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FREE EXTREME POINTS OF FREE SPECTRAHEDROPS AND
GENERALIZED FREE SPECTRAHEDRA

ERIC EVERT

Abstract. Matrix convexity generalizes convexity to the dimension free setting and has

connections to many mathematical and applied pursuits including operator theory, quantum

information, noncommutative optimization, and linear control systems. In the setting of

classical convex sets, extreme points are central objects which exhibit many important

properties. For example, the well-known Minkowski theorem shows that any element of a

closed bounded convex set can be expressed as a convex combination of extreme points.

Extreme points are also of great interest in the dimension free setting of matrix convex sets;

however, here the situation requires more nuance.

In the dimension free setting, there are many different types of extreme points. Of

particular importance are free extreme points, a highly restricted type of extreme point

that is closely connected to the dilation theoretic Arveson boundary. If free extreme points

span a matrix convex set through matrix convex combinations, then they satisfy a strong

notion of minimality in doing so. However, not all closed bounded matrix convex sets even

have free extreme points. Thus, a major goal is to determine which matrix convex sets are

spanned by their free extreme points.

Building on a recent work of J. W. Helton and the author which shows that free spectra-

hedra, i.e., dimension free solution sets to linear matrix inequalities, are spanned by their

free extreme points, we establish two additional classes of matrix convex sets which are

the matrix convex hull of their free extreme points. Namely, we show that closed bounded

free spectrahedrops, i.e, closed bounded projections of free spectrahedra, are the span of

their free extreme points. Furthermore, we show that if one considers linear operator in-

equalities that have compact operator defining tuples, then the resulting “generalized” free

spectrahedra are spanned by their free extreme points.
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1. Introduction

A linear matrix inequality (LMI) is an inequality of the form

LA(x) := I −A1x1 − . . . Agxg � 0

where the A1, . . . , Ag are d×d symmetric matrices and the x1, . . . , xg are real numbers. The

solution set of such an LMI, i.e., the set of x ∈ Rg such that LA(x) � 0, is a convex set called

a spectrahedron. Spectrahedra have connections to many areas including convex analysis,

optimization, and linear systems control.

Linear matrix inequalities easily extend to the case where each Xℓ is a n× n real sym-

metric matrix whose product with Ai is the Kronecker product. That is,

LA(X) := Idn − A1 ⊗X1 − · · · − Ag ⊗Xg � 0.

A free spectrahedron is the set of all g-tuples of symmetric matrices (of any size) such that

LA(X) � 0. The term “free” here refers to both the fact that the linear matrix inequality

LA(X) � 0 is defined independent of the size of the matrices Xℓ, and the fact that the

corresponding free spectrahedron contains matrix tuples of all sizes n× n.

Free spectrahedra are prototypical examples of sets that exhibit a dimension-free type

of convexity. Namely, free spectrahedra are matrix convex, i.e., are closed under matrix

convex combinations where contraction matrices summing to the identity play the role of the

convex coefficients. An important feature of matrix convex combinations is that they allow

for combinations of matrix tuples of different sizes. This means that the geometry of any

individual level of a matrix convex set is connected to that of all other levels of the set.

Another important example of matrix convex sets are projections of free spectrahedra

[34]. Thanks to their association to linear matrix inequalities, these so called free spectra-

hedrops are more tractable than general matrix convex sets while also being more general

than free spectrahedra. Free spectrahedrops and free spectrahedra have for example found

use in optimization settings where one would like to determine if a given convex set is “LMI

representable”, i.e., if it is the projection of a spectrahedron [33]. In addition, free spec-

trahedrops and free spectrahedra come up in problems related to spectrahedral inclusion

[32, 12, 27, 54, 35] and in linear control engineering [36].

Mirroring the role of extreme points in classical convex sets, extreme points play a key

role in the understanding of matrix convex sets [24, 28, 45, 22, 14]. However, in the dimension

free setting of matrix convexity, there are many types of extreme point. A central goal in the

study of matrix convex sets is to determine the most restricted type of extreme point that

can recover any element of a given closed bounded matrix convex set through matrix convex
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combinations. That is, one searches for the strongest possible extension of the classical

Minkowski theorem to the dimension free setting.

Of particular note in this pursuit are matrix extreme points [53, 25, 26] and free extreme

points [39]. Matrix extreme points are known to span general closed bounded matrix convex

sets through matrix convex combinations [40, 31]; however, they are not necessarily a minimal

spanning set. Free extreme points, on the other hand, are more restricted than matrix

extreme points [24, 20]. Stated informally, a free extreme point of a matrix convex set

is an element that can only be expressed via trivial matrix convex combinations of other

elements. Free extreme points are of great interest due both to their close connection [24] to

the dilation theoretic Arveson boundary [3, 5] and to the fact that they necessarily form a

minimal spanning set if they do span. The short coming of free extreme points is that, when

restricting to finite dimensions, they can fail to span a given closed bounded matrix convex

set. In fact, there are closed bounded matrix convex sets which have no (finite dimensional)

free extreme points at all [21]. Thus an important question in the pursuit of a dimension

free Minkowski theorem is “which matrix convex sets are the matrix convex hull of their free

extreme points”.

