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The free-energy shift of the conduction electrons due to the exchange interaction with a 
localized impurity spin is calculated by perturbation expansion up to the fourth order of the 
exchange interaction. It is shown that the usual procedure to obtain the free-energy shift at 
finite temperature by first calculating the energy shift at absolute zero and then replacing 
the step function by the fermi distribution function involves a serious error. By a careful 
analysis of this point, we find a logarithmic term in the fourth order. The contribution to 
the entropy of this term is 

which is negative for both signs of J. This term represents a decrease of the entropy of the 
conduction electrons and may be interpreted in terms of the correlated motion of the spin 
polarization coupled to the localized spin. This result seems to indicate that the binding 
energy of the ground state in the case of negative exchange interaction is obtained by cal
culating the free energy at finite temperature (to infinite order) and then extrapolating the 
result to zero temperature. 

§ 1. Introduction 

The low-temperature anomalyl) associated with the localized spin exchang~
coupled to conduction electrons in metals has been studied extensively in recent 

years. Among the properties studied the specific heat has been a contraversial 

subject. Yosida and Miwa2
) calculated the change of the free energy due to the s-d 

exchange interaction by direct perturbation expansion and found that it involves 

no log T term nor T log T term at least up to the fourth order of the interac

tion. This means that the free energy is essentially temperature-independent at 
least up to fourth order. They conjectured that this result might hold ill higher 
orders and gave a physical explanation for this, namely: Although the s-d 
exchange interaction reduces the magnitude of the localized spin, the (2S + 1) -fold 

degeneracy remains in perturbation calculation and this makes the entropy un

changed and thus the free energy unchanged. On the other hand Bloomfield 

and Hamann3
) calculated the specific heat using their solution to the integral 

equation obtained from Nagaoka's truncation scheme for' the Green's functions. 
They found a large peak of the specific heat centered around one third of T K' 

Since Nagaoka's truncation scheme becomes essentially the same as the pertur
bation expansion at high temperatures, their result is in contradiction to Y osida 
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684 J. Kondo 

and Miwa's which predicts no contribution to the specific heat. In this paper 

we recalculate the free-energy shift by perturbation expansion and find a T 10gT 

term in the fourth order of the interaction. 

§ 2. Preliminary consideration 

Since the point which we are going to make is rather tricky, we first de
scribe in detail the point which the previous perturbation calculations2

),4) have 

. missed. We will do this for the third Qrder term as an example, although the 

T 10gT term occurs in the fourth order. 

At zero temperature the third order shift of the energy is essentially ex

pressed by 

~ f1 (1- f2) (I-fa) / (c2--; C1) (C3 - C1) dc1dc2dc3 , (1) 

whe:t;e fl = f(c1) , etc., and f(s) = 1 for S<SF' f(c) = 0 fors>sF. It is usually said 
that (1) gives us the free-energy shift at finite temperature if one takes f(c) 
as the fermi distribution function. 2

),4) (The divergence due to the vanishing 

denominator is avoided by taking the principal value of the integral.) 
However, this is wrong. By expanding the density matrix in powers of 

the interaction and taking the traces (see the next section), one obtains in third 
order the following expression instead of (1) :5) 

~ H (;;::-~,) \ c~ c~5 ~ ~c~p-~)( "c~~~ + fe:-"':~)( i'c~_c~~l ] 
xf1 (1- f2) (1- f3) dS l d82 dss , (2) 

where (3 =l/T (we set kB= 1). The integrand never diverges when any two 

or three of s/s become identical, so the integral is well defined. But if one 

devides the integral into three terms, each one is not defined. A procedure to 
avoid this difficulty is to take the principal value of each integral, namely to 

replace (2) by 

lim~( [ ____ 1 ___ + _exp Jft (C1 - C2)J_ + exp ((3 ( 81 - C3» ] 
8->0 3 j (82 - C1)8 (cs - C1)8 (83 -C2)8 (81 :- C2)8 (c~ - 82)8 (C3 - C1)8 

xf1 (1-f2) (1- f3) dc1dc2dcS , (3) 

where 

1 
- ----- --

(C2- C1)8 

Then it IS easy to show that (3) is equal to 

) f1 (1- f2) (1- fs) / (C2 - C1)8 (cs - 81)8dc1dc2dc3 . (0 ~O) (4) 
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Free-Energy Shift of Conduction Electrons 685 

