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1 Introduction

The intuitive idea that the number of degrees of freedom should decrease along a Renor-
malization Group (RG) flow can be made precise in Quantum Field Theory (QFT). This is
done by assigning a quantity to Conformal Field Theories (CFT) –which typically are the
endpoints of RG flows– with the property of monotonicity along the flow, i.e. its value is
always larger for the UV CFT than it is for the IR CFT. Such quantities were first found in
even spacetime dimensions d [1–4] and identified with the a coefficient in the Weyl anomaly〈

Tµµ

〉
∼ (−1)d/2aEd +

∑
i

ciIi , (1.1)

where Ed is the Euler density term, and ci are the coefficients of other Weyl invariant
curvature terms Ii. The inequality aUV > aIR was proved in d = 2 [1], in which case it
reduces to the celebrated c-theorem because a = c/3, and in d = 4 [3, 4]. Attempts to
generalize the proof to d = 6 [5] so far have only succeeded in the supersymmetric case [6].

In odd dimensions, even though there are no Weyl anomalies, a monotonic quantity
can still be defined using the (renormalized) free energy on the sphere

F = − logZSd . (1.2)

The inequality FUV > FIR, known as the F -theorem, was proposed and checked in [7, 8]
and then proved in d = 3 using the relation to entanglement entropy across a spherical
entangling surface [9, 10], which can also be used to prove monotonicity of the a coefficient
in d = 2, 4 [11, 12]. For other odd dimensions it is conjectured that the decreasing quantity
becomes (−1) d+1

2 F [8]. This has not been proved yet but is motivated by several examples.
It is sometimes possible to continue RG flows to non-integer dimensions, at least for-

mally. When a flow to an interacting fixed point can be continued to the vicinity of its
upper or lower critical dimension, it becomes short and controllable in perturbation the-
ory. This strategy, known as ε-expansion [13, 14], can lead to a useful approximation of
strongly coupled fixed points. Motivated by this method, ref. [15] proposed to unify all the
previously mentioned inequalities in a single relation valid in continuous dimensions. The
authors defined

F̃ = − sin
(
πd

2

)
F, (1.3)

which in odd d exactly reproduces the (−1)(d+1)/2F term, while in even d provides a smooth
limit proportional to the a anomaly: the factor sin(πd2 ) cancels the pole in the free energy
leading to the finite limit F̃ = πa/2. Therefore, the inequality

F̃UV > F̃IR (1.4)

automatically encodes all the previous relations, and extends them to non-integer values
of d.

In this paper we compute the quantity F̃ for the fixed point in non-abelian gauge
theories, in an expansion around d = 4. The existence of such fixed points can be inferred
from the leading terms in the β function for the gauge coupling, which in d = 4 + 2ε read

βg = εg + β0g
3 +O(g5). (1.5)
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For a small number of matter fields the one-loop coefficient β0 is negative and leads to a
one-loop fixed point g∗21-loop > 0 for d > 4, while for d < 4 a minimal number of matter
fields is required to have β0 > 0, so that g∗21-loop > 0. The quantity F̃ was computed in [16]
for d-dimensional QED with nf four-component fermionic matter fields, for which β0 is
always positive. It was then extrapolated to d = 3 to study the existence of an interacting
IR CFT for QED in 3 spacetime dimensions, by comparing with the quantity F for the
spontaneously broken phase of 2n2

f + 1 massless Goldstone bosons.
The calculation in non-abelian gauge theories presents several new challenges compared

to the abelian case. Firstly, the gauge fixing requires a more careful analysis, because
it becomes unavoidable to include the interaction with the ghost fields. On the sphere
massless scalar fields like the ghosts have zero modes. Due to the fermionic nature of ghosts,
this naively leads to a zero in the partition function, which manifests as an IR divergence
in F̃ . This divergence needs to be cured by an appropriate regulator (or alternatively by
appropriately modifying the gauge-fixing procedure, as we describe in an appendix). Note
that, in order to obtain F̃ , it is crucial to carefully keep track of the normalization of
the path integral on Sd when implementing the gauge-fixing through the Faddeev-Popov
procedure [17]. Secondly, the derivative self-interaction of the gluon leads to diagrams
with two derivatives acting on the propagator, and it is important to include also the
contact-term contributions in order to evaluate correctly the integrals over the positions
of the vertices. Thirdly, unlike QED the renormalization in the gauge sector is not simply
encoded in the definition of a renormalized gauge coupling, instead one needs to consider
also wave-function counterterms for the gluons and the ghosts. We perform the calculation,
taking care of all these issues, up to the next-to-leading (NLO) order, i.e. including up to
two-loop vacuum diagrams. The result is in eq. (4.49). Note that, while we compute the
two-loop diagrams in generic ξ-gauge, which allows us to compare with heat-kernel results
for generic background [18], we keep track of the normalization of the path integral only
in the special case of the Landau gauge, i.e. ξ = 0.

We then apply this result to the fixed points of SU(nc) non-abelian gauge theories in
d = 3 and in d = 5. In d = 3, just like in the QED case mentioned above, the theory is
known to flow to a CFT in the IR for a sufficiently large number of matter flavors nf [19],
and it is conjectured to change its behavior for nf smaller than an unknown critical value
n∗f , flowing instead to a phase with spontaneous breaking of the global symmetry [19–22].
We adopt the same logic as in [16], and compare F of the fixed point to that of the putative
Goldstone bosons phase. We find that when β0 > 0, so that g∗21-loop > 0, the conformal
phase is always favored compared to the symmetry-breaking phase. For β0 < 0 the fixed
point is complex in the ε-expansion, but a unitary fixed point in d = 3 can still exist.1 We
propose a more speculative approach to estimate F of the 3d CFT in this case, by taking an
average value of F̃ among the two complex fixed points. With this method we find that the
Goldstone boson phase becomes favored for small nf , allowing us to put an upper bound
on n∗f . The values found for 2 ≤ nc ≤ 5 are reported in eq. (5.14). The result for nc = 2

1The opposite situation can also occur, a fixed point for ε � 1 which disappears in physical integer
dimensions.
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favorably compares with previous bounds found using again the F -theorem combined with
supersymmetry [23], or lattice methods [24]. We also give an estimate for the upper bound
on x∗ in the Veneziano limit in eq. (5.15), where x = nf/nc.

In d = 5 we use our calculation to investigate the existence of interacting CFTs that
UV complete 5d non-abelian gauge theories. If such CFTs exist they would be an example
of a non-supersymmetric interacting CFT in d > 4. An interesting construction in the
case of SU(2) Yang-Mills theory was recently proposed in [25], and further refined in [26],
using the E1 superconformal field theory that UV completes SU(2) Super Yang-Mills. The
putative non-supersymmetric CFT is obtained as the IR endpoint of the RG flow triggered
by a certain non-supersymmetric deformation of E1, and by construction it is endowed
with a relevant deformation that flows to ordinary SU(2) Yang-Mills theory. Using our
extrapolation to 5d we can compare the quantity F of the non-supersymmetric CFT with
that of the E1 SCFT, known from supersymmetric localization [27], and test if the RG flow
is allowed. We can also easily repeat this check in the case with fundamental flavors nf and
compare with the F quantity of the Enf+1 SCFT that UV completes the supersymmetric
gauge theory with flavors. In all cases in which we have evidence for a fixed point in d = 5,
namely nf ≤ 4 [28], we obtain that the F -theorem allows the proposed RG flow.

The rest of the paper is organized as follows: in section 2 we explain some generalities
about the calculation of the sphere partition function, we perform the gauge-fixing and
compute the one-loop determinants for non-abelian gauge theories. In section 3 we derive
the Feynman rules on the sphere, including the gauge field propagator in an arbitrary ξ-
gauge. In section 4 we compute the two-loop vacuum-vacuum diagrams and obtain our
main result. In section 5 we apply the result to the d = 3 and d = 5 models described
above. In section 6 we draw our conclusions and outline some possible future directions.
Most of the technical points of the calculation are relegated to the first three appendices.
In appendix D we show a sanity check of our results, by comparing in detail the UV
divergences obtained for pure Yang-Mills theory in ref. [18] in the Feynman gauge ξ = 1
with our results. In appendix E we explain a possible alternative gauge-fixing procedure
(used already in [29]) where ghost zero modes are treated more carefully by introducing
ghosts for ghosts, which we also use to partially check the results in the main body.

Finally, a comment on notation: in this paper nf always refers to the number of 4d
Dirac fermions. Given the way we analytically continue fermions, nf 4d Dirac fermions
give rise to 2nf Dirac fermions in 3d and nf Dirac fermions in 5d.

2 Free energy of gauge theories on the sphere: leading order

Let us consider a non-abelian gauge theory with nf massless Dirac fermions in the funda-
mental representation. We want to compute the sphere free energy in d = 4+2ε, defined as

F = − logZSd , ZSd = 1
vol(G)

∫
DADψDψ̄ exp

(
−S[A,ψ, ψ̄, h]

)
. (2.1)

Here h denotes the round metric hµν on Sd with radius R and coordinate x, while vol(G) is
the volume of the space of all gauge transformations, which in our choice of normalization
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does not depend on the gauge coupling g. We can split the action on the sphere in

S = SYM + SFerm + Scurv , (2.2)

with

SYM =
∫
ddx
√
h

( 1
4g2

0
Tr[Fµν(x)Fµν(x)]

)
, (2.3)

SFerm =
∫
ddx
√
h

(
−

nf∑
i=1

ψ̄iγ
µ (∇µ + iAµ)ψi

)
, (2.4)

Scurv =
∫
ddx
√
h
(
b0E + c0R2/(d− 1)2

)
, (2.5)

where h = dethµν ,2 g0 is the bare gauge coupling constant, ψi are nf four-component
Dirac fermions and ∇µ is the curved space covariant derivative which includes the spin
connection term when acting on fermions. As the action should contain all operators that
are marginal in d = 4, we have added the curvature terms together with their bare coupling
parameters b0 and c0.3 For future purposes, we recall the expression for the Ricci scalar R
and the Euler density E on Sd:

R = d(d− 1)
R2 , E = RµνλρRµνλρ − 4RµνRµν +R2 = d(d− 1)(d− 2)(d− 3)

R4 . (2.6)

2.1 One-loop determinants

At leading order in a loopwise expansion the free energy is determined by one loop deter-
minants. As a consequence of the splitting in eq. (2.2), we can divide the leading term of
the sphere free energy FFree in three parts:

FFree = Ffree-YM + Ffree-ferm + Fcurv , (2.7)

with

Ffree-YM = − log
( 1

vol(G)

∫
DAe−Sfree-YM[A,h]

)
, (2.8)

Ffree-ferm = − log
( ∫
DψDψ̄ e−Sfree-ferm[ψ,h]

)
, (2.9)

Fcurv = ΩdR
d−4(d(d− 1)(d− 2)(d− 3))b0 + d2c0), (2.10)

where Sfree-YM is the quadratic part of the Yang-Mills action, Sfree-ferm the free fermion
action and Ωd = 2π d+1

2 /Γ(d+1
2 ) is the volume of the d-dimensional sphere with unit radius.

The expression for Ffree-ferm was found in ref. [15]. The result for a single four-
component Dirac spinor is

Ffree-ferm(d) = − 4
sin(πd2 )Γ(1 + d)

∫ 1

0
du cos

(
πu

2

)
Γ
(1 + d+ u

2

)
Γ
(1 + d− u

2

)
. (2.11)

2We use the same symbol h for the metric determinant dethµν and for the metric tensor hµν whenever
indices are omitted. The difference should be clear from the context.

3In a generic Euclidean manifold we should also include a term with the square of the Weyl tensor,
omitted here as it vanishes on the sphere.
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Let us now focus on the computation of Ffree-YM. The gauge field Aµ on the sphere
can be written as the sum of a longitudinal part Aµ(0) and a transverse part Aµ(1), which can
be separately decomposed in orthonormal eigenvectors of the sphere Laplacian −∇2:

Aµ = Aµ(0) +Aµ(1) , such that ∇µAµ(1) = 0 ,

Aµ(0) =
∑
l>0

a`(0)A
µ `
(0) , Aµ(1) =

∑
l>0

a`(1)A
µ `
(1) ,

(2.12)

with corresponding eigenvalues λ(1)
` , λ(0)

` and degeneracies g(1)
` , g(0)

` given by [30]

λ
(1)
` = (`(`+ d− 1)− 1)

R2 , g
(1)
` = `(`+ d− 1)(2`+ d− 1)Γ(`+ d− 2)

Γ(`+ 2)Γ(d− 1) , ` > 0 ,

λ
(0)
` = `(`+ d− 1)− (d− 1)

R2 , g
(0)
` = (2`+ d− 1)Γ(`+ d− 1)

Γ(`+ 1)Γ(d) , ` > 0.

(2.13)
Note that the eigenfunctions of the longitudinal part can be rewritten in terms of the
covariant derivative of the spherical harmonics Y`(x)

Aµ `
(0) = 1√

λ
(S)
`

∇µY`(x) , for ` ≥ 1. (2.14)

We take the spherical harmonics to be normalized as∫
ddx
√
h Y`(x)Y`′(x) = δ``′ . (2.15)

In order to make the basis Aµ `
(0) orthonormal, we have fixed the normalization factor in

terms of the eigenvalue of the laplacian operator associated to Y`(x)

λ
(S)
` = `(`+ d− 1)

R2 , (2.16)

which has degeneracy g(0)
` . Note a crucial difference between the spectrum for a scalar and

for the longitudinal modes of a vector: the former includes a constant mode with eigenvalue
λ

(S)
0 = 0 and degeneracy g(0)

0 = 1, while for the latter the modes are restricted to ` > 0
and as a result the constant is excluded.