Recently, [23] showed that in the case of bounded free spectrahedra, free extreme points

span. Furthermore, [23] showed that there is a tight dimension bound on the sum of sizes of

free extreme points needed to express an element of a bounded free spectrahedron as a matrix

convex combination of free extreme points. The main contribution of the present article is an

extension of this result to two additional classes of matrix convex sets. Namely we show that

closed bounded free spectrahedrops and closed bounded “generalized free spectrahedra”, i.e.,

closed bounded solution sets to linear operator inequalities with compact defining tuples, are

the matrix convex hull of their free extreme points. An informal statement of this result is

as follows.

Let K be a real closed bounded free spectrahedrop or a real closed bounded generalized free

spectrahedron and let X ∈ K be a g-tuple of real symmetric n × n matrices. Then X is a

finite matrix convex combination of free extreme points of K whose sum of sizes is bounded

by n(g + 1).

The proof of this result follows the same approach used in [23] which itself was inspired

by works such as [1, 19, 13]. Namely, we show the existence of a special type of dilation

called a maximal 1-dilation. We then show that constructing finite sequence of at most ng

maximal 1-dilations of X results in a so called Arveson boundary point of K. Determining

the irreducible components of the resulting Arveson boundary point yields an expression of

X as a matrix convex combination of free extreme points of K. An additional key ingredient

which is need when K is a free spectrahedrop is [18, Theorem 3.2] which allows us to express
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a free spectrahedrop as an intersection of free spectrahedra in a particularly well-behaved

manner. A self contained version of this result which has been adapted to our setting is

presented as Theorem 2.1.

We point the reader to the upcoming Theorem 2.3 for a formal statement of our main

result. Also see Sections 2.2 and 2.3 for formal definitions of generalized free spectrahedra

and free spectrahedrops.

1.1. Related works. The study of extreme points of matrix convex sets goes back Arveson

who, (in the language of completely positive maps on operator systems) conjectured that if

one extends to infinite dimensional levels, then infinite dimensional free extreme points span

[3, 4]. This infinite dimensional question was studied by a number of authors [30, 1, 43, 19,

5, 39, 44] until it was finally settled in 2015 by Davidson and Kennedy [13].

Matrix convexity is also closely related to the rapidly growing area of free analysis

[7, 49, 16, 51, 38, 2, 6, 37]. Here the goal is to extend classical geometric and function theoretic

results to the noncommutative setting where one considers functions whose inputs are g-

tuples of matrices or operators. This study was largely pushed by Voiculescu’s introduction

of free probability which has since been used to great effect in random matrix theory [50, 42].

Other closely related topics include noncommutative optimization [17, 48, 10, 41, 52] and

quantum information and games [9, 8, 29, 15, 47].

1.2. Reader’s guide. Section 2 introduces our definitions and notation and gives a formal

statement of our main result, Theorem 2.3. Section 3 introduces the notion of a maximal

1-dilation for free spectrahedrops and shows that maximal 1-dilations in a bounded free

spectrahedrop reduce the dimension of the dilation subspace. Section 4 is the equivalent of

Section 3 in the case of generalized free spectrahedra. Section 5 discusses the relationship

between generalized free spectrahedra and free spectrahedrops and gives an example of a

generalized free spectrahedron that is not a free spectrahedrop.

2. Definitions, notation, and main results

Throughout the article we let H denote a real Hilbert space. B(H) and SA(H) respec-

tively denote the sets of bounded operators on H and bounded self-adjoint operators on H.

Additionally let SA(H)g denote the set of g-tuples of the form X = (X1, . . . , Xg) where

each Xℓ is a bounded self-adjoint operator on H. Say tuples X, Y ∈ SA(H)g are unitarily

equivalent if there exists a unitary U ∈ B(H) such that

U∗XU = (U∗X1U, . . . , U
∗XgU) = (Y1, . . . , Yg) = Y.
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A bounded operator B ∈ B(H) is positive semidefinite if it is self-adjoint and for any

v ∈ H, one has 〈Bv, v〉 ≥ 0. In the case that B is a compact self-adjoint operator, this

is equivalent to all of B’s eigenvalues being nonnegative. Given two bounded self-adjoint

operators B1, B2 ∈ SA(H) let B1 � B2 denote that B1 − B2 is positive semidefinite.

While general real Hilbert spaces do play a role in this article, our main interest is

matrix convex sets which are restricted to finite dimensions. Thus it is convenient so also have

notation for matrix spaces. We letMm×n(R)
g denote the set of g-tuples ofm×nmatrices with

real entries, and let Mn(R)
g = Mn×n(R)

g. Additionally, SMn(R)
g is the set of all g-tuples

of real self-adjoint (symmetric) n×n matrices. Additionally we set SM(R)g = ∪nSMn(R)
g.