This is the same as the principal value of (1). 
We now show that (3) is not identical with (2). First we observe that 

the quantity in the square brackets of (2) becomes (32/2 when 1(3(81-82)1<1 
and 1(3 (81 - 83) 1 <1. The corresponding quantity of (3) also becomes (32/2 when 

the same conditions and 0<1(3(81~82) 1,0<1(3(81-83) 1 are fulfilled. But when 
0:>1(3(81-82) 1 and 0:>1(3(81-83) 1 are satisfied, the quantity in the square brackets 
of (3) is no longer (32/2 but order of 0- 2

• The interval in which this divergence 

occurs is given by (82 - 81), (83 - 81) 0JO / (3, so we have a contribution which does 

, not vanish in the limit of 0 ~o. 

To obtain a, quantitative result we consider the difference between (3) and 

(2): 

(3) - (2) = (1/3) ~ f 1d81 ~ [(the quantity in the square brackets of (3)) 

- ((32/2) J (1 - f2) (1- f3) d82d8g 

= (1/3) ~ f 1d81 ~ 02 [(83 - 82)2 + (C2 - 81) (83 - 81) J (1--f2) (1- f3) / 

[(82 - 81)2 + 02J [ (83 - 81)2 + 02J [(82 - 83Y + 02J d82d8g 

= (rr2/3) ~ f1 (1- flYd81 ~ (rc 2T/6). (5) 

This is finite when 0 tends to zero. Although this term as· well as (3) are not 
singular as T ~O,2) we show in the next section that a similar careful consider

ation leads to the T logT term in the fourth order .. 

§ 3. Calculation 

We consider a single localized spin of magnitude S exchange-coupled to the 

conduction electrons. The Hamiltonian of our system is expressed by 

H=Ho+ V, 

Ho = ~ 8ka 'klTa klT , 
ku-

where the notation have the usual meaning.6
) The free energy F of the system 

is given by 

exp ( - /1F) = T I' exp ( - (3 (Ho + V) ) . (7) 

By expanding III terms of V, we have 
j3 S1 Sn-1 

exp( - (3F) = exp (- (3Fo) [1 + ~ (- y~ ~ ~ ... ~ <V(Sl) V(S2) ... V (sn) )ds1ds2·· ·dsnJ, 
'0 0 0 

(8) 
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686 J. Kondo 

where Fa is the unperturbed value of the free energy, < ) denotes a thermal 
average in the unperturbed system and V (s) = eSIloVe-SHo. We define an n-th 

order quantity Rn by 

exp ( - (3F) = exp (- (3Fa) [1- (3 ~ RnJ. (9) 
, n 

As Bloch and Dominicis have shown,5) the integral over Sn of (8) can be carried 

out. Then. Rn is expressed by 

/3 Sn_!l 

Rn= [( - )n-1/nJ \ '" \ <V(Sl) '" V(Sn-1) V)ds1 .. ·dsn- 1.. (10) 
a 0 

The expansion of the free energy up to fourth order is expressed by 

F-Fo=R2+Rs+R4+ ({3R22/2) + .... (11) 

The second order term R2 is easily evaluated. Using (6) together with 

aier (s) = exp (CkS) aiZer, akrr (s) = exp (- Cl~S) ako-, we have 

/3 

R2 = - (1/2) \ < V(Sl) V)ds1 
o 

/3 

= - (JI NYS (S + 1) ~ f1 (1- f2) ( exp ((C1 - C2) Sl) dS1 , 
kIk!l .) 