In dimensional regularization the following identities are valid, which will be useful
later in the computation:

∞∑
`=1

g
(1)
` = 1 and

∞∑
`=1

g
(0)
` = −1. (2.17)

With this decomposition in longitudinal and transverse mode the path integral measure
can be rewritten as ∫

DA =
∫ ∞∏

`=1
da`(0)

∫ ∞∏
`=1

da`(1). (2.18)
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2.2 Computation in Landau gauge

We want to compute

Ffree-YM = − log
( 1

vol(G)

∫
DAe−Sfree-YM[A,h]

)
, (2.19)

with
Sfree-YM =

∫
ddx
√
h

1
2g2

0
Tr
[
Aν(−δνµ∇2 +Rνµ +∇ν∇µ)Aµ

]
(2.20)

and Rνµ = d−1
R2 δ

ν
µ on Sd. In order to perform the explicit computation it is convenient

to add a gauge-fixing term to the action. We work in Landau gauge and set to zero the
longitudinal component of the gauge field. In order to do that we insert in the path integral
of eq. (2.1) the following functional identity, valid for any fixed Aµ(x):

1 =
∫
G′
Dµg(U)δ(∇µAUµ )

∣∣∣∣∣det
δ∇µAUµ
δε

∣∣∣∣∣ , (2.21)

where AUµ (x) is the gauge-transformed field under U(x)

Aµ(x)→ AUµ (x) = U(x)(∇µ + iAµ(x))U−1(x) ≡ U(x)DA
µU
−1(x). (2.22)

Taking the components in the Lie Algebra, denoted with indices a, b, c, . . . , and also writing
U = exp(iεaT a) in terms of the parameter εa and the generators T a, we get the infinitesimal
transformation

δAaµ(x) = (DA
µ ε)a(x) = ∇µεa(x) + ifabcAbµ(x)εc(x). (2.23)

The integration in eq. (2.21) is performed over the functional Haar measure µg and is
restricted to the set of gauge transformations G′ that act non-trivially on Aµ(x), i.e. those
that give a non-zero functional determinant. In the functional derivative the variation δε

is an infinitesimal variation away from U (the integration variable) and tangential to G′,
hence δε is any fluctuation not annihilated by the covariant derivative with connection AUµ .
So we have ∣∣∣∣∣det

δ∇µAUµ
δε

∣∣∣∣∣ = det′
(
−∇µDAU

µ

)
, (2.24)

where the prime denotes that we need to exclude the zero eigenvalue and the minus sign is
taken to ensure positivity of the determinant, at least perturbatively. At this point in order
to proceed we restrict ourselves to the case of Landau gauge, and use that in Landau gauge
the operator is self-adjoint as ∇µ and DAU

µ commute. Therefore, we can implement the
prime by excluding constant modes instead of covariantly constant ones. We will always
assume this meaning of the prime from now on, as this will lead to a great simplification
in the following manipulations.

Inserting the identity in the path integral and exchanging the order of the integrals we
obtain

F = − log
( 1

vol(G)

∫
G′
Dµg(U)

∫
DA exp

(
−S[A,ψ, ψ̄, h]

)
δ(∇µAUµ )det′

(
−∇µDAU

µ

))
.

(2.25)
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Using gauge invariance of the integration measure and of the action the integral in A can
be rewritten in terms of the variable AU , renamed A. As a result the integral over µg yields
just the volume of G′ and we get

F = − log
(

vol(G′)
vol(G)

∫
DA exp

(
−S[A,ψ, ψ̄, h]

)
δ(−∇µAµ)det′

(
−∇µDA

µ

))
. (2.26)

The ratio of the two infinite-dimensional volumes gives the volume of the constant gauge
transformations, i.e. the volume of the group G, multiplied by an additional factor that
arises by requiring an orthonormal mode decomposition in the path integral.4 In order to
explain this factor, consider separating a generic gauge transformation f : Sd → G in a
constant and a non-constant part f(x) = f0+f ′(x). This can be done via the decomposition
in spherical harmonics: f(x) = ∑∞

`=0 F`Y`(x). In terms of this decomposition the measure
of the path integral is ∫

Df =
∫ ∞∏

`=0
dF`. (2.27)

Because of the normalization in (2.15) we have Y0 = 1/
√

vol(Sd), which implies f0 =

F0/
√

vol(Sd) and

vol(G) =
∫
dF0 vol(G′) = vol(Sd)

dim(G)
2 vol(G) vol(G′). (2.28)

This leads to

F = − log
(

vol(Sd)
−dim(G)

2

vol(G)

∫
DA exp

(
−S[A,ψ, ψ̄, h]

)
δ(∇µAµ)det′

(
−∇µDA

µ

))
. (2.29)

We then introduce non-constant c′ and c̄′ ghost modes to rewrite the det′ as

det′
(
−∇µDA

µ

)
=
∫
Dc′Dc̄′ exp

(
−
∫
ddx

√
h(x) Tr[c̄′(x)∇µDA

µ c
′(x)]

)
. (2.30)

The final step is to use the decomposition (2.12) to rewrite the δ-functional in eq. (2.29)
in terms of the coefficients of the decomposition

δ(∇µAµ) = δ

 ∞∑
`=1

a`(0)√
λ

(S)
`

∇2Y`(x)

 =
∞∏
`=1

(
`(`+ d− 1)

R2

)− g(0)
`
2 dim(G)

δ
(
a`(0)

)
. (2.31)

4The normalization of the path integral is chosen following ref. [29]. There is however a difference in
the computation of the volume of the gauge group as in our notation the coupling does not appear in the
volume expression.
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This sets to zero the longitudinal modes and provides a crucial factor in the path integral.
Plugging eq. (2.31) in eq. (2.29) and focusing on the Yang-Mills leading contribution gives

Ffree-YM = − log
(

1
vol(G)

√
vol(Sd)dim(G)

∞∏
`=1

(
`(`+ d− 1)

R2

)− g(0)
`
2 dim(G)

∫
DA(1)Dc′Dc̄′ exp

(
−SYM-Free[A(1), h]−

∫
ddx

√
h(x) Tr[c̄′(x)∇2c′(x)]

))
.

(2.32)

We are finally ready to compute the integral. We start from the integration over A(1).
Using the decomposition in eqs. (2.12)–(2.13) and the normalization in eq. (2.27) we get∫

DA(1) exp
(
−
∫
ddx
√
h

1
2g2

0

(
Aa(1)µ(−∇2 + (d− 1))Aµ(1)a

))

=
∞∏
`=1

(
2πg2

0R
2

(`+ 1)(`+ d− 2)

) g
(1)
`
2 dim(G)

.

(2.33)

For the computation of the ghost path integral we again decompose in spherical harmonics:

c′(x) =
∞∑
`=1

C`Y`(x),
∫
Dc′ =

∫ ∞∏
`=1

dC` . (2.34)

As we are dealing with Grassmann variables, we have∫
DC`DC̄` exp

(
C̄`C`

)
= 1 , (2.35)

implying

∫
Dc′Dc̄′ exp

(
−
∫
ddx

√
h(x) Tr[c̄′(x)∇2c′(x)]

)
=
∞∏
`=1

(
`(`+ d− 1)

R2

)g(0)
`

dim(G)
. (2.36)

Replacing in eq. (2.32), we get

Ffree-YM = log vol(G) + dim(G)
2

(
log vol(Sd) +

∞∑
`=1

g
(1)
` log

((`+ 1)(`+ d− 2)
2πg2

0R
2

)

−
∞∑
`=1

g
(0)
` log

(
`(`+ d− 1)

R2

))
.

(2.37)

In order to find an explicit expression for these series one can follow [16], who performed
the same computation in the abelian case. Their procedure is based on the rewriting of
the logarithms appearing in eq. (2.37) with the identities

log(y) =
∫ ∞

0

dt

t

(
e−t − e−yt

)
,

1
t

= 1
1− e−t

∫ 1

0
du e−ut. (2.38)
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Then, using gamma function identities, eq. (2.17), and performing the t-integrals, one
can find an analytical expression for Ffree-YM. The only subtle point regards the ghost
determinant. It is necessary to add and remove the zero mode, regulating with a mass
parameter δ which is set to zero in the end. This provides

−
∞∑
`=1

g
(0)
` log (`(`+ d− 1)) = lim

δ→0

[
−
∞∑
`=0

g
(0)
` log ((`+ δ)(`+ d− 1)) + log (δ(d− 1))

]
,

(2.39)
For the sum over ` we use again eq. (2.38), while for the log (δ(d− 1)) we use [16]

log(δ) = −
∫ 1

0

1
u+ δ

+ log(1 + δ) . (2.40)

Putting everything together we find a smooth limit δ → 0, which reads

Ffree-YM(d) = dim(G)FMax(d)− dim(G)
2 log

(
g2

0R
4−d
)

+ log vol(G)
(2π)dim(G) . (2.41)

where FMax(d) reads

FMax(d) =1
2 log(2π(d− 1)2Ωd)−

1
sin
(
πd
2

) ∫ 1

0
du

(
(2u− d) sin

(
π

2 (d− 2u)
) Γ(d− u)Γ(u)

Γ(d+ 1)

+
(
d2+ 1− 3d(1 + u) + 2u(u+ 2))

sin
(
π
2 (2u− d)

)
Γ(d− 2− u)Γ(1 + u)
2Γ(d)

+
sin
(
πd
2

)
(d− 2)

(d− 2)2 − u2 +
sin
(
πd
2

)
u

)
.

(2.42)

3 Feynman rules on the sphere

In this section we discuss the Feynman rules on Sd for non-abelian gauge theories. We start
by reviewing some preliminary notion on maximally symmetric spaces. We then generalize
the computation of the vector propagator presented in [31] in the Feynman gauge to an
arbitrary ξ-gauge. The ghost propagator requires some care in order to remove the zero
mode, while the propagator of the Dirac fermion is computed by a Weyl transformation
from flat space. We then derive the Feynman rules for the vertices.

3.1 Bitensors in maximally symmetric spaces

The two-point function of a spinning operator in a curved space M defines a bitensor,
namely a bilocal function that is a tensor with respect to both of its arguments. In maxi-
mally symmetric spaces bitensors can be expressed as sums and products of a few building
blocks. Let us briefly review these building blocks following ref. [31]. Starting with the
geodesic distance µ(x, x′), which is a biscalar, other basic geometric objects are the par-
allel propagator hνb′(x, x′) transporting vectors along geodesics from x to x′, and the unit
vectors nν(x, x′) and nν′(x, x′) tangent to the geodesic at x and x′ respectively:

nν
(
x, x′

)
= ∇νµ(x, x) and nν′

(
x, x′

)
= ∇ν′µ

(
x, x′

)
. (3.1)
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hνb′(x, x′), nν(x, x′) and nν′(x, x′) are examples of bitensors. We use the following notation:
a bitensor (n,m) is a rank n tensor at x and a rank m tensor at x′. So for instance
hνb′(x, x′), nν(x, x′) and nν′(x, x′) are respectively (1, 1), (1, 0) and (0, 1) bitensors. In
general objects written as the contraction of two bitensors depend on both x and x′, even
if they contain only primed or unprimed indices. An exception is the following identity
relating the metric hνλ to the parallel propagator

hνλ(x) = h ρ′
ν (x, x′)hρ′λ

(
x′, x

)
, (3.2)

and similarly for hν′λ′(x′). Covariant derivatives of bitensors can be taken with respect to
either x or x′ and are denoted by ∇ν and ∇ν′ respectively.

It is possible to prove that any bitensor in a maximally symmetric space can be ex-
pressed as sums and products of the building blocks hνλ, hν′λ′ , nν , nν′ and hνλ′ , with
coefficients that are only functions of µ. This provides a remarkable simplification in find-
ing the structure of propagators and their explicit expressions.