Given a subset K ⊆ SM(R)g, we let K(n) denote the set

K(n) := K ∩ SMn(R)
g.

That is K(n) is set of g-tuples of n × n matrices that are elements of K. The set K(n) is

called the nth level of K.

For clarity we emphasize that, although we restrict to real settings, we use the term self-

adjoint rather than symmetric to provide consistency in the terminology used for matrices

and operators. Similarly, to be consistent with this terminology choice, we use B∗ rather

than BT to denote the transpose of a matrix B.

2.1. Linear operator inequalities. Given a g-tuple

A = (A1, . . . , Ag) ∈ SA(H)g

of self-adjoint operators on H, a monic linear pencil is a sum of the form

LA(x) = IH −A1x1 − A2x2 − · · · − Agxg.

Given a tuple X ∈ SMn(R)
g, the evaluation of LA at X is

LA(X) = IH ⊗ In − A1 ⊗X1 − A2 ⊗X2 − · · · −Ag ⊗Xg

where ⊗ denotes the Kronecker tensor product. Additionally, let ΛA(X) denote the homo-

geneous linear part of LA(X). That is,

ΛA(X) = A1 ⊗X1 + A2 ⊗X2 + · · ·+ Ag ⊗Xg,

The inequality

LA(X) � 0,

is called a linear operator inequality. Moreover, if H is finite dimension, then the in-

equality LA(X) � 0 is called a linear matrix inequality.
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2.2. Free spectrahedra. Given a g-tuple A ∈ SA(H)g and a positive integer n define the

set DA(n) ⊆ SMn(R)
g by

DA(n) := {X ∈ SMn(R)
g : LA(X) � 0}.

That is, DA(n) is the set of all g-tuples of n × n real symmetric matrices X such that the

evaluation LA(X) is positive semidefinite. Additionally define the set DA ⊆ SM(R)g to be

the union over all n of the the sets DA(n). That is,

DA :=
∞
⋃

n=1

DA(n).

If H is finite dimensional, then DA is called a free spectrahedron and DA(n) is the

free spectrahedron DA at level n [24] . In this article we extend to considering the case

where H is infinite dimensional and A is a compact operator. In this case we call DA a

generalized free spectrahedron and we call DA(n) a generalized free spectrahedron

at level n. That is, a generalized free spectrahedron DA is the solution set of the linear

operator inequality

LA(X) � 0

where A is a tuple of self-adjoint compact operators on H.

2.3. Free spectrahedrops. Central to this article are (coordinate) projections of free spec-

trahedra, i.e., free spectrahedrops. Given a finite dimensional Hilbert space H and a g-tuple

A ∈ SA(H)g and an h-tuple B ∈ SA(H)h of self-adjoint operators on H, let L(A,B)(x, y)

denote the monic linear pencil

L(A,B)(x, y) = IH − A1x1 − · · · − Agxg − B1y1 − · · · − Bhyy.

Also let D(A,B) denote the free spectrahedron

D(A,B) = {(X, Y ) ∈ SM(R)g+h : L(A,B)(X, Y ) � 0}.
Define the set projxD(A,B) by

projxD(A,B) := {X ∈ SM(R)g : There exists Y ∈ SM(R)h such that (X, Y ) ∈ D(A,B)}.
The set projxD(A,B) is a called a free spectrahedrop.

Let K be a free spectrahedrop or generalized free spectrahedron. Say K is bounded if

there is some real number C so that

CIn −
g
∑

i=1

X2
i � 0

for all X = (X1, X2, . . . , Xg) ∈ K(n) and all positive integers n. It is not difficult to show

that such a set K is bounded if and only if K(1) is bounded.
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In addition, we say K is closed if K(n) is closed for all n. We note that the generalized

free spectrahedra considered in this article are, by definition, closed in this sense. However,

free spectrahedrops are not necessarily closed, as the projection of an (unbounded) closed

set can fail to be closed.

2.4. Drescher, Netzer, and Thom vs Free spectrahedrops. Critical to the proof of

our main result for free spectrahedrops is a result of Drescher, Netzer, and Thom [18], which

affords us a clean membership test for elements of a free spectrahedrop. To present this

result, we introduce the following notation.

Given d-dimensional Hilbert space H and an h-tuple B ∈ SA(H)h of self-adjoint opera-

tors on H, let B⊕n denote the direct sum of B with itself n times. Additionally, define the

sets ZB(n) and IB(n, r) and IB(n) by

ZB(n) = {W ∈ B(Hnd,Rn) : W ∗(B⊕nd)W = 0n×n}
IB(n, r) = {W ∈ B(Hnd,Rr) : W ∗(B⊕nd)W = 0r×r and W

∗W = Ir}
IB(n) = ∪r≤n IB(n, r).

We will frequently make use of the fact that, for fixed n and r, the set IB(n, r) is compact.