(12) 
o 

---f3 

Fig. 1. Diagram for R2• 

where C1 = Ckl' etc., and f1 = f(C1) = <a~eraklo-). The second 6rder term may be 
represented by a diagram of Fig. 1, where the line with the arrow pointing up 

(down) denotes the factor 1-f2(f1)' The vertex Sl is integrated from 0, to {3. 
In order to avoid the indefiniteness associated with the vanishing denominator, 

we process the integral of (12) as follows: 

/3 /3 

( exp ((C1 - C2) Sl) dS1 = lim Re ( exp ((C1 - C2 + io) Sl) dS1 , . (13) J (\-'>0 J 
o 0 

where Re denotes "real part of". Then we have 

R 2= (JINYS(S+ l)lim Re ~ f1(1- f2) [(C1-C2-io)-1+ (C1-C2+ iO)-lJ 
(\-'>0 kIk2 

D 

= 2J2p2S (S + 1) P ~ f1 (1- f2) I (C1 - C2) dc1dc2 
. -D 
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Free-Energy Shift of Conduction Electrons 

= - 4 (log 2) J2 p2DS (S + 1) + 0 (T2/ D2), 
(14) 

where we have assumed as usual a 

square band with the density of states 

p between D>c> -D. P denotes the 

principal value of the integral. This is 
the result obtained previously.6) 

-(3 

O-~--~~--~~ ~~ 0 
-- ----- 5:3 

o 
(a) (b) 

00 

687 

o 
(e) 

We now proceed to the fourth order 

terms, because the third order term is 

non-singular. There. are nine distinct 

processes for R4 which are represented 

by diagrams in Fig. 2. By a straight

forward calculation we find that the con

tributions of eacn diagram to R4 are 

expressed by 

(d) (e) (f) 

~o 
(9) . (h) (i) 

Fig. 2. Diagrams contributing to R4• 

R 4(a) =S2(S+ 1Y(J/N)4[1 + (S(S+ 1)) -lJOa, 
R/» = S2 (S + 1Y (J! N)4 [1+ (S (S + 1)) -lJ Ob , 

R 4(C) = S2 (S+ 1Y (J/ NY [1- (S (S + 1)) -lJ Qc , 

R 4(d) = S2 (S + 1Y (J/ N)4[1- (S(S + 1)) -lJQd, 

R 4(e) = S2 (S + 1)2 (J/ N)4 [1- (S (S + 1)) -lJ Qe , 

R/f) = S2 (S + 1)2 (J/ N)4 [1- (S (S + 1)) -lJ Qf' 

R/g) = S2 (S + 1)2 (J / N)42Qg, 

R 4(h) = S2 (S + 1)2 (J/ NY2Qh , 

R 4(i) = S2 (S + 1)2 (Jj N)42 [1- (S (S + 1)) -lJ Oi . 

(lSa) 

(lSb) 

(lSc) 

(lSd) 

(lSe) 

(lSf) 

(lSg) 

(ISh) 

(lSi) 

We show only the expressions of Oa and Q'£> which are the only ones necessary 

for later calculation: 

Oa = - (1/2) k!d4 /lg2g3g4 j exp (Sl (C1 - C4) + S2- (C4 - C3) + S3 (C3 - C2)) 
13>81>82>83>0 

(16) 

Qi= - (1/2) k"F-k!lg2f3g4 ~ exp(sl(C3- C4) +S2(C1- C2) +S3(C4- C3)) 
13>81>~2>83>O 

(17) 

where g2 = 1-j;, etc. The other contribution to fourth order IS easily obtained 
from (12): 
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688 J. Kondo 

(18) 

where 

~ 2 

OJ= (/1/4) (~ f1g2 ( eXP(sl(C1-C2))ds1) 
k1kz ) 

. (19) 
. 0 

It is instructive and helps later calculation to consider the case of static 

potential instead of the exchange interaction. If the conduction electrons interact 
with a a-type static impurity potential of magnitude J[S (S + 1) ] 1/2, the fourth 

order shift of the free energy is expressed by 

LlF4= S2(S+ lY(J/ N)4 (Ork+ Ob+ Oa+ Qa+ Oe+ Qj+ Og+ Qh + Oi + Qj). (20) 

We now consider the sum of Qg + Oh + Oi. Inspection of Figs. 2 (g), (h) 
and (i) shows that the vertex of the left-hand part of the diagrams (S2 of Fig. 