Let us list some properties, useful for the derivation of propagators:

∇νnλ = A (hνλ − nνnλ) ,
∇νnλ′ = C (hνλ′ + nνnλ) ,
∇νhλc′ = −(A+ C)

(
hνλnρ′ + hνρnλ

)
,

(3.3)

where
A(µ) = 1

R
cot(µ/R) ,

C(µ) = − 1
R

1
sin(µ/R) ,

(3.4)

where R is the radius, defined in terms the constant value of the Ricci curvature scalar in
eq. (2.6). For future convenience it is useful to introduce the variable

z(x, x′) ≡ cos2
(
µ(x, x′)

2R

)
. (3.5)

which is the chordal distance between the points.
Let us now specify to a sphere SdR of radius R. Using stereographic coordinates xµ we

write the metric as

ds2 = hµνdx
µdxν , hµν = 4R4

(R2 + |x|2)2 δµν . (3.6)

The geodesic distance is given by the following identity

cos
(
µ(x, x′)
R

)
= 1− 2R2|x− x′|2

(R2 + |x|2) (R2 + |x′|2) = 2z(x, x′)− 1 . (3.7)

When x′ = 0, we denote for simplicity

z ≡ z(x, 0) = R2

R2 + x2 . (3.8)

The variable z will be useful to write propagator expressions and, in particular, their
expansion around coincident points.
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3.2 Vector propagator on Sd

Vector propagators for maximally d-dimensional symmetric spaces have been computed
in [31]. For our purpose we need the expression of the massless vector field on the sphere.
It follows from the quadratic part of the gauge action

Sfree-YM =
∫
ddx
√
h

1
2g2

0
Tr
[
Aν(−δνµ∇2 +Rνµ +

(
1− 1

ξ

)
∇ν∇µ)Aµ

]
, (3.9)

that the vector propagator Qabνλ′(x, x′) = 〈Aaν(x)Abλ′(x′)〉 = g2
0δ
abQνλ′(x, x′) satisfies the

equation (
−hµν∇2 −Rµν +

(
1− 1

ξ

)
∇µ∇ν

)
Qνλ′(x, x′) = δ(x− x′)hµλ′ . (3.10)

The propagator Qνλ′(x, x′) is a maximally symmetric (1,1) bitensor and can be decom-
posed as

Qνλ′(x, x′) = α(µ)hνλ′ + β(µ)nνnλ′ , (3.11)

where α and β are generic functions of the geodesic distance. Their expression is found
in eqs. (A.14), (A.19) and (A.21) in appendix A, where the interested reader can also find
their detailed derivation.

3.3 Ghost propagator on Sd

The ghost propagator Gab(x, x′) = 〈c′ a(x)c̄′ b(x′)〉 satisfies

∇2Gab(x, x′) = δ(x− x′)δab. (3.12)

As explained in section 2.2, c′ has the zero mode removed, so we need to subtract the
constant part from this propagator. This is also clear from the expansion of the propagator
in terms of the spherical harmonics (2.16):

Gab(x, x′) =
∑
`>0

R2

−`(`+ d− 1)Y`(x)Y`(x′)δab , (3.13)

where the constant mode ` = 0 is excluded from the sum, otherwise giving a divergence.
In order to resum this expression we need to introduce a small regulator, as we did for the
one-loop computation of the free energy:

Gab(x, x′) = lim
δ→0

[∑
`≥0

R2Y`(x)Y`(x′)
−`(`+ d− 1) + δ(d− 1 + δ) −

R2Y 2
0

δ(d− 1 + δ)

]
δab . (3.14)

The first term corresponds to the propagator Greg(x, x′) associated to a scalar field with
mass m2 = δ(d− 1 + δ)/R2, whose expression as a function of z is

Greg(z; δ) = − Γ(d− 1 + δ)
4(4π) d2−1Rd−2Γ(1 + δ) sin(πδ)Γ(d2)

2F1
(
− δ,−1 + d− δ, d2 , z

)
. (3.15)
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Plugging in eq. (3.14) and taking the limit δ → 0, we find a well-defined expression for the
ghost propagator:

Gab(z) = δabG(z) = δab

4(4π) d2−1Rd sin(πd)Γ(2− d)Γ(d2)

(
H(d− 2)

− 2(d− 1)z
d

3F2
(
1, 1, d; 2, 1 + d

2 ; z
))
,

(3.16)

where H denotes the harmonic number, which can be written in terms of the digamma
function ψ and the Euler constant γ as

H(x) = γ + ψ(x+ 1) . (3.17)

3.4 Fermion propagator on Sd

The fermion propagator on Sd is easily computed from its known expression in flat space
by performing a Weyl rescaling, see eq. (3.6). We have

Sij(x, 0) = 〈ψi(x)ψ̄j(0)〉sphere = 〈ψ
i(x)ψ̄j(0)〉flat

Ω(x) d2 Ω(0) d2
= δij

Γ
(
d
2

)
(R2 + x2) d2 γµxµ

2(d+1)π
d
2 (x2)

d
2 Rd

, (3.18)

where in the last equality we used

〈ψi(x)ψ̄j(0)〉flat = δij
Γ
(
d
2

)
γµxµ

2π d2 (x2)
d
2
, Ω(x) = 2R2

R2 + x2 . (3.19)

3.5 Vertices on the sphere

The Feynman rules for the vertices can be read from the interacting part of the gauge-fixed
action. Namely, we have four possible interactions defined as

g0ΓTR(x) = − 1
g2

0
fabc∇νAaλAbνAcλ(x) , (3.20)

g2
0ΓQU(x) = − 1

4g2
0
fabcfadeg0A

b
νA

c
λA

d
νA

e
λ(x) , (3.21)

g0ΓGH(x) = fabc∇ν c̄′aAbνc′c(x) , (3.22)
g0ΓFE(x) = T aαβψ̄

α
i γ

µψβi A
a
µ(x) , (3.23)

respectively the triple gluon, the quartic gluon, the ghost-gluon and the fermion-gluon
interactions.

4 Next to leading contribution

In the previous section we have obtained the Feynman rules for gauge theories on the sphere.
We now have all the ingredients to compute the free energy at the next-to-leading order.
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For nf Dirac fermions in the fundamental representation of the gauge group G = SU(nc)
we have

F = (n2
c − 1)FMax(d)− 1

2(n2
c − 1) log

(
g2

0R
4−d
)

+ log
(

vol(SU(nc))
(2π)n2

c−1

)

+ nfncFfree-ferm + Fcurv −
1
2g

2
0G2 + . . . ,

(4.1)

where G2 includes all the two-loop vacuum diagrams. Note that we have kept all the
couplings bare. In section 4.1 we compute the various diagrams contributing to G2 in
eq. (4.1): the divergent terms in a generic ξ-gauge and the finite pieces in the Landau
gauge ξ = 0. Renormalization is discussed in section 4.2. As a check of the validity of
our results we verify in appendix D that the divergences that we obtain match with those
computed with heath-kernel methods in ref. [18] in the Feynman gauge ξ = 1.

4.1 Computation of the diagrams

The leading interacting part of the free energy is given by connected vacuum diagrams up
to order g2

0. The corresponding contribution, which we will call G2, is composed by the
following two-loop diagrams:

G2 = Gtriple
2 +Gghost

2 +Gferm
2 +Gquart

2 +GCT−vec
2 +GCT−gh

2 . (4.2)

The first four terms in (4.2) are genuine two-loop graphs:

Gtriple
2 = =

∫
ddxddx′

√
h
√
h′〈Γtriple(x)Γtriple(x′)〉 ,

Gghost
2 = =

∫
ddxddx′

√
h
√
h′〈Γghost(x)Γghost(x′)〉 ,

Gferm
2 = =

∫
ddxddx′

√
h
√
h′〈Γfermion(x)Γfermion(x′)〉 ,

Gquart
2 = = 2

∫
ddx
√
h〈Γquart(x)〉 .

(4.3)

The last two ones are instead one-loop graphs with (one-loop) counterterm insertions:

GCT-vec
2 = =−2δL

∫
ddx〈 1

2ξ (∇µAµa(x))2〉−2δT
∫
ddx〈14

(
∇µAaν(x)−∇νAaµ(x)

)2
〉 ,

GCT-gh
2 = =−2δc

∫
ddx〈

(
c̄a(x)∇2ca(x)

)
〉 . (4.4)

These counterterms are defined from the renormalized Lagrangian

ZT
Zg2g2

1
4
(
∇µAaν(x)−∇νAaµ(x)

)2
+ ZL

2g2ξ
(∇µAµa(x))2 − Z

3/2
T

Zg2g2 f
abc∇µAaνAµbAν

c + . . . ,

(4.5)
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where g2
0 = Z2

gg
2 is the relation between the bare and the renormalized coupling and

Z• = 1 + δ•g
2. Thanks to the vector equations of motion, we have∫
ddx〈14

(
∇µAaν(x)−∇νAaµ(x)

)2
〉 = −

∫
ddx〈 1

2ξ (∇µAµa(x))2〉+O(g) , (4.6)

modulo a δ(d)(0) factor, which vanishes in dimensional regularization. The counterterms
δT and δL entering the vector propagator can be computed in flat space and they read (see
e.g. [32]5)

δL = 0 , δT = CA
3 + ξ

32π2ε

(
1 +O(g2

0)
)
, (4.7)

with CA = nc for the SU(nc) group. The presence of the ghost counterterm is instead a
peculiarity of Sd, consequence of the removal of zero modes from the propagator. We refer
to appendix B for its computation. The final result is

δc = −CA
3− ξ
64π2ε

(
1 +O(g2

0)
)
. (4.8)

Applying Wick’s contraction and the previously listed Feynman rules to eq. (4.3),
we get

Gtriple
2 =κ

∫
ddx ddx′

√
h
√
h′
(
∇µ∇µ′Qνν′(Qµµ′Qνν′−Qµν′Qνµ′) (4.9)

+∇νQµµ′(∇ν′Qνµ′Qµν′−Qνν′∇ν
′
Qµµ′) +∇νQµν

′(∇ν′Qνµ
′
Qµµ′−Qνµ

′∇ν′Qµν′)
)
,

Gghost
2 =κ

∫
ddx ddx′

√
h
√
h′ (∇µG ∇µ′G Qµµ

′) , (4.10)

Gferm
2 =−nfTf

(
n2
c−1

)∫
ddx ddx′

√
h
√
h′ (Tr

[
γµSγµ′S

]
Qµµ

′) , (4.11)

Gquart
2 =−κ2

∫
ddx
√
h (QµµQνν−QµνQµν) , (4.12)

GCT-vec
2 =κ

3+ξ
16π2ε

∫
ddx
√
h

( 1
2ξ∇

µ∇νQµν
)
, (4.13)

GCT-gh
2 =κ

3−ξ
32π2ε

∫
ddx
√
h (∇2G) . (4.14)

where Tf = 1/2 for the fundamental representation and we have defined

κ = CA
(
n2
c − 1

)
. (4.15)

Note that the first term in the triple diagram (4.9) includes a double derivative of the vector
propagator, which should be treated with care, because it contains a term proportional to
a δ-function at coincident points, which contributes to the integral. A simple way to
circumvent this problem consists in integrating by parts the first term of eq. (4.9) getting

Gtriple
2 = κ

∫
ddxddx′

√
h
√
h′
(
∇µ′Qνν′∇µ(−Qµµ′Qνν′ +Qµν′Qνµ′) (4.16)

+∇νQµµ′(∇ν′Qνµ′Qµν′ −Qνν′∇ν
′
Qµµ′) +∇νQµν

′(∇ν′Qνµ
′
Qµµ′ −Qνµ

′∇ν′Qµν′)
)
.

5Comparing our Lagrangian (4.5) with the definitions in section 26.5 of [32], we see that the relation
between our counterterms and the counterterms δ3 and δA3 defined there are: g2δT = δA3 − δ3, and
g2δg2 = δA3 − 3

2δ3. Moreover since there is no correction proportional to the longitudinal part of the
propagator, δL = 0. Note also that εthere = −2εhere.
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We refer to appendix C for more details on how to treat contact terms and integration by
parts on Sd in presence of delta function singularities.

For the first three integrals (t = triple, g = ghost, f = fermion) we proceed as follows.
As the integrals only depend on the geodesic distance, or equivalently on z, we can use
spherical invariance to put x′ to zero and reduce the integration over x′ to a volume factor:

Gi2 =
∫
ddxddx′

√
h
√
h′ gi (z) = ΩdR

d
∫
ddx
√
h gi (z) , i = t, g, f . (4.17)

Then we use stereographic coordinates to convert the remaining integral in x to a one-
dimensional integral in the variable z defined in eq. (3.8):∫

ddx
√
h = Ωd−1R

2d
∫ ∞

0
dx

2dxd−1

(R2 + x2)d . (4.18)

In this way we write
Gi2 =

∫ 1

0
dz f i(z) , i = t, g, f , (4.19)

for some functions f i(z). The integral (4.19) cannot be computed directly as it contains
UV divergences in d = 4. We isolate them by expanding f i(z) around coincident points,
i.e. z = 1:

f i(z) =
Ni∑
k=ni

(
f i1k(d)(1− z)k−1 + f i2k(d)(1− z)k−d/2+1 + f i3k(d)(1− z)k−d+3

)
+ f̃ i(z) ,

(4.20)
where f ijk(d) are analytic functions of d and f̃ i remainder terms. The lower bound ni in
the sum appearing in eq. (4.20) is the leading UV divergence of the integrand, and the
upper bound Ni is chosen in such a way that the integral of f̃ i(z) over z between 0 and 1
is finite. We write

Gi2 = (Gi2)Ni + G̃i2, (4.21)

with

(Gi2)Ni =
∫ 1

0
dz

Ni∑
k=ni

(
f i1k(d)(1− z)k−1 + f i2k(d)(1− z)k−d/2+1 + f i3k(d)(1− z)k−d+3

)
(4.22)

and
G̃i2 =

∫ 1

0
dz f̃ i(z) , (4.23)

with G̃i2 finite. The integral (Gi2)Ni can be computed analytically using∫ 1

0
(1− z)a−1 = 1

a
, (4.24)

which is valid for a > 0, but is extendable to any d-dependent a by analytic continuation
in d.6 We then set d = 4 + 2ε and extract the divergent part of eq. (4.22) by expanding

6Luckily, f i1k(d) is zero for k ≤ 0 in all the integrals that we have computed. Otherwise, analytic
continuation of the dimension would not be sufficient to regulate the integral of eq. (4.24).
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the result in powers of ε and isolating the negative powers of ε. Note that the divergence
of the integral has a double source: it comes from both integration over z when k = 0 and
from the expansion of the functions f ijk(d) around d = 4.7 This explains the presence of
double poles in the final result.