Theorem 2.1 ([18, Theorem 3.2, Proposition 3.3]). Let A ∈ SMd(R)
g and B ∈ SMd(R)

h

such that projxD(A,B) is a closed bounded free spectrahedrop and X ∈ SMn(R)
g. Then we

have the following

(1) X ∈ projxD(A,B)(n) if and only if for all W ∈ ZB(n) one has

(2.1) W ∗W ⊗ In − Λ
W ∗(A⊕nd)W (X) � 0.

(2) X ∈ projxD(A,B)(n) if an only if for all W ∈ IB(n) one has

(2.2) L
W ∗(A⊕nd)W (X) � 0.

(3) If X ∈ projxD(A,B)(n), then for any m ∈ N and any W ∈ IB(m), one has

L
W ∗(A⊕md)W (X) � 0.

Proof. The proof of Item (1) is essentially the same as that of [18, Theorem 3.2], with minor

modifications for the real setting. The proof of Item (2) follows from the same approach used

to prove [18, Proposition 3.3]. Finally, the proof of Item (3) quickly follows from Items (1)

and (2) together a straightforward argument using techniques that are routine in the study

of matrix convex sets. Since this theorem plays a key role in our upcoming proofs, and since

the setting and statement here is slightly different than in [18], a self-contained version of

the proof is given in the Appendix.
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2.5. Matrix Convex Sets. Given a finite collection of g-tuples {X i}ℓi=1 withX
i ∈ SMni

(R)g

for each i = 1, 2, . . . , ℓ, a matrix convex combination of {X i}ℓi=1 is a sum of the form

ℓ
∑

i=1

V ∗
i X

iVi with

ℓ
∑

i=1

V ∗
i Vi = In

where Vi ∈Mni×n(R) and

V ∗
i X

iVi =
(

V ∗
i X

i
1Vi, V

∗
i X

i
2Vi, . . . , V

∗
i X

i
gVi
)

∈ SMn(R)
g

for all i = 1, 2, . . . , ℓ. A key feature of matrix convex combinations is that the tuples X i

need not be the same size.

A set K ⊆ SM(R)g is matrix convex if it is closed under matrix convex combinations

and the matrix convex hull of K, denoted comat(K), is the set of all matrix convex combi-

nations of the elements of K. Equivalently, K is matrix convex if and only if K = comat(K).

It is straightforward to show that generalized free spectrahedra and free spectrahedrops are

matrix convex.

2.6. Free extreme points of matrix convex sets. As previously mentioned, matrix

convex sets have many different types of extreme points. In this article, we restrict our

attention to free extreme points. Given a set K ⊆ SM(R)g, we say a point X ∈ K(n) is a

free extreme point of K if whenever X is written as a matrix convex combination

X =

ℓ
∑

i=1

V ∗
i X

iVi with

ℓ
∑

i=1

V ∗
i Vi = In

of points X i ∈ K with Vi 6= 0 for each i, then for all i = 1, 2, . . . , ℓ either Vi ∈ Mn(R) and

X is unitarily equivalent to X i or Vi ∈ Mni×n(R) where ni > n and there exists Z i ∈ K

such that X ⊕Z i is unitarily equivalent to X i. Intuitively, a tuple X is a free extreme point

of K if it cannot be written as a nontrivial matrix convex combination of any collection of

elements of K. We let ∂freeK denote the set of all free extreme points of K.

2.7. Free extreme points, dilations, and the Arveson boundary. We next discuss

the connection between free extreme points and the dilation theoretic Arveson boundary.

To do this, we must first introduce the notion of an irreducible tuple of matrices.

Given a matrix M ∈ Mn(R), a subspace N ⊆ Rn is a reducing subspace if both N

and N⊥ are invariant subspaces of M , A tuple X ∈ SMn(R)
g is irreducible (over R) if the

matrices X1, . . . , Xg have no common reducing subspaces in R
n; a tuple is reducible (over

R) if it is not irreducible. For the remainder of the article, we drop the distinction “over

R” when referring to irreducible tuples. However, we warn the reader that a tuple may be

reducible over C even if it is irreducible over R. Thus irreducibility over R is not equivalent
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to other well-known definitions of irreducibility which are instead equivalent to irreducibility

over C.

2.7.1. Dilations. Let K ⊆ SM(R)g be a matrix convex set and let X ∈ K(n). If there exists

a positive integer ℓ ∈ N and g-tuples β ∈Mn×ℓ(R)
g and γ ∈ SMℓ(R)

g such that

Y =

(

X β

β∗ γ

)

=

((

X1 β1

β∗
1 γ1

)

, · · · ,
(

Xg βg

β∗
g γg

))

∈ K,

then we say Y is an ℓ-dilation of X . The tuple Y is a trivial dilation of X if β = 0.

A key connection between matrix convex combinations and dilations is the following. If Y

is a dilation of X and V ∗ =
(

In 0
)

, then X = V ∗Y V with V ∗V = In. That is, if Y is a

dilation of X , then X can be expressed as a matrix convex combination of Y . We note that

this matrix convex combination is non-trivial if the dilation itself is non-trivial.