2 (i), for example) may be integrated from 0 to /1 without regards of the positions 

of the other two' vertexes. Thus we find from (17) 

~ 

Qg+Qh+Oi=':'--" (l/2)kl"'fLf1g2fsg4 ~ exp(s2(C1- C2))ds2 
o 

~ Sl 

X ~ dS1 ) dss exp (Sl (C3 - C4) + Ss (84 - cs)). 

o 0 

A bit manipulation shows that this is minus of OJ (sec (19), namely 

Og+Oh+ O'i+Oj=O. 

(21) 

(22) 

This is an example of the linked-cluster expansion theorem. From this result 

and from the fact that the static potential causes no singular term we have 

(23) 

U ning (22) and (23) in (15) + (18), we see that the only fourth-order term 
which we now have to look at is 

(24) 

For a symmetric band we have Ork = Qb. We process the integrals in (16) 
and (17)' as we did in (13).' For Ork we have 

Ork = - (1/2) lim Re L: f1g2gsg4 
Ii->o kr"'k4 

X } exp (Sl (C1 - C4 + ia) + S2 (C4 - Cs + ia) + S3 (C3 - C2 + ia) dS1ds~ds3 
~>Sl>S2>~3>O 
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Free-Energy Shilt 01 Conduction Electrons 689 

+ 1 + 1 , 
(e2 - e1) - (8s - 81) + (84 - 81) + (82 - e1) - (8s - 81) - (84 - 81) + 

+ (82 - ~J-=-(8s - ~J~-(84 - 81) J, (25) 

where 

1 (26) 

By taking three principal parts or one principal part and two a-functions, we 

have 

Oa = - 2p4 P ~ 11g2gsg;/ (82 - e1) (8s - 81) (84 - 81) d81" ,d84 

+ ~n2p4 p ~ i1g12g21 (82 - 81) d81d8 2 ' 

The second term (minus a non-singular term) of (27) IS processed as 

2n2p4 P j [/2 - (1/2)] 11g121 (81 - 82) d81d82 

= n2p4 p ~ t 12 - (1/2) ] 11 (1-/1) I (81 - 82) d81d82 

= n2p4 T ~ [i2 - (1/2) ] (dill del) I (82 - 81) d81d82 

(27) 

=n2p4Tlog(DIT) , (28) 

The first term of (27) is more 'redious to handle with, The integral in the 
first term of. (27) is calculated as 

p ~ ilg2ggg41 (82 - 81) (83 - 81) (84 - 81) de1d82d8sd84 

= - j g2gsg41 (81 - 82)0 (81 - 8s)0 (81 - 84)od81 , "d84 

+ ) glg2Ysg41 (e1 - 82)0 (81 - 83)0 (81 - 84)Odel" ,d84 ' (29) 

To calculate the first term we consider an integral ¢ and ¢': 
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690 J. Kondo 

Then from direct calculation we observe that ¢ and ¢' are not identical: 

¢_ ¢' = n2) [0 (81- 82) 0 (81 - 83) + ?L(~1 - 8~?L(8L- 84~ + 0 (81.=- 83) 0 (81 - 84) Jd81 . 
(81 - 84)0 (81 - 8s).~ (81 - 82)0 

(30) 

¢' is easily evaluated as 

¢'= [log I (D-82)/(D+82) I-log I (D-84)/(D+84) 1]/(82 -84) (82 -83) 

- [log I (D- 83)/(D+83) I-log I (D-84)/(D+84) IJ/(83-84) (82 -83)' (31) 

This is a well-defined function of 82, 83 and 84, There is no divergence when 

two of. 8/S become identical, or no logarithmic dependence when 8i'S are near 
the.· fermi surface.' The first term of (29) is then calculated as 

- ~ ¢g2g3g4d82d8sd84 

= - ~ cp' g2gSg4d82df,sd84 - ~ (¢ - ¢') g2g3g4d82d8sd84 . 