For the quartic and the counterterm diagrams the situation is simpler, as we have an
integration over a single variable. Spherical invariance then means that we need to compute
the integrand at coincident points and multiply it by a volume factor. We work out the
procedure for the quartic case (4.12) as example. We have

Gquart
2 = 2κRdΩd

α(z)(d− 1)(2β(z)− dα(z))
4z2

∣∣∣∣
z→1

, (4.25)

where α and β are the coefficients of the two components of the vector propagator defined
in eq. (3.11). For physical values of d, eq. (4.25) is UV divergent. We expand it around
coincident points for generic d, obtaining

Gquart
2 =

N∑
k=0

(
gq1k(d)(1− z)k + gq2k(d)(1− z)−d/2+1+k + gq3k(d)(1− z)−d+2+k

)∣∣∣∣∣
z→1

,

(4.26)
where N ≥ 1 and gqjk are analytic functions of d. For sufficiently small d all terms in the
expansion vanish, except gq1k, with k = 0. We then get

Gquart
2 = gq10(d) = − κRd−4Γ(d− 1)

2d+2π
d
2 (d− 3)2Γ

(
d
2 + 1

)(γ(d− 3)ξ + π((d− 3)ξ − d+ 1) cot
(
πd

2

)

+
(
d(ξ − 1)− 3ξ + 1

)
ψ(d)− γd+ d+ γ

)2
. (4.27)

The analytic continuation of eq. (4.27) for any d gives us the final result. A similar com-
putation of the integrals in eqs. (4.13) and (4.14) gives just −1 and −1/2, respectively, for
any d.

We finally expand eqs. (4.9)–(4.14) around ε = 0 with d = 4 + 2ε, keeping terms up to
constant order, and we get:

Gtriple
2

∣∣∣
div.

= κ

(
(ξ − 3)(3ξ − 7)

192π2ε2
+ ξ(31ξ − 64)− 71− 2(ξ − 3)(3ξ − 7)(γ + log(4πR2))

384π2ε

)
,

(4.28)

Gghost
2

∣∣∣
div.

= κ

(
3− ξ

96π2ε2
+ −ξ − 13 + 2(ξ − 3)(γ + log(4πR2))

192π2ε

)
, (4.29)

Gferm
2

∣∣∣
div.

= (n2
c − 1)nfTf6π2ε

, (4.30)

Gquart
2

∣∣∣
div.

= κ

(
−(ξ − 3)2

64π2ε2
+ (3− ξ)(3 + 31ξ) + 6(ξ − 3)2(γ + log(4πR2))

384π2ε

)
, (4.31)

7The functions f ijk(d) remain separately divergent k > 0, but for k > Ni these divergences cancel when
the j = 1, 2, 3 contributions are summed up.
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GCT−vec
2

∣∣∣
div.

= −κ 3 + ξ

32π2ε
, (4.32)

GCT−gh
2

∣∣∣
div.

= κ
3− ξ
32π2ε

. (4.33)

Summing all the contributions gives

G2|div. = −(n2
c − 1)11CA − 4nfTf

48π2ε
. (4.34)

Note that the results in eq. (4.28)–(4.31) have double poles, which cancel in the sum. More-
over, after summation the ξ-dependence of G2 cancels, as required from gauge invariance
of the total free energy.

As explained before, we compute finite terms only in the Landau gauge ξ → 0.
These are computed numerically. However, thanks to the integer-relation finding algo-
rithm PSLQ [33], we can obtain the exact result from the approximated one:

Gtriple
2

∣∣∣
fin.

= κ
−562 + 63π2 + 6(γ + log(4πR2))(71 + 21(γ + log(4πR2)))

2304π2 , (4.35)

Gghost
2

∣∣∣
fin.

= κ
97 + 9π2 + 6(γ + log(4πR2))(13 + 3(γ + log(4πR2)))

1152π2 , (4.36)

Gferm
2

∣∣∣
fin.

= (n2
c − 1)nfTf

5 + 3(γ + log(4πR2))
36π2 , (4.37)

Gquart
2

∣∣∣
fin.

= κ
128− 9π2 − 6(γ + log(4πR2))(1 + 3(γ + log(4πR2)))

256π2 , (4.38)

and zero for the counterterms, leading to

G2|fin. = (n2
c − 1)

(
CA

49 + 33(γ + log(4πR2))
144π2 − nfTf

5 + 3(γ + log(4πR2))
36π2

)
. (4.39)

4.2 Renormalization

Let us now check that the free-energy (4.1) is UV finite up to order g2, when expressed in
terms of renormalized couplings. The bare curvature couplings in eq. (2.5) renormalize as
follows [34]:

b0 = µ2ε
(
b+ 62(n2

c − 1) + 11nfnc
720(4π)2ε

+O(g4)
)
, (4.40)

c0 = µ2ε
(
c+O(g6)

)
, (4.41)

while for the gauge coupling we have the well-known relation

g2
0 = µ−2ε

(
g2 + 11CA − 4nfTf

3ε
g4

(4π)2 +O(g6)
)
, (4.42)

where µ is the RG sliding scale. Expanding in ε for d = 4 + 2ε, we get the following
divergent contribution from eq. (4.1) at O(g0):

Ffree-YM|div. = −31(n2
c − 1)

90ε ,

nfncFfree-ferm|div. = −11nfnc
180ε ,

Fcurv|div. = 31(n2
c − 1)

90ε + 11nfnc
180ε ,

(4.43)
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which cancel in the sum. At O(g2) we have

−1
2(n2

c − 1) log(g2
0)|div. = −g2(n2

c − 1)11CA − 4nfTf
96π2ε

+O(g4) ,

−1
2g

2
0G2|div. = g2(n2

c − 1)11CA − 4nfTf
96π2ε

+O(g4) ,
(4.44)

which also cancel in the sum. Therefore we obtained, as expected, a finite result for the
total free-energy at order O(g2), and in any ξ-gauge.

4.3 Free energy at the fixed point

We determine here the final form of the free-energy at the fixed point obtained in the ε
expansion up to O(ε). The fixed point is obtained by setting to zero the gauge and the
curvature beta-functions βg, βb and βc. βb and βc, computed in [34]. At the fixed point
g∗, b∗, c∗ we have

Fconf(ε) = F (g∗, b∗, c∗, µR) , (4.45)
of order ε up to two loops. Note that Fconf has to be conformal invariant and therefore the
dependence on R has to cancel in the final result. The expressions for βg, βb and βc –up
to the order required to get Fconf(ε) to order ε– are

βg = εg −
(11

3 CA −
4
3Tfnf

)
g3

(4π)2 −
(34

3 CA
2 − 20

3 CATfnf − 4CfTfnf
)

g5

(4π)4 +O(g7) ,

βb = −2εb− 62(n2
c − 1) + 11nfnc
360(4π)2 − (n2

c − 1)
8

(34
3 CA

2 − 20
3 CATfnf − 4CfTfnf

)
g4

(4π)6

+O(g6) ,
βc = −2εc+O(g6) , (4.46)

from which we get

g∗ = 4π
√

3ε
11CA − 4nfTf

(
1− 3(17C2

A − 10CAnfTf − 6CfnfTf )
(11CA − 4nfTf )2 ε+O(ε2)

)
,

b∗ = −
(

62(n2
c − 1) + 11nfnc
720(4π)2ε

+ (n2
c − 1)(17C2

A − 10CAnfTf − 6CfnfTf )
24ε

g4
∗

(4π)6

)
+O(ε2) ,

c∗ = O(ε2) , (4.47)

where
Cf = n2

c − 1
2nc

. (4.48)

Note that, since βb contains a constant term, b∗ starts at order 1/ε.
Plugging eq. (4.47) in the free energy (4.1) and using the results for G2 obtained in

section 4.1, including the finite pieces computed in the ξ = 0 gauge, we obtain

Fconf = (n2
c−1)

(
FMax(d)− 1

2 log
( 48π2ε

11CA−4nfTf

))
+nfncFfree-ferm(d)+log

(
vol(SU(nc))

(2π)n2
c−1

)

+(n2
c−1)

(
−nfTf (1089Cf−913CA+584nfTf )

121(11CA−4nfTf )2 −
386+363

(
γ+log(4π)

)
726

)
ε+O(ε2) ,

(4.49)
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where FMax and Ffree-ferm are given in eqs. (2.42) and (2.11), respectively. The volume of
the SU(n) group reads (see e.g. [35])

vol(SU(n)) = (2π)
n(n+1)−2

2∏n−1
k=1 k!

. (4.50)

The cancellation of the log(µR) term8 present in the two loop correction (4.39) with those
arising from the replacement of the bare coupling b0 in eq. (2.10) and g0 in the log term in
eq. (4.1) is a check of the result. Equation (4.49) is the main result of this work.

As discussed in the introduction, the conjectured generalized F -theorem (1.4) involves
the modified free energy (1.3). Using the expression for Fconf we get

F̃conf = (n2
c − 1)

(
F̃Max(d) + 1

2 sin
(πd

2
)

log
( 48π2ε

11CA − 4nfTf

))
+ nfncF̃free-ferm(d)

− 1
2 sin

(πd
2
)

log
(

vol(SU(nc))
(2π)n2

c−1

)
(4.51)

+ (n2
c − 1)

(
nfTf (1089Cf − 913CA + 584nfTf )

121(11CA − 4nfTf )2 + 386 + 363(γ + log(4π)
726

)
πε2

+O(ε3),

where
F̃Max = − sin

(
πd

2

)
FMax , F̃free−ferm = − sin

(
πd

2

)
Ffree−ferm . (4.52)

For completeness we report its expression in the Veneziano limit, where nc, nf → ∞
with x = nf/nc fixed. We get

Fconf = n2
c

(
FMax(d)− 1

2 log
( 48π2ε

11− 2x
)

+ xFfree-ferm(d) + 3
4 −

1
2 log(2π)

−
(

193
363 −

737x− 584x2

484(11− 2x)2 + 1
2(γ + log(4π))

)
ε

)
+O(nc) .

(4.53)

Note that n2
c log(nc) terms are induced from both log terms appearing in eq. (4.49) and

they precisely cancel. The same cancellation occurs in the t’ Hooft limit. This cancellation
is expected from large nc considerations and the fact that a log term is not expected in the
genus expansion.

5 Applications

In this section we are going to use the conjectured monotonicity of F̃ along RG flows [15] to
test some proposed RG flows in d = 3 and d = 5, using our result (4.49). The perturbative
expression in eq. (4.49) is not adequate to extrapolate to physical dimensions with |ε| = 1/2.

8All the logR terms appearing in the loop computations of section 4.1 arise from the expansion of an
overall Rd−4 factor present in all the contributions. When moving from g0 to g via eq. (4.42) we effectively
have R→ µR.
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The number of available terms (three) is too limited to attempt a Borel resummation. In
the same spirit of ref. [16], we will instead look for Padé approximants for F̃ . We also use
the knowledge of F̃ for special values of d to effectively increase by one order the expansion
in ε.

Note that F̃ contains a log(ε) term, which, being non-analytic, prevents the application
of standard Padé approximants. Moreover, the free-fermion one-loop determinant is known
exactly as a function of d and it is convenient to keep it not expanded in ε. For these
reasons, we split the total F̃ in two parts, one that we keep in d dimensions and contains
the non-analytic term, and one that is a series in ε. Following ref. [16], we split F̃conf as

F̃conf = nfncF̃free-ferm + 1
2 sin

(
πd

2

)
(n2
c − 1) log

(
2ε

11CA − 4nfTf

)
+ δF̃ (ε), (5.1)

and we use Padé approximants only on the δF̃ (ε) term. The latter includes the free photon
contribution, which is evaluated numerically, and reads

δF̃ (ε) = (n2
c − 1)31π

90 +
(

(n2
c − 1)4.696− π log

(
vol(SU(nc))

(2π)n2
c−1

))
ε (5.2)

+ (n2
c − 1)

(
nfπ(584nfnc − 1089− 737n2

c)
484nc(11nc − 2nf )2 + 386π + 363π(γ + log(4π)

726 − 10.098
)
ε2

+O(ε3) .

For presentation purposes we rounded to the first 4 digits the O(ε) and O(ε2) contribution
coming from the photon free energy, but the result is available to higher precision. Let
us stress the fact that the above splitting is arbitrary and that the corresponding choice
significantly affects the final results. This is a signal of the poor knowledge that we have
on the series. For the same reason we have not attempted to estimate an error bar in our
results.