Given a matrix convex set K and an element X ∈ K, we define the dilation subspace

of K at X , denoted DX(K), to be

DX(K) = span

({

β ∈Mn×1(R)
g : there exists a γ ∈ R

g s.t.

(

X β

β∗ γ

)

∈ K

})

See Lemma 3.1 and Lemma 4.4 for further discussion of the dilation subspace.

In the case that K is a free spectrahedron, the definition of the dilation subspace given

here is equivalent to the definition given in [23], though the presentation is different, see [23,

Lemma 2.1]. We present the definition in this form so that we can use single definition for

both free spectrahedrops and generalized free spectrahedra.

2.7.2. Arveson extreme points. A tuple X ∈ K is an Arveson extreme point of K if K

does not contain a nontrivial dilation of X . More precisely, X ∈ K is an Arveson extreme

point of K if and only if, if

(2.3)

(

X β

β∗ γ

)

∈ K(n + ℓ)

for some tuples β ∈Mn×ℓ(R)
g and γ ∈ SMℓ(R)

g, then β = 0. Equivalently, X is an Arveson

extreme point of K if and only if dimDX(K) = 0. If Y is an Arveson extreme point of K

and Y is an (ℓ-)dilation of X ∈ K, then we will say Y is an Arveson (ℓ-)dilation of X .

The following theorem gives the connection between free and Arveson extreme points.

Theorem 2.2 ([24, Theorem 1.1 (3)]). Let K be a matrix convex set. Then X is a free

extreme point of K if and only if X is an Arveson extreme point of K and is irreducible.
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This theorem has the consequence that the irreducible components of an Arveson ex-

treme point are all free extreme points. This means that expressing an element X of a matrix

convex set as a matrix convex combination of free extreme points can be accomplished by

finding an Arveson dilation of X .

2.8. Main result. We are now in position to give a formal statement of our main result.

Theorem 2.3. Let K ⊆ SM(R)g be a closed bounded free spectrahedrop or a closed bounded

generalized free spectrahedron. Given a tuple X ∈ K(n), there exists an integer k satisfying

(2.4) k ≤ dimDX(K) ≤ ng

and a k-dilation Y ∈ K(n + k) of X such that Y is an Arveson extreme point of K.

As an consequence, X can be written as a matrix convex combination

X =

k
∑

i=1

V ∗
i X

iVi s.t.

k
∑

i=1

V ∗
i Vi = I

of free extreme points X i ∈ K(ni) of K where
∑k

i=1 ni ≤ n + k ≤ n(g + 1). Thus, K is the

matrix convex hull of its free extreme points.

Proof. The proof of the first part of Theorem 2.3 quickly follows from Theorems 3.7 and

4.6. In particular, let X ∈ K, and set ℓ = dimDX(K). Assume that X is not an Arveson

extreme point of K, i.e., that ℓ > 0. Also note that ℓ ≤ ng since DX(K) is a subspace of

Mn×1(R)
g.

Using Theorem 3.7 when K is a bounded free spectrahedrop and Theorem 4.6 when K

is a bounded generalized free spectrahedron shows that there exists an integer k ≤ ℓ and a

collection of tuples {Y i}ki=0 ⊆ K such that the following hold:

(1) Y 0 = X .

(2) For each i = 1, . . . , k − 1, the tuple Y i+1 is a 1-dilation of Y i and

dimDY i+1(K) < dimDY i(K).

(3) Y k satisfies dimDY k(K) = 0.

It follows from Lemmas 3.1 (3) and 4.4 (3) that Y is an Arveson extreme point of K. Thus

Y k ∈ K(n+ k) is an Arveson k-dilation of X .

The proof of the second part of the theorem quickly follows the first part together with

routine dilation theoretic arguments. In particular, one can use the same argument as is

used to prove the corresponding statement in [23, Theorem 1.3].
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Theorem 2.3 has important implications for another open question in the study of free

spectrahedrops. Namely, is there a necessary and sufficient condition for a matrix convex

set K to be a closed bounded free spectrahedrop? From [34, Theorem 4.11], if K ⊆ SM(R)g

is a closed bounded free spectraherop, then the polar dual of K is also a closed bounded

free spectrahedrop. Here the polar dual of K, denoted K◦ is defined by

K◦ = {A ∈ SM(R)g : LX(A) � 0 for all X ∈ K}.

Corollary 2.4. If K is a closed bounded free spectrahedrop, then both K and K◦ are the

matrix convex hull of their free extreme points.

Proof. Immediate from Theorem 2.3 together with [34, Theorem 4.11].

In the upcoming Theorem 5.1 and Proposition 5.2 we give an example of a closed

bounded matrix convex set K such that K is the matrix convex hull of its free extreme

points while K◦ is not. This illustrates that Corollary 2.4 provides nontrivial restrictions

that a matrix convex set K must satisfy to be a closed bounded free spectrahedrop.