The first term IS non-singular. The second term becomes 

- 3n2 ~ 0 (81 - 82) 0 (81 - 83) g2g3g4/ (81 - 84)od81" ·d84 

= - 3n2~ g12g4/ (81 - 84)od81 , . ,d84 

= - 3n2T log(D/T) + non-singular terms. 

The second term of (29) is calculated as 

\ ____ glg2gSg4 . -d81d82dc3d84 
) (81 - 82)0 (81 - 83)0 (81 - 84)0 

+ -(8-3---8-2)-0 (-c~~ 8;)0 (83 ~ 8-:Y~ + (84 - 82)0 (84 ~ 83)0 (84 - 81)J 

X glg2g3g4d81, . ·d84 . 

(32) 

(33) 

If we set 0 = 0, the integrand vanishes when none of two of 8/S is identical. 
Actually this integral remains finite when 0 ~O, because after reducing the in
tegrand to a common denominator we have 
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Free-Energy Shift of Conduction Electrons 

=n2~~i}!~~d81d82= (3n2/2)Tlog(D/T). 
(e1 - 82)0 

Adding (32) and (34) we find 

p ~ f1g2gSg4/ (82 - 81) (83 - 81) (84 - 81) d81" ·d84 

691 

(34) 

= (3n2/2) T log (T / D) + non-singular terms. (35) 

From (28) and (35) we find 

Oa = 4n2p4T log(D /T) + non-singular terms. . (36) 

Adding the contribution from Ob we have a singular fourth-order contribution 
to the free-energy shift as 

(37) 

Qi is processed in a. similar way. 

x ~ exp (Sl (8s - 84 + io) + S2 (81 - 82 + io) + S3 (84 - 8s + io)) ds1ds2dsa 

I1>S1>s2>S3>0 

= _ (1/2) p4 Re ~ [ gli2fsg4 
(84 -. 83) + (81- 82) + (81 + 84 - 82 - 8s) + 

+ gl f2 fs g 4 f1 g2-,--g---.::3 f_4 ____ _ 
(84 - 8s) - (81 - 82) + (81 + 84 - 82 - 8a) + (84 - 8s) - (81 - 82) + (81 + 84 - 82 - 8a) + 

- f1g2gsf4 Jd81 ' .. d8
4 

• (38) 
(84 - 8s) + (81 - 82) + (81 + 84 - 82 - 8s) + 

There occur three types of the principal-value integrals. The first one is ob

tained by taking two o-functions. 

p ~ 0 (84 - 8s) a (81- 82) gl};fsg4/ (81 + 84 - 82 - 8s) del" ·d84 

= ~ f1g1d81 ~ a (84 - 8s)isg4/ (84 - 8s) d8sd84 

= (T/2) ~[(f3-f4)/(84-83)]a(84-8s)d83d84=T/2. (39) 

The second one also contains two a-functions. 

P) a (Sl + 84 - 82 - 8s) a (81 - 82) gli2isg4/ (84 - 83) d81" ·d84 

= ~ glf1d81) a (84 - 83)isg4/ (84 - 8s) d83d84 = T /2 . (40) 

The third one contains three energy-differences in the denominator 
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692 J. Kondo 

p ( . gli2isg4 - i1g2gsi4 d C1" . dC4 . 

j (C4 - cs) (Cl - C2) (el + C4 - C2 - C3) 
(41) 

The numerator may be regrouped as 

- P) (~i1)i2 (~-f4)~_~---dc1" ·dC4 • 

(C4 - C3) (Cl - C2) (C1 + C4 - C2 - C3) 
(42) 

By changing the numbering of c/s one finds that the second term IS identical 

to the· first. They are easily found to involve no T logT term (see the Ap

pendix). Then one sees that Qi inv'olves no singular term. (37) is the only 

singular contribution in fourth order. 

§ 4. Discussion 

From (37) one obtains the entropy change due to the s-d interaction: 

(43) 

This is negative for both signs of J. This result may be interpreted in terms 

of the correlation betvyeen the localized spin and the conduction electron spin. 