The fixed points we get in d = 4+2ε of QCDd with gauge group SU(nc) and nf massless
Dirac fermions in the fundamental representation are expected to match two known CFTs:

• For ε = −1 (d = 2) the IR fixed point of QCDd with gauge group SU(nc) and 2nf
massless Dirac fermions in the fundamental representation is an SU(2nf )nc Wess-
Zumino-Witten model with an additional decoupled free boson [36, 37]. This CFT
has central charge

c =
nc(4n2

f − 1)
2nf + nc

+ 1 , (5.3)

and
F̃WZW(d = 2) = π

6 c . (5.4)

Plugging d = 2 in eq. (5.1) and identifying F̃conf with F̃WZW gives

δF̃ (ε = −1) = F̃WZW − ncnf F̃free-ferm = −π3
nf (n2

c − 1)
2nf + nc

. (5.5)
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Figure 1. Left panel: comparison between ∆F̃ as a function of the dimension d for small ε
computed by using the result for F̃ in eq. (4.51) (red) or only its free part given by the first two
rows of eq. (4.51) (blue). Right panel: same comparison extended up to d = 3.

• For ε = 1 (d = 6) the theory is conjectured to have a non-unitary UV fixed point
described by a Lagrangian with a higher-derivative kinetic term F aµν∇2Fµνa [38, 39],
whose anomaly coefficient is a = −(n2

c − 1)55
84 [16]. This leads to

δF̃d=6 = π

2 a = −55π
168 (n2

c − 1) . (5.6)

To improve the numerical estimate of our result we constrain the Padé approximants
of δF̃ to these known points. In order to avoid misleading results, we exclude approximants
with poles in the range between the constraint and d = 4.

5.1 F -Theorem in d = 3

Non-abelian 3d gauge theories have received particular attention in the last years due
to their possible emergence in quantum phase transitions with deconfined criticality [40]
and as theories governing domain walls among different vacua in non-abelian 4d gauge
theories [41]. Theoretically, they are of course also interesting theories by themselves.

It is known since the early work [19] that at large nf QCD3 flows in the IR to a
CFT. For nf ≤ n∗f , with n∗f an unknown parameter, a phase with spontaneous symmetry
breaking (SB) of the U(2nf ) global symmetry is expected. The only pattern of spontaneous
breaking of the global symmetry U(2nf ) compatible with the results of [20, 21] is

U(2nf )→ U(nf )×U(nf ) . (5.7)

More recently, a qualitative phase diagram of the theory as a function of the number of
flavors nf , a fermion mass term, and the level k of a possible Chern-Simons term has
been suggested [22]. We will focus on k = 0 in the following and use the F -theorem to
put an upper bound on n∗f . A naive way to check if the spontaneous symmetry breaking
phase (5.7) can be realized would be to compare FIR = FSB as given by 2n2

f Goldstone
bosons (free in the deep IR), with FUV given in the deep UV by n2

c − 1 free photons and
nfnc free fermions. Unfortunately, due to the log term in (2.41), FUV diverges and no useful
information can be extracted. We overcome this problem by assuming that conformality
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Figure 2. Values of ∆F̃ for SU(nc) as a function of the dimension d computed with Padé-
approximants [2/1] (continuous line) and [1/2] (dashed line) at nc = 2, 3, 4, 5. The value of nf

is set to the smallest integer without poles in both approximants in 2 < d < 4 satisfying g∗2 > 0.

is lost at nf = n∗f by annihilation between the critical QCD3 fixed point with another one,
known as QCD∗3 [42]. A similar analysis for QED3 has been performed in [16]. Treating
nf as a continuous parameter, for nf = n∗f + η and 0 < η � 1, the theory flows to
the IR fixed point QCD3. On the other hand, for nf = n∗f − η the theory is expected
to undergo a weak first-order phase transition [43] (i.e. a walking regime, see [44] for an
explicit realization in 4d gauge theories) with a slow RG passing close to the (now complex)
fixed points, reaching eventually the spontaneously broken phase (5.7). By continuity and
the generalized F -theorem, we then expect that

∆F̃ (n∗f ) = F̃conf(n∗f )− F̃SB(n∗f ) > 0 . (5.8)

Note that values of nf such that ∆F̃ (nf ) < 0 are incompatible with a symmetry breaking
phase. On the other hand, values of nf with ∆F̃ (nf ) > 0 are compatible with either a CFT
or a symmetry breaking phase. For this reason we can only determine an upper bound
n∗f ≤ n0

f , where ∆F̃ (n0
f ) = 0.

An early previous estimate of n∗f was based on Schwinger-Dyson gap equations [19]
and resulted in n∗f ≈ 128(n2

c − 1)/(3π2nc). More recently, a lattice analysis [24] found
n∗f ≤ 4 for nc = 2. An estimate based on the F -theorem already appeared in [23], where as
UV theory it was used a SUSY version of QCD3, a genuine CFT with finite F which can
flow to QCD3 by appropriate deformations. By comparing FSUSY computed by means of
supersymmetric localization with FSB (and assuming that we can flow from the IR SCQD3
fixed point to the IR QCD3 fixed point), it was found n∗f < 13/2 for nc = 2.

The value of F̃SB(nf ) is easily computed by noting that the 2n2
f Goldstone bosons

associated to the breaking pattern (5.7) become free in the deep IR. The contribution to
the free energy for a single real scalar reads [15]

Ffree-sc = − 1
sin(πd2 )Γ(1 + d)

∫ 1

0
du u sin(πu)Γ

(
d

2 + u

)
Γ
(
d

2 − u
)
,

F̃free−sc = − sin
(
πd

2

)
Ffree−sc .

(5.9)
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nf 12 13 14 15 16
SB 18.38 21.57 25.01 28.71 32.67

[2/1] 12.1 13.1 13.6 13.9 14.16
[1/2] − 13.2 13.9 15.01 16.10

Table 1. Comparison between the 3d values of F̃ in the broken phase F̃SB (red) with those obtained
from Padé-approximants [2/1] and [1/2] of F̃conf for QCD3 with nc = 2. In all cases ∆F̃ < 0.

We then have
F̃SB(nf ) = 2n2

f F̃free−sc . (5.10)

For d = 3 it reads

F̃SB = 2n2
f

( log 2
8 − 3ζ(3)

16π2

)
. (5.11)

Before presenting the results of our extrapolations to d = 3, it is useful to see the effect of
the 2-loop correction to the free energy with respect to the one-loop free theory contribution
in the controlled regime with |ε| � 1. This is shown in figure 1 where we plot ∆F̃ (for
nc = 2 and nf = 14) defined as in eq. (5.8) as a function of the dimension d. We compare
the result for F̃conf obtained using eq. (4.51) (red line) with the one obtained using only
the first two rows of the same equation (blue line), i.e. only its free part. We note that the
effect of the interactions is to favor the SB phase with respect to the conformal one and
that the latter is more favored as we lower the space-time dimensions. More importantly,
we see from the left panel in the figure that when |ε| ≈ 0.1 the one and two-loop results
differ significantly and that there is no hope to get reliable results from perturbation theory
in d = 3 (for illustration purposes we report in the right panel of figure 1 the same plot
extended up to d = 3). As anticipated at the beginning of the section, we then consider
Padé approximants of (5.2). For d < 4 we augment the approximant by one more term by
imposing the constraint (5.5).

In figure 2 we show the value of ∆F̃ as a function of the dimension d for nc = 2, 3, 4, 5
and nf equal to the smallest integer without poles in approximants [1/2] and [2/1] satisfying
g∗2 > 0, i.e. nf = 13, 19, 25, 31 respectively.9 We see that at d = 3 ∆F̃ < 0 in all these
cases, indicating the presence of the conformal phase. As expected, this behavior persists
for higher values of nf : we report in table 1 the comparison between the free energy F̃conf
and that of the broken phase for nc = 2, 12 ≤ nf ≤ 16. Not only the value of F̃SB remains
above F̃conf, but also the gap between the two values gets larger and larger.

5.1.1 Small nf

The one-loop beta-function of the gauge coupling vanishes at nf = 11nc/2 and changes
sign below that, making g∗2one-loop < 0. Of course, a unitary fixed point in d = 3 does

9Note that regions in nf close to 11nc/2 are more subject to instabilities as g∗2 blows up there, producing
a pole of order two in the free energy. This is another reason to avoid smaller values of nf which still satisfy
g∗2 > 0 (i.e. nf = 12 for nc = 2).
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Figure 3. Comparison between the 3d value of F̃SB (red line) and of the real part of F̃conf (blue
points) as a function of nf for nc = 2, 3, 4, 5 . The [1/2] approximants provide Re[F̃conf] > F̃SB for
nf ≤ 8, 12, 17, 22 suggesting that a chiral symmetry breaking may occur in these ranges of values.

not necessarily appear as a real one-loop fixed point when ε� 1.10 As mentioned, lattice
results for SU(2) find that n∗f ≤ 4, suggesting that even if g∗2one-loop < 0, there exists a range
in nf where the 3d theory is conformal in the IR. For nf < 11nc/2 we could still use the
free energy to extract information on the RG flow. For g∗2 < 0, the free energy becomes
complex, due to the log term in eq. (5.1), with an opposite phase depending on which of
the two imaginary fixed points is chosen:

log(g∗2) = log(|g∗2|)± i log(π) . (5.12)

We propose to estimate the value of F at the strongly coupled real fixed point by an
extrapolation of the half-sum of the two complex values obtained with the ε-expansion,
i.e. of their real part. The stability of the conformal phase then requires this value to be
smaller than F̃SB. As a result, our more speculative criterion in the range nf < 11nc/2 is

Re ∆F̃ (n∗f ) = F̃conf(n∗f )− Re F̃SB(n∗f ) > 0 . (5.13)

We report in figure 3 the real part of F̃conf compared to F̃SB for nc = 2, 3, 4, 5 computed
with the Padé approximant [1/2]. We see that in all cases there is a wide range of nf for

10A notable example of this sort is provided by the abelian Higgs model of n complex scalar fields. It
is known that in this theory a real one-loop Wilson-Fisher fixed-point appears for n > 183 [45] and this
number greatly varies with the order, see e.g. [46]. It is in fact likely that the 3d abelian Higgs theory has
an IR conformal phase for values of n well below 183.
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Figure 4. Values of F̃conf for pure SU(2) YM as a function of the dimension d computed with the
Padé-approximant [2/1] (purple line), compared to the value of the 5d supersymmetric fixed point
E1, the UV completion of SU(2) SYM gauge theory (red point).

which the conformal phase appears to be unstable. We have

n∗f . 8 , SU(2) ,
n∗f . 12 , SU(3) ,
n∗f . 17 , SU(4) ,
n∗f . 22 , SU(5) .

(5.14)

The upper bound for SU(2) is consistent with the bound n∗f < 13/2 of [23], and n∗f ≤ 4
of [24]. A similar analysis can be done in the Veneziano limit, by taking the large nc, nf
limit of eq. (5.13). The resulting bound is

x∗ . 4.5 . (5.15)

5.2 F -Theorem in d = 5

In this section we extrapolate F̃ to 5d to test a proposed construction of an interacting CFT
that provides a UV completion of 5d SU(2) YM theory. Ref. [25] proposed to construct
this CFT as the IR fixed point of a supersymmetry-breaking deformation of the interacting
superconformal field theory known as E1 theory [47]. The latter is known to provide
the UV completion of SU(2) supersymmetric YM theory (SYM). Ref. [25] studied the
various phases in the two-dimensional space of relevant deformations of the E1 theory,
which includes both the supersymmetric deformation to SYM and the non-supersymmetric
one, and suggested the existence of a second-order transition between two phases that are
described by SU(2) YM theory and a different symmetry-protected topological order. The
CFT capturing this phase transition would therefore be a UV completion of YM, and
provide an example of a non-supersymmetric interacting CFT in d > 4. This scenario was
further explored in [26], that showed that actually the phase transition should be viewed
as separating the YM phase from a phase with spontaneous breaking of the instantonic

– 25 –



J
H
E
P
0
4
(
2
0
2
3
)
0
9
9

nf 0 1 2 3 4
Enf+1 5.097 6.140 7.395 8.959 11.007
[2,1] 4.8 5.1 5.4 5.7 6.2

Table 2. Comparison between the value of F̃Enf +1 (red) and the [2, 1] Padé approximant of F̃conf
in d = 5 (black) as a function of nf for 0 ≤ nf ≤ 4.

U(1), and in [48] where a certain generalization of the theory admitting a large N limit
was argued to have a second order transition in that limit.

A possible test for the proposal of refs. [25, 26] relies on the F -theorem: the sphere
free energy F̃E1 of the SCFT and that of the non-supersymmetric CFT F̃CFT should satisfy
F̃E1 > F̃CFT. The quantity F̃E1 has been computed using localization in [27]. It is natural
to conjecture that the non-supersymmetric fixed point is the continuation to d = 5 of the
UV fixed point visible in the ε expansion in d = 4 + 2ε, and therefore to estimate F̃CFT by
an extrapolation of our result (4.49). An evidence for the persistence of the d = 4+2ε fixed
point up to d = 5 was obtained in ref. [28] using the five-loop MS β-function and Padé-
Borel resummation techniques, both for the pure SU(2) YM theory and for the theory with
nf fundamental Dirac fermions, with nf ≤ 4. Note that the continuation from d = 4 + 2ε
suggests that the critical point should separate a free YM phase from a confined phase
(the only phase realized in d = 4) rather than a second YM phase, similarly to the refined
proposal of [26] and in agreement with a recent lattice study that sees hints of a second
order confinement/deconfinement transition [49]. We therefore proceed to extrapolate F̃conf
using the only available Padé approximant that is constrained also by the d = 6 boundary
condition (5.6) and without poles in the interval 4 ≤ d ≤ 6. In figure 4 we plot the resulting
extrapolation of F̃conf as a function of the dimension. The value ranges between a local
minimum of ∼ 2.9 and a maximum of ∼ 5.0, before turning negative in the vicinity of
d = 6. The value in d = 5 is ∼ 4.8, remarkably close to the known value ∼ 5.1 of F̃ in the
E1 theory, and below it consistently with the proposals of [25, 26].