2.8.1. Free extreme points over the complexes. One can naturally extend the sets DA and

projxD(A,B) to include tuples of complex self-adjoint matrices. Theorem 2.3 can be extended

to this setting using the same approach as in [23] provided that A and B themselves are

tuples of real matrices. Note that the dimension bound given in equation 2.4 changes from

dimDX(K) to 2 dimDX(K) in this complex setting. Considering this extension introduces

additional notational burden as the fact that the result holds over the reals is important in

the proof over the complexes. Since the proof of this extension is identical to the proof in

[23], we have omitted details so as to simplify exposition.

We warn the reader that the situation can, however, be markedly different if A and B

have complex-valued entries. In fact, [44] gives an example of a tuple of complex self-adjoint

matrices A such that if DA is allowed to contain complex self-adjoint matrices, then DA is

a closed bounded complex free spectrahedron which is not the matrix convex hull of its free

extreme points.

3. Arveson extreme points and free spectrahedrops

This section introduces maximal 1-dilations for free spectrahedrops and presents Theo-

rem 3.7 which shows that maximal 1-dilations in a free spectrahedrop reduce the dimension

of the dilation subspace. Since we only consider finite dimensional spaces H when working

with free spectrahedrops, throughout the section we set H = Rd.

We begin by establishing an alternative definition of the dilation subspace for free spec-

trahedrops. Let A ∈ SMd(R)
g and B ∈ SMd(R)

h such that projxD(A,B) is a closed bounded
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free spectrahedrop. Given a tuple X ∈ projxD(A,B), define the subspace KX(projxD(A,B)) ⊆
Mn×1(R)

g by

(3.1)

KX(projxD(A,B)) = ∩W∈IB(n+1){β ∈Mn×1(R)
g : kerLW ∗(A⊕n+1)W (X) ⊆ ker ΛW ∗(A⊕n+1)W (β∗)}.

Note that KX(projxD(A,B)) is indeed a subspace of Mn×1(R)
g since the set

(3.2) {β ∈Mn×1(R)
g : kerLW ∗(A⊕n+1)W (X) ⊆ ker ΛW ∗(A⊕n+1)W (β∗)}

is a subspace of Mn×1(R)
g for each fixed W ∈ IB(n+ 1).

The following lemma shows that KX(projxD(A,B)) is equal to the dilation subspace of

projxD(A,B) at X and explains the connection between KX(projxD(A,B)) and dilations of X .

Lemma 3.1. Let projxD(A,B) be a closed bounded free spectrahedrop and let X ∈ projxD(A,B)(n).

(1) If β ∈Mn×1(R)
g and

Y =

(

X β

β∗ γ

)

∈ projxD(A,B)(n+ 1)

is a 1-dilation of X, then β ∈ KX(projxD(A,B)).

(2) Let β ∈ Mn×1(R)
g. Then β ∈ KX(projxD(A,B)) if and only if there is a tuple γ ∈

projxD(A,B)(1) and a real number cγ > 0 such that
(

X cγβ

cγβ
∗ γ

)

∈ projxD(A,B)(n + 1).

In particular, one may take γ = 0 ∈ Rg.

(3) One has

DX(projxD(A,B)) = KX(projxD(A,B)).

As a consequence, X is an Arveson extreme point of projxD(A,B) if and only if

dimKX(projxD(A,B)) = 0.

Proof. Item (1) follows from considering the Schur complement of LW ∗(A⊕n+1)W (Y ) for a

dilation

Y =

(

X β

β∗ γ

)

∈ projxD(A,B)(n+ 1)

of X . Indeed, multiplying LW ∗(A⊕n+1)W (Y ) by permutation matrices, sometimes called

canonical shuffles, see [46, Chapter 8], shows

(3.3) LW ∗(A⊕n+1)W (Y ) � 0 if and only if

(

LW ∗(A⊕n+1)W (X) ΛW ∗(A⊕n+1)W (β)

ΛW ∗(A⊕n+1)W (β∗) LW ∗(A⊕n+1)W (γ)

)

� 0.
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Taking the appropriate Schur complement then shows that LW ∗(A⊕n+1)W (Y ) � 0 if and only

if

(3.4)
LW ∗(A⊕n+1)W (γ) � 0,

and LW ∗(A⊕n+1)W (X)− ΛW ∗(A⊕n+1)W (β)LW ∗(A⊕n+1)W (γ)†ΛW ∗(A⊕n+1)W (β∗) � 0,

where † denotes the Moore-Penrose pseudoinverse. It follows that if LW ∗(A⊕n+1)W (Y ) � 0,

then

kerLW ∗(A⊕n+1)W (X) ⊆ ker ΛW ∗(A⊕n+1)W (β∗).

Using Theorem 2.1 (2) shows that Y ∈ projxD(A,B)(n + 1) if and only if LW ∗(A⊕n+1)W (Y ) �
0 for all W ∈ IB(n + 1). Combining this with the above, we conclude that if Y ∈
projxD(A,B)(n+ 1), then

kerLW ∗(A⊕n+1)W (X) ⊆ ker ΛW ∗(A⊕n+1)W (β∗)

for all W ∈ IB(n+ 1).

