specified by
(6) with the Gibbs energy relation (21) employed in the integrals (9) and (11). For the limiting
case of negligible thermal activation, which is determined through solution of ∂G

∂M = 0, the local
magnetization is given by

[M(H, ε; Hc, ξ)](t) =





[M(H, ε; Hc, ξ)](0) , τ(t) = ∅
H

η−2Y Mγε
− MRη

η−2Y Mγε
, τ(t) 6= ∅ and H(max τ(t)) = −Hc

H
η−2Y Mγε

+ MRη
η−2Y Mγε

, τ(t) 6= ∅ and H(max τ(t)) = Hc

(22)

where Hc = η(MR − MI), τ is given by (13), and

[M(H, ε; Hc, ξ)](0) =





H
η−2Y Mγε

− MRη
η−2Y Mγε

, H(0) ≤ −Hc

ξ , −Hc < H(0) < Hc

H
η−2Y Mγε

+ MRη
η−2Y Mγε

, H(0) ≥ Hc .

(23)

We note that (22) and (23) reduce to (12) and (14) in the absence of strains.
The elastic constitutive relation is determined from the equilibrium condition

∂G

∂ε
= 0

which, as indicated in (3), yields

σ =
∂ψe

∂ε

∣∣∣∣
M

.

The coupled constitutive relations for the undamped magnetostrictive material are then given by

σ = Y Mε − Y MγM2

M(H, ε) = C

∫
∞

0

∫
∞

−∞

M(H + H, ε; Hc, ξ)e
−H2/b̄e−(Hc−Hc)2/bdHdHc

(24)

with M specified by (22) in the absence of thermal activation or (6) with G given by (21) when
thermal activation, or relaxation mechanisms, are significant.
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3 Model Validation

To illustrate properties of the model, we present two examples. In the first, the model is used to
characterize and predict the magnetization and strains produced by a Terfenol-D transducer. The
second illustrates numerically the ability of the model to close biased minor loops.

3.1 Experimental Validation

We first consider the characterization of magnetization and displacements generated by a typical
Terfenol-D transducer having the configuration depicted in Figure 2 in response to a quasistatic
input current I(t) to the solenoid. Details regarding the transducer construction and manner through
which the experimental data was collected are provided in [6]. We consider here data collected at
1 Hz with a prestress of 1 ksi (6.9 MPa). Two input levels yield the moderate and high drive level
magnetization and strain data plotted in Figures 1 and 8.

The parameters MR = 3.7 × 104 A/m, η = 14, Hc = 300 A/m, b = 1 × 108 A2/m2, b̄ =
8 × 108 A2/m2, C = 2.52 × 10−8 and γ = 4.5 × 10−15 m2/A2 in the relations (24) were estimated
through a least squares fit to the high drive level data producing the model response plotted in
Figure 8. The model with the same parameter values was then used to predict the moderate drive
level behavior. Because we considered a fixed prestress regime, we neglected components of the
magnetomechanical coupling in the constitutive relations (24). Hence the bulk magnetization M

was computed using the local magnetization relation (22) with ε = 0 and the magnetostriction
λ ≡ γM2 was used to model the measured strains.

Although certain discrepancies exist between the modeled magnetization and strains and the
experimental measurements, the overall behavior predicted by the model is sufficiently accurate for
material characterization and control design. The contraction in the low field magnetization data is
typically attributed to crystalline anisotropies inherent to Terfenol-D. The present model does not
incorporate anisotropy energy and hence lacks mechanisms necessary to achieve this low field change
in concavity. The discrepancy between the model and data in the tips of the strain loop indicates
limitations in the quadratic magnetostriction model and potential mechanical coupling which must
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Figure 8. Experimental data (– – –) from [6] and model response (——): (a) field-magnetization
relation, and (b) field-strain relation.
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Figure 9. (a) Magnetization predicted by the model, (b) strains profile predicted by the model, and
(c) input field H to the model.

be incorporated through a PDE model for the rod based on the constitutive relations (24). The
development of a distributed rod model and the computation of total strains and displacements can
be addressed in the manner detailed in [6, 7].

3.2 Biased Minor Loops

To illustrate model properties under asymmetric minor loop operation, the field plotted in Figure 9c
was provided as input to the model which yielded the magnetization and strain responses plotted
in Figure 9a and 9b. The parameters in the model were taken to be those specified in the example
of Section 3.1 which were obtained through a least squares fit to high drive level data. Loops 1
and 3 illustrate biased minor loop behavior while loop 2 illustrates the ability of the model to enforce
closure of multiply nested minor loops. Loops 4 and 5 illustrate biased behavior leading to saturation.
When combined with the experimental results presented in Section 3.1, the behavior illustrated here
provides the model with substantial flexibility for material characterization and control design.
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4 Concluding Remarks

This paper presents a model theory to quantify hysteresis and constitutive nonlinearities in mag-
netostrictive transducers operating in moderate to high drive regimes. By combining free energy
analysis at the lattice or domain level with stochastic distributions to accommodate material and
field nonhomogeneities, we obtain a low-order macroscopic model that automatically ensures the
closure of biased, nested, minor loops. In its present form, the model incorporates relaxation mecha-
nisms but neglects eddy current losses so, to avoid simulation inaccuracies, it should be restricted to
low frequencies of operation. Errors introduced by employing the model at high frequencies include
phase shifts and overestimation of magnetization values. Additionally, although stress or strain ef-
fects have been included in the free energy formulations, the accuracy of the model for quantifying
full magnetoelastic coupling has not yet been established. As indicated in Section 3, this will involve
in part the formulation of a PDE model for the Terfenol-D rod and subsequent Galerkin or finite
element discretization to obtain a finite dimensional model. The model also neglects self-heating
in the transducer as well as crystalline anisotropy. A number of present transducer designs employ
water cooling to maintain approximately isothermal conditions and require prestress levels at which
stress anisotropy dominate crystalline anisotropy. For these regimes, the model accurately quantifies
the low frequency dynamics of the transducer.

We note that the free energy framework for this model originated in the context of SMA [13, 16]
and was recently extended to piezoceramic compounds [19] where the distributional analysis concern-
ing variable coercive and effective fields was added. Hence the theory provides a unified framework
for modeling hysteresis in a number of representative smart material systems. Furthermore, it was
illustrated in [20] that the framework can be employed to provide an energy basis for Preisach mod-
els with the following important difference; temperature and relaxation dependencies are manifested
in the kernel or basis for this model whereas they enter the parameters, or measures, in Preisach
expansions. This has important consequences for control design since it provides the potential for
eliminating the gain scheduling required to accommodate changing parameters in broadband control
regimes or systems with fluctuating temperatures.
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