The UV completion of the supersymmetric theory is also known in the case with
0 < nf ≤ 7 flavors and is given by the Enf+1 SCFT [47]. The value of F̃ can be obtained
from localization similarly to the E1 case [27]. It is possible that also these theories flow to
a non-supersymmetric fixed point when perturbed by a susy-breaking deformation. This
fixed point would then provide a UV completion of the non-supersymmetric SU(2) gauge
theory with nf flavors. We test this possibility by comparing our extrapolation of F̃conf to
F̃Enf+1 . We limit ourselves to the range nf ≤ 4 in which the fixed point in d = 4 + 2ε was
seen to persist up to d = 5 in [28]. We collect the values of the two F̃ ’s in table 2. We
always find F̃Enf+1 > F̃conf, consistently with the existence of the RG flow.

6 Conclusion

In this paper we obtained the NLO result for the free energy on Sd in non-abelian gauge
theories in Euclidean d dimensions evaluated at their perturbative fixed point. We ex-
trapolated the result to compute the quantity F for the corresponding CFTs in d = 3 or
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d = 5 and used our best estimates together with the monotonicity property of F to test
the existence and/or proposed constructions of these CFTs.

While successful in many contexts, the ε expansion is not a rigorous method. Going
forward, it would be interesting to assess its reliability in the context of gauge theories. A
possible verification could come from comparison with lattice and/or conformal bootstrap
results. To that end it would be useful to compute scaling dimensions of operators in addi-
tion to those obtained in [28], or to improve the precision of the predictions by computing
at higher loop order.

Another possibility is to apply the ε expansion to cases in which the existence of a fixed
point, and the associated data, are known from other methods such as supersymmetry or
holography. For instance, one could apply it to the 4d theory with the same matter content
as 5d N = 1 SU(2) SYM with nf fundamental flavors, and check if ε expansion finds a UV
fixed point that extrapolates to the Enf SCFT in 5d. Note that when continuing the fields
to 4d one does not land on a supersymmetric theory: the 5d vector multiplet contains a real
scalar, a 5d vector, and a symplectic Majorana fermion, all in the adjoint representation,
and their continuation to 4d gives rise to a real scalar, a 4d vector, and a Dirac fermion,
which is not the content of a supersymmetric theory in 4d.11 As a result, supersymmetry
is expected to emerge only in the limit d → 5. To check the existence of fixed points in
d = 4 + 2ε one then needs the coupled system of β functions for the gauge coupling in the
presence of both fermionic and bosonic adjoint matter, and of the Yukawa coupling, see
e.g. the Lagrangian (15) in [51]. Note that these β functions are known at lower loop order
compared to the case with only fermionic matter that was used in [28], see [52, 53]. We
leave this as direction for future studies.

The perturbative expansion of the free energy is insensitive to the global structure of
the gauge group, except the log term in eq. (4.49) where the volume of the gauge group
appears. It would be interesting to compare our results for F with those computed using
localization (or some other method) in SCFTs based on gauge theories such as PSU(nc) =
SU(nc)/Znc . This analysis might be useful to shed some light on the nature of the transition
delimited by our fixed points for d > 4, since a confinement/deconfinement transition has
the one-form symmetry Z(1)

nc as order parameter, and the latter is gauged in PSU(nc)
theories.
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11At least, this is the case with the method we are currently using to continue vector fields. One could
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the vector is kept fixed. In this putative approach, 3d gauge theories with matter would not be obtainable
with ε expansion, because the vector in 4d would give rise to additional scalars coupled to matter fields
(and gauge fields as well, in the non-abelian case).

– 27 –



J
H
E
P
0
4
(
2
0
2
3
)
0
9
9

A Computation of the vector propagator

In this appendix we follow ref. [31] for the computation of the vector propagator. We report
the main steps, generalizing the computation to an arbitrary choice of the gauge.

We have seen in the main text that the vector propagator Qabνλ(x, x′) = δabg2
0Qνλ(x, x′)

satisfies eq. (3.10) and can be written as in eq. (3.11) where α and β are generic functions
of the geodesic distance. Using the relations in eq. (3.3) we can decompose eq. (3.11) in
two parts, respectively proportional to gνλ′ and nνnλ′ :

α′′ + (d− 1)Aα′ +
(
(A+ C)2 + (d− 1)

)
α+ 2ACβ

−
(

1− 1
ξ

)
C
(
β′ − α′ − (d− 1)(A+ C)α+ (d− 1)Aβ

)
= −δ(x, x′) ,

β′′ + (d− 1)Aβ′ +
(
(A+ C)2 − d(A2 + C2)− (d− 1)

)
β + (d− 2)(A+ C)2α (A.1)

+
(

1− 1
ξ

)(
β′′ − α′′ + ((d− 1)A+ C)β′ − (d(A+ C)−A)α′ +

(
(d− 1)AC

+(d− 1)A′
)
β +A′

(
− (d− 1)C(A+ C) + (1− d)A′ + (1− d)C ′

)
α
)

= 0.

This is a system of two coupled second order differential equations, which is in general hard
to solve. To make the computation easier it is convenient to introduce a new maximally
symmetric gauge invariant bitensor defined as

〈F aµνF
µ′ν′

b 〉 = 4δab ∇[µ∇[µ′Q
ν′]
ν] = δab

(
σ(µ)h[µ′

[µ h
ν′]
ν] + τ(µ)n[µh

[ν′
ν] n

µ′]
)
, (A.2)

with square brackets meaning antisymmetrized indices and τ and σ being generic functions
of the geodesic distance. From the definition of Qνλ′ in terms of α and β and eq. (3.3),
we get

σ = 4C
[
α′ + (A+ C)α− Cβ

]
, (A.3)

τ = C−1 [σ′ + 2(A+ C)σ
]
. (A.4)

Now, taking the covariant derivative of eq. (A.2) and using eq. (3.10) properly antisym-
metrized, one can find the equation of motion for σ and τ :

∇µ∇[µ∇[µ′Q
ν′]
ν] = 1

ξ
∇ν

(
∇µ∇[µ′Qν′]

µ

)
= 0 . (A.5)

The last equality in (A.5) derives from the fact that the bitensor in parenthesis has two
primed antisymmetrized indices, while the only (0,2) bitensor structures are symmetric. In
terms of σ and τ defined in eq. (A.2), eq. (A.5) reads

σ′ − 1
2τ
′ + (d− 2)(A+ C)σ − 1

2(d− 2)Aτ = 0. (A.6)

Plugging the expression for τ in eq. (A.4), we get a second order differential equation for
σ, which will be useful in the following to solve the system for α and β:

σ′′ + (d+ 1)Aσ′ − 2(d− 1)σ = 0. (A.7)
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This equation can be rewritten as a function of the variable z defined in eq. (3.5):

z(1− z)d
2σ

dz2 + 1
2(d+ 2)(1− 2z)dσ

dz
− 2(d− 1)σ = 0 , (A.8)

which is solved by two linearly independent hypergeometric functions. The correct solution
is chosen by imposing regularity at antipodals point (z = 0) and the correct limit of
coincident points (z = 1). The last condition can be computed by starting from the
expression in coordinate space of the gauge propagator in flat space

〈Aµa(x)Abν′(x′)〉flat = δba

 Γ
(
d
2 − 1

)
(1 + ξ)

2(4π) d2 |x− x′|d−2
δµν′ +

Γ
(
d
2

)
(1− ξ)

(4π) d2 |x− x′|d
xµxν′

 (A.9)

and the flat space expression for σ:

σ(z)flat =
2Γ
(
d
2

)
(4π) d2 (1− z) d2

. (A.10)

We find then
σ(z) = p 2F1

(
d− 1, 2, d2 + 1, z

)
, (A.11)

with
p = Γ(d− 1)

Γ(d2 + 1)2d−1π
d
2
. (A.12)

We can use this result to compute α, proceeding as follows: we compute β as a function of
α and σ from eq. (A.3) and we replace the result in eq. (A.1). This leads to the following
inhomogenous equation for α:

α′′ + (d+ 1)Aα′ − dα− A

2Cσ −
(

1− 1
ξ

)(
α′′ +

(
C ′

C
−Ad

)
α′

−
(
d− 1−A′ + AC

C ′

)
α− 1

4Cσ +
(
C ′

2C −
A

4C (d− 1)
)
σ

)
= −δ(x, x′).

(A.13)

The solution is given by the sum of the solution of the corresponding homogenous equation
(again we should impose the flat space limit and regularity at z = 0) and a particular
solution to reproduce the correct source term. We have

α(z) = q 2F1
(
d, 1, d2 + 1, 1− z

)
+ α̃(z), (A.14)

where the first term is the solution of the homogeneous equation, with a normalization q

to be fixed, and α̃ is a particular solution of the full equation, that plugging the expression
for σ, C and A takes the form

z(1− z)d
2α̃

dz2 +
(
d

2 + 1− (d+ 2)z
)
dα̃

dz
− dα̃ = π−

d
2 Γ(d− 1)
2d+1(

(d+ 2− ξ)(1− 2z)2F1

(
2, d− 1; d2 + 1; z

)
− 4(d− ξ)(z − 1)z 2F1

(
3, d; d2 + 2; z

))
.

(A.15)

– 29 –



J
H
E
P
0
4
(
2
0
2
3
)
0
9
9

A solution for α̃ can be found as follows [31]. We introduce the hypergeometric operator

H(a, b, c) = z(1− z) d
2

dz2 +
((

c− (a+ b+ 1)z d
dz

)
− ab

)
, (A.16)

in order to rewrite the left-hand side of eq. (A.15) as

H (a1 + 1, b1 − 1, c1) α̃ , (A.17)

with a1 = d − 1, b1 = 2, c1 = d
2 + 1. Then, we rewrite the right-hand-side of eq. (A.15)

as H(a1 + 1, b1 − 1, c1)f , with f a function to be determined, using identities among
hypergeometric functions (see e.g. chapter 15 of ref. [54]). A particular solution would
then be α̃ = f .

The right-hand-side of eq. (A.15) is first rewritten as a function of 2F1 (a1, b1, c1, z),
2F1 (a1 − 1, b1, c1, z) and 2F1 (a1 + 1, b1 − 1, c1, z) only. Then, the following identities are
used:

2F1 (a1, b1, c1,z) = 1
d−2H (a1+1, b1−1, c1)2F1 (a1, b1, c1,z) , (A.18)

2F1 (a1−1, b1, c1,z) = 1
2(d−3)H (a1+1, b1−1, c1)(2F1 (a1−1, b1, c1,z)+2F1(a1, b1, c1,z)) ,

2F1 (a1+1, b1−1, c1,z) = 1
b1−a1−2 H (a1+1, b1−1, c1)

(
∂

∂a
− ∂

∂b

)
2F1(a,b,c1,z)

∣∣∣∣a=a1+1
b=b1−1

.

Matching with the left hand side of eq. (A.15) gives the particular solution α̃ = f :

α̃ = p

4(d− 3)2

(
− 2 2F1 (a1 − 1, b1 + 1, c1, z) + (d− 4) 2F1 (a1 − 1, b1, c1, z)

+
(
2 + (d− 3)(1− ξ)

)
(3− d)

(
∂

∂a
− ∂

∂b

)
2F1(a, b, c1, z)

∣∣∣a=a1+1
b=b1−1

)
.

(A.19)

The value of the coefficient q appearing in eq. (A.14) is determined by imposing the correct
flat space limit of α. which is the term proportional to δµν′ in eq. (A.9). We get

q = p
(d− 1)(d− 2)− (2 + (d− 3)(1− ξ))(d− 3)(ψ(d)− ψ(1))

4(d− 3)2 . (A.20)

Finally, we obtain the expression for β by replacing α and σ in eq. (A.3):

β=− (z−1)Γ(d−1)
2dπ d2 (d−3)Γ

(
d
2 +1

)
(
d

dz

(
−z (2+(d−3)(1−ξ))(3−d)

(
∂

∂a
− ∂

∂b

)
2F1(a,b,c1,z)|a=a1+1

b=b1−1

)
(A.21)

+Γ
(
d

2 +1
)(

2F1

(
2,d; d2 +1;z

)(
−
(
(d−3)(1−ξ)+2

)
(ψ(0)(d)+γ)−2dz+d+2z−4

)
−4(z−1)2F1

(
3,d; d2 +1;z

)))
.
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Summarizing, the gauge propagator on Sd is obtained by replacing in eq. (3.11) the expres-
sion for α in eqs. (A.14), (A.19), the one for β just reported, together with the expressions
for the coefficients p and q in eqs. (A.12), (A.20).