We now prove Item (2). We first show that for each fixed W ∈ IB(n + 1) there exists

some constant cW > 0 such that

(3.5) LW ∗(A⊕n+1)W

(

X cWβ

cWβ
∗ 0

)

� 0.

Note that LW ∗(A⊕n+1)W (0) = I, so similar to before using the Schur complement shows the

above inequality holds if and only if

(3.6) LW ∗(A⊕n+1)W (X)− c2WΛW ∗(A⊕n+1)W (β)ΛW ∗(A⊕n+1)W (β∗) � 0.

If β ∈ KX(projxD(A,B)) then

kerLW ∗(A⊕n+1)W (X) ⊆ ker ΛW ∗(A⊕n+1)W (β)ΛW ∗(A⊕n+1)W (β∗),

so picking cW > 0 small enough so that ‖c2WΛA(β)ΛA(β
∗)‖2 is less than the smallest nonzero

eigenvalue of LW ∗(A⊕n+1)W (X)(X) guarantees that inequality (3.6) holds, hence inequality

(3.5) holds.

Now for each W ∈ IB(n+ 1), set

c̃W := sup
cW∈R

cW

s.t. LW ∗(A⊕n+1)W

(

X cWβ

cWβ
∗ 0

)

� 0.
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Note that our previous argument shows that c̃W > 0 for all W ∈ IB(n + 1). Additionally,

again considering the Schur complement shows that for each fixed W one has

LW ∗(A⊕n+1)W

(

X αβ

αβ∗ 0

)

� 0

for all α ∈ [0, c̃W ].

Now set

c̃ = inf
W∈IB(n+1)

c̃W .

If c̃ = ∞, then we have that

LW ∗(A⊕n+1)W

(

X β

β∗ 0

)

� 0

for all W ∈ IB(n + 1), in which case the result follows. On the other hand, if c̃ < ∞, then

since IB(n + 1, r) is compact for each r ≤ n and since IB(n + 1) = ∪r≤n+1IB(n + 1, r), a

straightforward argument shows that there is some W ′ ∈ IB(n + 1) such that

c̃ = c̃W ′ hence c̃ > 0.

Since 0 < c̃ ≤ c̃W for all W ∈ IB(n + 1) we conclude that

LW ∗(A⊕n+1)W

(

X c̃β

c̃β∗ 0

)

� 0

for all W ∈ IB(n+ 1). Using Theorem 2.1 then shows that
(

X c̃β

c̃β∗ 0

)

∈ projxD(A,B),

as claimed. The reverse direction is a consequence of Item (1).

Item (3) follows from Items (1) and (2).

Remark 3.2. As in [23], the ability to take γ = 0 ∈ R
g in Lemma 3.1 (2) helps simplify the

NC LDL∗ calculations used in the upcoming proof of Theorem 3.7.

We will soon define maximal 1-dilations for a given element of a free spectrahedrop.

Before doing so, we give two lemmas which together imply this upcoming notion is well-

defined.

Lemma 3.3. Let A ∈ SMd(R)
g and B ∈ SMd(R)

h and assume projxD(A,B) is a closed

bounded free spectrahedrop. Given a tuples X ∈ projxD(A,B)(n) and β ∈ Mn×1(R)
g, the
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optimization problem

(3.7)

α̃ := sup
α∈R,γ∈Rg

α

s.t. LW ∗(A⊕n+1)W

(

X αβ

αβ∗ γ

)

� 0

for all W ∈ IB(n+ 1)

achieves its maximum.

Proof. Straightforward from the assumption that projxD(A,B) is compact.

Before presenting our next lemma, we introduce some notation. Given a matrix convex

set K and tuples X ∈ SMn(R)
g and β ∈Mn×1(R)

g, define

(3.8) ΓX,β(K) :=

{

γ ∈ R
g :

(

X β

β∗ γ

)

∈ K

}

.

Lemma 3.4. Let K be a closed bounded matrix convex set. Fix X ∈ SMn(R)
g and β ∈

Mn×1(R)
g. Then the set ΓX,β(K) is a closed bounded convex set.

Proof. If ΓX,β(K) is empty, then the result trivially holds. When ΓX,β(K) is nonempty, the

fact that ΓX,β(K) is closed and bounded is immediate from the fact that K is closed and

bounded.

We now show that ΓX,β(K) is convex. To this end, let {γ1, . . . , γk} ⊆ ΓX,β(K) and

let {c1, . . . , ck} be nonnegative constants such that
∑k

i=1 ci = 1. For each i = 1 . . . , k set

Vi =
√
ciIn+1. Then we have

(

X β

β∗
∑k

i=1 ciγ
i

)

=

k
∑

i=1

V ∗
i

(

X β

β∗ γi

)

Vi and

k
∑

i=1

V ∗
i Vi = 1.