Thus the conduction; electrons may be· polarized by the exchange interaction. 

The polarization is either positive or negative, depending on the sign of J. But 

in any case this polarization will follow the motion of' the localized spin. Thus 

although the entropy arising from the (2S + 1) -fold degeneracy may be unchanged, 

the entropy of the conduction electrons may be decreased for both signs of J. 
This decrease of the entropy of the· conduction electrons may correspond to the 

specific heat anomaly found by Bloomfield and Hamann. It must be noted that 

there certainly is a contribution to the specific heat for positive J. Whether it 

has a large peak as was found for negative J by Bloomfield and Hamann or 

not must be determined by examining higher order terms, but it seems unlikely 

that it does. For negative J we may expect that the decrease of the entropy 

of the conduction electrons becomes quite appreciable ("--'kB) as the temperature 

becomes of the order of T K and tends to cancel the entropy arising from the 

(2S + 1) -fold degeneracy of the spin, thus producing a binding energy of the 

order of kBT K' 
When the concentration of impurity atoms is finite but small, one may con

sider that the reduction of the entropy is additive. For Ni impurities it will 

be "--' NikB at T< T K' But at T= T K the entropy of the conduction electrons itself 
is "--' NkB2T K/ CF' Thus we see the impurities are no longer independent when 
NikB> NkB2T K/CF' This' condition is rewritten as R< (a2~y!S, where R is the 

average distance between impurities, a is the lattice constant and ~ = hVF/kBT K. 6
) 

This condition is less stringent than the condition, R<~, which is obtained in 
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Free-Energy Shift of Conduction Electrons 693 

order that the "wave functions" of the impurity do not overlap. 

The above result has a profound effect on the interpretation of the bound
state theories which treat the ground state for ,negative J.7)~9) It is now well 

established that th~ ground state in the case of negative J has a binding energy. 

It has been a controversial point whether this ground state with the binding 
energy is reached by ,perturbation expansion (analytically continued across T K 

as Suhl and Wong did10
» or there realizes a bound state which is not obtainable 

from perturbation theory. If the total entropy were to remain unchanged by 

perturbation theory as Yosida and Miwa conjectured, it would be said that the 
true ground state cannot be obtained by perturbation theory.' However, now 

that the entropy turned out to decrease by perturbation theory, there is ,nothing 

which prevents from considering that the ground state can be obtained by per
turbation theory. 

Appendix 

The first term of (42) may be calculated as 

]_p~f1-f2dc1dc2)~f3)f4[ 1 _+' 1 JdC3dc4 

2 8 1 - C2 8 4 - 83 C4 - 8 3 + C1 - 82 C4 - C3 - (C1 - 82) 

where the last line defines 1(8) in an obvious '\'vay. Since I(c) IS an even func
. tion of 8, we have 

(A·2) 

The value of I(c) for c~o occurs only when 81 is near the band edge (81~ -D). 
Singularity arising frOID sharp cutoff of the density of states, if such exists, can 

be avoided by changing trivially the shape of the density of states near the band 

edge. When Icl is large compared with kT, I(c) is essentially loglc/DI. Thus 
we see (A. 2) involves no T log T term. 
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Note added. in proof: 

Using the procedure described in the text we obtained the third order shift of the free energy, 
R3, as 

Combining this with the fourth order term, we have 

L1F=L1E_ (8n2/3) S(S+ 1)J3 p3kB T[1 +6J p log (T/ D) + ... ], 
where L1E is practically independent· of T. We may expect that the series in the parenthesis is the 
expansion of [1- 2J p log (T/ D)] -3. Then the entropy change in the leading logarithmic accuracy 
is given by 

L1S(T) = (8n2/3) S(S+ 1)J3p3kB I [1-2J p log (TID)]3. 

This is positive for J>O. Thus the interpretation given in Discussion of the result (43) which IS 

negative for both signs of J is not correct for positive J. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/40/4/683/1926229 by guest on 20 August 2022