Let us now explain how to expand α and β around coincident points (z = 1). First,
note that the hypergeometrics have branch points in z = 1. In order to expand in powers
of (z − 1) it is then convenient to use an identity to obtain only hypergeometric functions
with argument 1 − z. In this way the non-analytic dependence on z − 1 will be captured
completely by the power-law prefactors. The identity that we will use for this purpose is

2F1(a, b, c, z) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a, b, a+ b+ 1− c, 1− z)

+ Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) (1− z)c−a−b2F1(c− a, c− b, 1 + c− a− b, 1− z) .

(A.22)
Derivatives of the hypergeometrics with respect to the parameter a and b appear in both
α and β. In order to obtain the expansion in (1 − z) for these derivatives, we first apply
the identity in eq. (A.22) and then we expand the hypergeometric as

2F1 (a, b, c, 1− z) =
∞∑
n=0

(a)n (b)n
(c)n

(1− z)n
n! , (A.23)

where (x)n are the Pochammer symbols. We truncate the series at a sufficiently high order
and then we apply the derivatives with respect to a and b to this truuncated series. In
order to improve the efficiency of the numerical integration of hypergeometrics needed to
get the finite terms (4.35)–(4.37), it is useful to split the interval of integration 0 ≤ z ≤ 1
in two parts (i.e. [0,1/2] and [1/2,1]) and expand respectively around 0 and around 1 the
hypergeometrics.

B Computation of the ghost counterterm

The ghost wave function renormalization can be computed by imposing finiteness of the
ghost propagator at one loop. We compute the divergence in configuration space:∣∣∣∣∣∣

div.

= δabg
2
0 CA

∫
ddx1 d

dx2
√
h
√
h′ G(x, x1) ∇µ1G(x1, x2)

Qµ1µ2(x1, x2)∇µ2G(x2, 0) .

(B.1)

Since we are dealing with UV divergences, we can take the limit of coincident points
x1 ∼ x2. Taylor expanding the propagator G(x2, 0) around x1, we get

G(x2, 0) = G(x1, 0)+(xµ2−x
µ
1 )∇µG(x1, 0)+ 1

2(xµ2−x
µ
1 )(xν2−xν1)∇ν∇µG(x1, 0)+ . . . (B.2)

Replacing this expression in eq. (B.1) we find that the only non-vanishing contribution
comes from the third term: the first vanishes when derived with respect to x2, while the
second is zero because of Lorentz invariance. All other terms in the expansion provide
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convergent result and are therefore not relevant for the computation of counterterms. We
have then

δab
g2

0
2 CA

∫
ddx1
√
h G(x, x1)Iµν ∇ν∇µG(x1, 0), (B.3)

with

Iµν =
∫
ddx2
√
h′ (∇µ1G(x1, x2) Qµ1µ2(x1, x2)∇µ2(xµ2 − x

µ
1 )(xν2 − xν1)) . (B.4)

By spherical invariance this integral does not depend on the position of x1, which can be
set to zero. We can use Lorentz invariance to rewrite the integral as

Iµν = gµν

d
(Iλσgλσ) . (B.5)

The divergence can be computed by using stereographic coordinates and expanding around
coincident points, as done in section 4.1: we get∣∣∣∣∣∣

div.

= δab
3− ξ
64π2ε

g2
0CA

∫
ddx1
√
h G(x, x1)∇2G(x1, 0) . (B.6)

This divergence can be removed by taking the following wave function renormalization:

c = Z
1
2
c cR , c̄ = Z

1
2
c c̄R , (B.7)

with
Zc = 1 + δc = 1− g2

0
3− ξ
64π2ε

CA +O(g4) , (B.8)

which reproduces eq. (4.8). Note that since there is no divergence proportional to∫
ddx1
√
h G(x, x1)G(x1, 0), (B.9)

there is no mass renormalization, as expected.

C Subtleties on contact terms and integration by parts

In this appendix we show the subtleties that can arise when integrating propagators derived
multiple times on Sd. This analysis is relevant for our purposes in presence of two deriva-
tives acting on the same propagator. For simplicity we will consider a scalar propagator
satisfying the equation

(−∇2 +m2)G(x, x′) = δ(x, x′) , (C.1)

but the same remarks hold for the vector propagator and can be applied to eq. (4.9). Let
us consider the integral ∫

Sd
ddx
√
h f(µ)∇2G(x, 0) , (C.2)

where f is a function of the geodesic distance µ = µ(x, 0), which is taken to be smooth and
bounded on Sd. If one tries to compute this integral by specifying some coordinate system
and writing explicitly the action of the laplacian on the resulting function in the chosen
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coordinates, one gets a wrong answer. This is because the resulting expression for ∇2G(x, 0)
misses the contact term, and the answer one gets would correspond to substituting simply
∇2G(x, 0) = m2G(x, 0) inside the integral.

A strategy to obtain the correct answer is to integrate by parts∫
Sd
ddx
√
h f(µ(x, 0))∇2G(x, 0) = −

∫
Sd
ddx
√
h ∇νf(µ(x, 0))∇νG(x, 0). (C.3)

To check that this works, let us start by separating two regions in the integral∫
Sd\Bδ

ddx
√
h f(µ)∇2G(x, 0) +

∫
Bδ

ddx
√
h f(µ)∇2G(x, 0) , (C.4)

where Bδ is defined as a small d-dimensional ball of radius δ centered at the origin. In the
second integral, for δ → 0, we get the contact term −f(0). In the first term, we integrate
by parts ∫

Sd\Bδ
ddx
√
hf(µ)∇2G(x, 0) = −

∫
Sd\Bδ

ddx
√
h∇νf(µ)∇νG(x, 0)

+
∫
Sd\Bδ

ddx
√
h∇ν

(
f(µ)∇νG(x, 0)

)
.

(C.5)

In the first integral the limit δ → 0 is straightforward, while the second integral re-
quires more care. It is a boundary term that we can rewrite using the first relations
in eqs. (3.3), (3.4) and the chain rule as∫

Sd\Bδ
ddx
√
h ∇ν(f(µ)∇νG(x, 0)) =

∫
Sd\Bδ

ddx
√
h ∇ν

(
f(µ(z))G′(z)∂z

∂µ
nν

)
=
∫
Sd\Bδ

ddx
√
h

(
A(d− 1)f(µ(z))G′(z)∂z

∂µ
+ ∂

∂z

(
f(µ(z))G′(z)∂z

∂µ

)
∂z

∂µ

)
.

(C.6)

Here we used the variable z defined in (3.7). By changing the integration variable to z
we get

lim
δ′→0

2dπ d2
Γ
(
d
2

) ∫ 1−δ′

0
dz

∂

∂z

(
(z(1− z))

d−1
2 f(µ(z))G′(z)∂z

∂µ

)
. (C.7)

The above integral would vanish for well-defined functions on Sd, as expected from Stokes
theorem, but the propagator is actually a distribution which is singular at coincident points
z → 1, so care is required. In the limit z → 1 the scalar propagator can be approximated to

G(z) ' π1− d2

2dΓ
(
2− d

2

)
sin
(
dπ
2

)(1− z)1− d2 + . . . (C.8)

Replacing eq. (C.8) in eq. (C.7) gives a non-vanishing result:

lim
δ′→0

f(µ(z))z
d
2

∣∣∣
z=1−δ′

= f(µ = 0) . (C.9)

This boundary term exactly cancels the contribution coming from the second term in
eq. (C.4), proving eq. (C.3). Summarizing, the evaluation of eq. (C.2) without integrating
by parts would require to pay attention to contact terms by introducing a regulator, while
upon integrating by parts the contact term contribution is compensated by another contact
term arising from a total derivative contribution.
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D Check with Jack [18]

The poles of the diagrams (4.28), (4.29), (4.31), and (4.32) can also be computed with a
different procedure. This procedure, which is based on the heat-kernel expansion of the
propagators, is more general because it works on any curved background. We show in this
section how the divergences which were obtained in this way for pure Yang-Mills theory
in ref. [18] in the Feynman gauge ξ = 1 agree with our previous results. Matching with
the results of [18] requires a bit of manipulations. It is then useful to briefly recall the key
results found in [18, 55] using heat kernel methods.

Let us consider an elliptic differential operator of the form

M(x) = −∇2 + Y (x) (D.1)

and the corresponding propagator satisfying

M(x)GM (x, x′) = δ(x− x′) . (D.2)

Around coincident points x ∼ x′ the following expansion holds [55]:

GM ∼ −
1

16π2ε
aM1 diag +HM

diag , (D.3)

where HM
diag is in general a complicated non-local expression satisfying

M(x)HM
diag = 1

16π2a
M
2 diag . (D.4)

The coefficients aM1 diag and aM2 diag admit instead a local expression in terms of the curvature
tensors and they can be computed for any elliptic operator M . From the propagator
equations in section 3, we see that the ghost differential operator is indeed of the form (D.1),
while the vector one is not for a generic choice of the gauge. This is why ref. [55] provides
results only in the Feynman gauge ξ = 1, for which also the vector operator is of the
form (D.1). The coefficients then read

agh1diag = 1
6R ,

agh2diag = 1
180(RµνρσRµνρσ −RµνRµν) + 1

72R
2 ,

(D.5)

for the ghost and

avec1diag µν = 1
6Rgµν −Rµν ,

avec2diag = 1
360(2(d− 15)RµνρσRµνρσ − 2(d− 90)RµνRµν + 5(d− 12)R2) ,

(D.6)

for the vector. Ref. [18] provides the expressions for the poles of diagrams as a function of
the curvature tensors and of the derivatives of Hdiag, more specifically, ∇2Hgh

diag, H
vec µν
diag ,
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gµν∇2Hvec µν
diag and ∇µ∇νHvec µν

diag .12 Now, from eq. (D.4) we have

−∇2Hgh
diag = 1

16π2a
gh
2 diag , (D.7)

−∇2Hvec µν
diag gµν = 1

16π2a
vec
2 diag −H

vec µν
diag Rµν . (D.8)

The first equation allows us to find a simple expression for ∇2Hgh
diag in terms of the curvature

tensors. However we cannot solve the second equation to obtain a similar simple expression
for Hvec µν

diag . A way to compute ∇µ∇νHvec µν
diag is by imposing the cancellation of poles

in the total free-energy inserting the expression for the diagrams obtained in ref. [18]
(detailed in footnote 13 below) in eq. (4.1). Note that only ∇µ∇νHvec µν

diag and ∇2Hgh
diag

enter the expression for these diagrams, not Hvec µν
diag . In order to obtain a result valid on

a generic manifold, we use the one-loop free energies computed in refs. [18, 55] and the
renormalization of the curvature coefficient a. We get

∇µ∇νHvec µν
diag = 1

8π2

( 109
3960RµνρσR

µνρσ − 229
3960RµνR

µν + 5
1584R

2 + 3
)
. (D.9)

The above relations apply on any manifold.
We can now focus on Sd to get explicit results. The term Hvec µν

diag can be computed
by expanding the propagator around coincident points and using eq. (D.3). Taking the
expression for the gauge propagator of eq. (3.11) for ξ = 1 we get

Qµν(z) = R2−d

Γ
(
d
2 − 1

)
2dπ d2

(1− z)1− d2 +
Γ
(
d
2 − 2

)
(d2 − 6d+ 4)

2d+2π
d
2

(1− z)2− d2

+
Γ
(
d−3

2

) (
−d+ 2π cot

(
πd
2

)
+ 2 (ψ(d) + γ)

)
8π d+1

2 d

 δµν + . . . .

(D.10)

Using analytic continuation in d, we can set to zero the powers (1− z)1− d2 and (1− z)2− d2

of the expansion. The remaining part can be computed at d = 4+2ε and expanded around
ε = 0. Plugging the result in eq. (D.3) gives

Hvec µν
diag (S4) = −1 + 3γ + 3 log(4πµ2R2)

48π2R2 δµν . (D.11)

From eq. (D.9) we have
∇µ∇νHvec µν

diag (S4) = 61
240π2R4 . (D.12)

Using eq. (D.8) we can similarly get the expressions for ∇2Hgh
diag and ∇µ∇νHvec µν

diag :

gµν∇2Hvec µν
diag (S4) = −

232 + 120
(
−1 + 3γ + log(4πµ2R2)

)
480π2R4 , (D.13)

∇2Hgh
diag(S

4) = − 29
240π2R4 . (D.14)

12In ref. [18] Hgh
diag is denoted H0

diag, while Hvec µν
diag is denoted H1 µν

diag .
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Substituting in the results of ref. [18], we find13

Gtriple
2J

∣∣∣
div.

= κ

(
1

24π2ε2
− 13 + 2(γ + log(4πµ2R2))

48π2ε

)
, (D.15)

Gghost
2J

∣∣∣
div.

= κ

(
1

48π2ε2
− 1 + 2(γ + log(4πµ2R2))

96π2ε

)
, (D.16)

Gquart
2J

∣∣∣
div.

= κ

(
− 1

16π2ε2
+ 17 + 6(γ + log(4πµ2R2))

96π2ε

)
, (D.17)

GCT−vect
2J

∣∣∣
div.

= κ

(
− 1

8π2ε

)
. (D.18)

Eqs. (D.15), (D.17) and (D.18) match respectively eqs. (4.28), (4.31) and (4.32) evaluated
at ξ = 1. As explained, the ghost counterterm (4.29) arises because of ghost zero modes,
specific for Sd. Heat kernel methods apply to generic manifolds and therefore there is no
ghost counterterm in ref. [18]. The ghost contribution (D.16) should then match the sum
of eq. (4.29) and the counterterm (4.33) for ξ = 1, and this is indeed the case. We then
have a check diagram by diagram of our computation.

E Alternative gauge-fixing procedure

In section 2.2 we have seen that the quantization of non-abelian gauge theories on Sd

using an ordinary Faddeev-Popov formalism leads to ghost zero modes. In this appendix
we would like to show that our heuristic treatment of the zero modes is confirmed by a
more rigorous treatment using a Batalin-Vilkovisky formalism and ghosts for ghosts, see
e.g. ref. [56] for a nice introduction or ref. [57] for a more detailed treatment. We start
by briefly recalling the method in Yang-Mills theories on flat space and then apply it on
Sd, where we reproduce the action presented in ref. [29]. We then compute the ghost
contribution in eq. (4.2) using the new action and show that it matches with eq. (4.10)
obtained with the more heuristic treatment discussed in the main text.

E.1 Gauge theories on Sd

Yang-Mills theories on flat space do not require ghosts for ghosts and can be treated
with the Faddeev-Popov method. Let us briefly review how the same gauge-fixing can be
obtained with the Batalin-Vilkovisky formalism. Recall that in this formalism for each
field φA we introduce an antifield φ∗A and we require the master equation

(S, S) = 0 , (E.1)

where
(F,G) ≡ δRF

δφA
δLG

δφ∗A
− δRF

δφ∗A

δLG

δφA
. (E.2)

13See eq. (2.55) of ref. [18] for Gtriple
2J , eq. (2.52) for Gghost

2J , eq. (2.33) for Gquart
2J and eqs. (2.31), (2.59) for

GCT−vect
2J . Note that in our convention d = 4 + 2ε, while in ref. [18] the authors used d = 4− ε. Moreover,

all diagrams in ref. [18] are multiplied by a factor 1/2, which we factorized instead outside G2.
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In the Yang-Mills theory case, φA = {A, c}, where c are the ghost fields needed to take into
account of the gauge redundancy of the classical action. The action satisfying the master
equation (E.1) reads

Sflat = SYM[A] +
∫
ddx

(
A∗Dc− ic∗c2 + c̄∗B

)
, (E.3)

where D = ∂ − i[A, · ], [φ1, φ2] = ifabcT
aφb1φ

c
2, with T a and fabc the generators in the

fundamental representation and the structure constants of the Lie algebra, respectively.
In eq. (E.3) trace over group indices and Lorentz indices are implicit and we have added
an auxiliary pair of fields c̄/B and their corresponding antifields, which do not affect the
master equation. Note that only c̄∗ and B enter the action but also c̄ and B∗ are integrated
over in the path integral. A gauge-fixing is introduced through a fermionic functional Ψ[φ]
which fixes the value of the antifields:

φ∗A = δΨ[φ]
δφA

, (E.4)

where now φA = {A, c, c̄, B}. An appropriate choice for the gauge-fixing functional is

Ψ =
∫
ddx c̄

(
−ξ2B − ∂A

)
, (E.5)

which leads to
Sg.f.
flat = SYM[A] +

∫
ddx

(
c̄ ∂Dc−B

(ξ
2B + ∂A

))
, (E.6)

which is the usual Rξ gauge fixing of the Yang-Mills action.
On Sd an important difference arises. Covariantly constant modes leave the gauge

field invariant, so the transformation c→ c+θã0, with θ a Grassmann constant parameter,
leaves the gauge field invariant, provided that

Dã0 = 0 . (E.7)

The mode ã0 is a (bosonic) ghost for ghost. We should then add ã0 to the set of fields in
the action, together with its antifield. ã0 is actually not a field, but a single mode of a
field, the covariantly constant one. For simplicity we keep this implicit. The solution to
the master equation reads now

S = SYM[A] +
∫
ddx
√
h
(
A∗Dc+ c∗a0 − ic∗c2 + ia0

∗[c, a0] + c̄∗B + ā∗0c̄0 + b0
∗c0
)
, (E.8)

where we have added two pairs ā0/c̄0 and b0/c0 of fields (and their antifields), composed
only of a covariantly constant mode, like ã0. In a perturbative treatment, where we expand
in modes the quadratic action, the covariantly constant mode ã0 should be replaced by a
constant mode a0 satisfying

∇a0 = 0 , (E.9)

which corresponds to the ghost zero modes found in the ordinary Faddeev-Popov procedure
followed in section 2.2. The action (E.8) no longer solves the classical master equation if
ã0 → a0. We now have

(S, S) = 2A∗Da0 = 2iA∗[a0, A] 6= 0 , (E.10)
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However, adding appropriate terms to the action we can introduce a new action S̃ = S+δS
such that

(S̃, S̃) = 2iφ∗A[a0, φ
A] . (E.11)

In this way, after gauge-fixing we have

(S̃, S̃) = 2i δΨ
δφA

[a0, φ
A] = 2i[a0,Ψ[φ]] . (E.12)

For appropriate choices of the fermionic functional Ψ (gauge-fixing), the last term in
eq. (E.12) vanishes and the master equations are satisfied, together with gauge-fixing
independence of correlations function of gauge-invariant operators. In order to satisfy
eq. (E.11), we add to S in eq. (E.8) a term

δS = i

∫
ddx
√
h
(
B∗[a0, c̄] + c̄∗0[a0, ā0] + c∗0[a0, b0] + a0

∗[a0, c]
)
. (E.13)

The BRST transformation of fields is given by δθφ
A = θ(−1)εA(S, φA),

δθφ
∗
A = −θ(−1)εA(S, φ∗A), with εA = 0, 1 depending on the statistics of φA . Explicitly

we get

δθA = θDc, δθc = θ
(
− a0 + ic2), δθ c̄ = −θB, δθB = iθ[a0, c̄],

δθa0 = 0, δθ c̄0 = −iθ[a0, ā0], δθc0 = −iθ[a0, b0], δθā0 = θc̄0, δθb0 = θc0,

so that δθ1δθ2φ = −iθ1θ2[a0, φ] for any field φ. The gauge-fixing fermionic functional is
taken as

Ψ =
∫
ddx
√
h

(
c̄
(
− ξ

2B −∇A− b0
)

+ ā0c

)
, (E.14)

providing
A∗ = −∇c̄, c∗ = ā0, c̄∗ = −ξ2B −∇A− b0,

B∗ = −ξ2 c̄, b∗0 = c̄, ā∗0 = c.

(E.15)

We then get

Sg.f. =SYM[A]+
∫
ddx
√
h

(
c̄∇Dc+B

(
− ξ2B+∇A+b0

)
+ā0a0+cc̄0+c̄c0+iξ c̄2a0−ic2ā0

)
,

(E.16)

which is the same action of eq. (4.2) in ref. [29].14 We have then the following path integral:

ZYM = 1
vol(G, g)

∫
DA exp(−SYM)

= 1
vol(G)

√
vol(Sd)dim(G)

∫
DA Dc Dc̄ DB Da0 Dā0 Db0 Dc̄0 Dc0 exp(−Sg.f.) .

(E.17)
14The precise matching, in the notation of ref. [29], is c̄ → ic̃, B → −ib, ā0 → ã0 − ξ2a0/2, where ξ2 is

another gauge fixing parameter which does not affect the total path integral. Note that ref. [29] takes the
fields to be antihermitian and not hermitian as in our case.
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The volume factor obtained after gauge fixing is the same found with the procedure used in
the rest of this work: we can indeed verify that integrating out all fields and proceeding in
reverse order to what we did in section 2.2, we reproduce the path integral in the first line
of eq. (E.17). The integration of c̄0, c0 and b0 removes the zero modes respectively of c, c̄
and B. Integrating out a0 (along an imaginary contour to have a convergent path integral)
sets also ā0 to zero, while the gaussian integration in B reproduces the usual gauge fixing
term (∇A)2/(2ξ).

E.2 Computation of the ghost propagator

In the previous section we explained how to perform the gauge-fixing of Yang-Mills theories
on Sd with the field-antifield formalism. The action that we obtained contains many fields
that were not present in our main computation. As mentioned, one possibility is to integrate
them out: in such a way we recover our original action and we can proceed as we already
did. The other possibility is to keep the action (E.16) as it is and compute Feynman rules
directly from it. We will focus in particular on the ghost action, which is

Sghost =
∫
ddx
√
h c̄∇Dc+ cc̄0 + c̄c0 + iξ c̄2a0 − ic2ā0 . (E.18)

In order to compute the propagator, we should rewrite the quadratic part of this action as

Sghost =
∫
dd
√
h

1
2
(
c̄ c
)
M

(
c

c̄

)
+ cc̄0 + c̄c0 , (E.19)

with
Mab =

(
δab∇2 −ξfabca0c
fabcā0c −δab∇2

)
. (E.20)

As explained before, the terms linear in c̄0 and c0 set to zero the constant modes. As
opposed to the standard ghost action, we do not have only the ghost-antighost term, but
also terms quadratic in ghosts and antighosts. The propagator will then be a matrix

Gab =
( )

=
(
〈c̄′ac′b〉 〈c′ac′b〉
〈c̄′ac̄′b〉 〈c′ac̄′b〉

)
(E.21)

with all entries different from zero, satisfying

M ij
abG

bc
jk = −δik δca δ(x− x′) . (E.22)

Let us consider the following ansatz and verify if there exists such a solution:

Gab =
(
δabf1(z) + a0bā0af2(z) fabca0

cg1(z)
fabcā

c
0h1(z) −δabf1(z)− a0aā0bf2(z)

)
, (E.23)

with f1(z), f2(z), g(z), h(z) generic functions of the stereographic coordinates. By replacing
in eq. (E.22) and using the identities

fabcfa′b′c = nc
n2
c − 2 (δaa′δbb′ − δab′δba′) , (E.24)
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we get
∇2f1 = −ξ nc

n2
c − 2(a0ā0)h1(z) + δ(x− x′), ∇2h1 = −f1 ,

∇2f2 = ξ
nc

n2
c − 2h1(z), g1 = ξh1 .

(E.25)

This is a system of coupled ordinary differential equations. The solution is easily found by
decomposing in spherical harmonics each function of z:

f(z) =
∑
`>0

f` Y`(x)Y`(x′) , (E.26)

where we exclude the constant mode ` = 0 because of the linear terms in eq. (E.19). We get

f1` = 1
2

( 1
−`(`+ d− 1) +m2 + 1

−`(`+ d− 1)−m2

)
,

h1` = 1
2m2

( 1
−`(`+ d− 1) +m2 −

1
−`(`+ d− 1)−m2

)
,

f2` = ξ

2m4

( 1
−`(`+ d− 1) +m2 + 1

−`(`+ d− 1)−m2 −
2

−`(`+ d− 1)

)
,

g1` = ξf1` ,

(E.27)

where

m2 ≡
√

ξnc
n2
c − 2(a0ā0)

1
2 . (E.28)

Following the notation of section 3.3, we denote by Greg(x,m2) the solution of the scalar
propagator equation on Sd with zero modes removed:

Greg(z,m2) =
∑
`>0

1
−`(`+ d− 1) +m2Y`(x)Y`(x′). (E.29)

Summing over the non-constant modes we then find

f1 = 1
2
(
Greg(z,m2) +Greg(z,−m2)

)
,

f2 = ξ

2m4

(
Greg(z,m2) +Greg(z,−m2)− 2Greg(z, 0)

)
,

h1 = 1
2m2

(
Greg(z,m2)−Greg(z,−m2)

)
,

g1 = ξh1 .

(E.30)

E.3 Match with eq. (4.10)

Let us now consider how the ghost contribution Gghost
2 is modified when the propagator in

eq. (E.21) is used. As in this case also Wick contractions of two ghosts or two antighosts
are allowed, the number of ghost diagrams increases. We have

G̃ghost
2 = + = G̃ghost1

2 + G̃ghost2
2 , (E.31)
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with

G̃ghost1
2 = g2

0

∫
ddx ddx′

√
h
√
h′
(
nc
(
n2
c − 1

)
∇µf1∇µ′f1

+ nc
n2
c − 2(a0

2ā2
0 − (a0ā0)2)∇µf2∇µ′f2

)
Qµµ

′
,

G̃ghost2
2 = g2

0
n2
c

n2
c − 2ξ(a0ā0)

∫
ddx ddx′

√
h
√
h′ (∇µ′∇µh1)h1Q

µµ′ . (E.32)

The evaluation of eq. (E.32) for generic ξ, which includes integrating over a0 and ā0, is a
non-trivial task. The computation remarkably simplifies in the Landau gauge ξ → 0. In
this limit m2 → 0, the functions f1 and h1 are of order 1, while f2 and g1 are subleading
in ξ. The only contribution left in the limit is given by the first term in Gghost1

2 , the one
involving the product of two f1. For ξ → 0, f1 → Greg(z, 0), which coincides with the ghost
propagator in eq. (3.16), and we reproduce exactly the result in eq. (4.10):

lim
ξ→0

G̃ghost
2 = Gghost

2 . (E.33)

This is a sanity check of the validity of the heuristic Faddeev-Popov approach followed in
the main text.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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