From the definition of ΓX,β(K), the above is a matrix convex combination of elements of K.

Since K is matrix convex, it follows that

(

X β

β∗
∑k

i=1 ciγ
i

)

∈ K,

from which we obtain
∑k

i=1 ciγ
i ∈ ΓX,β(K). That is, ΓX,β is convex.
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3.1. Maximal 1-dilations in free spectrahedrops. We now present our definition of

maximal 1-dilations for elements of free spectradrops. We mention that our definition is a

generalization of the definition of maximal 1-dilations given in [23]. The definition used in

[23] was itself inspired by works such as [19], [5], and [13].

Definition 3.5. Given a closed bounded free spectrahedrop projxD(A,B) and a tuple X ∈
projxD(A,B)(n), say the dilation

Ŷ =

(

X β̂

β̂∗ γ̂

)

∈ projxD(A,B)(n+ 1)

is a maximal 1-dilation of X if β̂ ∈Mn×1(R)
g is nonzero and the following two conditions

hold:

(1) The real number 1 satisfies

1 = max
α∈R,γ∈Rg

α

s.t. LW ∗(A⊕n+1)W

(

X αβ̂

αβ̂∗ γ

)

� 0

for all W ∈ IB(n + 1)

(2) γ̂ is an extreme point of the closed bounded convex set ΓX,β̂(projxD(A,B)).

Proposition 3.6. Let projxD(A,B) be a closed bounded free spectrahedrop and let X ∈
projxD(A,B)(n). If X is not an Arveson extreme point of projxD(A,B), then there exists

a

Ŷ ∈ projxD(A,B)(n+ 1)

such that Ŷ is a maximal 1-dilation of X.

Proof. The existence of maximal 1-dilations follows from Lemma 3.1 together with Lem-

mas 3.3 and 3.4. In particular, Lemma 3.1 shows that if X is not Arveson extreme, then

there exists some nonzero β ∈ KX(projxD(A,B)). Furthermore, Lemmas 3.1 and 3.3 to-

gether show that if one takes α̃ to as defined in equation (3.7) and sets β̂ = α̃β, then

β̂ is nonzero and Condition 4.5 (1) is satisfied. Combining this with Lemma 3.4 then

shows that then ΓX,β̂(projxD(A,B)) is a closed bounded convex set. Furthermore, Lemma

3.1 shows that ΓX,β̂(projxD(A,B)) is nonempty. Thus, if one takes γ̂ to be an extreme point

of ΓX,β̂(projxD(A,B)) then Condition 4.5 (2) is satisfied. It follows that

Ŷ =

(

X β̂

β̂∗ γ̂

)

,

is a maximal 1-dilation of X .
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Our next theorem shows that maximal 1-dilations of an element of a bounded free

spectrahedrop reduce the dimension of the dilation subspace.

Theorem 3.7. Let A ∈ SMd(R)
g and B ∈ SMd(R)

h such that projxD(A,B) is a closed

bounded real free spectrahedrop and let X ∈ projxD(A,B)(n). Assume X is not an Arveson

extreme point of projxD(A,B). Then there exists a maximal 1-dilation Ŷ ∈ projxD(A,B)(n+1)

of X. Furthermore, any such Ŷ satisfies

dimDŶ (projxD(A,B)) < dimDX(projxD(A,B)).

Proof. Before proceeding, we mention that the proof of this result follows the same flow as

the proof of [23, Theorem 2.4]. Modifications are made to handle the fact that the kernel

containment appearing in equation (3.2) must hold for all W ∈ IB(n + 1) for a tuple β to

be an element of KX(projxD(A,B)).

The existence of a maximal 1-dilation of X is proved in Proposition 3.6. Now, let

Ŷ =

(

X β̂

β̂∗ γ̂

)

be a maximal 1-dilation of X . Using Lemma 3.1 (3), it is sufficient to show that

dimKŶ (projxD(A,B)) < dimKX(projxD(A,B)).

First consider the subspace

EŶ (projxD(A,B)) :=

{

η ∈ Mn×1(R)
g : ∃ σ ∈ R

g s.t.

(

η

σ

)

∈ KŶ (projxD(A,B))

}

.

In other words EŶ (projxD(A,B)) is the projection ι of KY (projxD(A,B)) defined by

EY (projxD(A,B)) := ι(KŶ (projxD(A,B))) where ι

(

η

σ

)

= η

for η ∈ Mn×1(R)
g and σ ∈ Rg. We will show

dimEŶ (projxD(A,B)) < dimKX(projxD(A,B)).

If η ∈ EŶ (projxD(A,B)), then there exists a tuple σ̃ ∈ Rg such that
(

η∗ σ̃
)

∈ KŶ (projxD(A,B)).

From Lemma 3.1 (2), it follows that there is a real number c > 0 so that setting σ = cσ̃

gives






X β̂ cη

β̂∗ γ̂ σ

cη∗ σ∗ 0






∈ projxD(A,B).
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Since projxD(A,B) is matrix convex it follows that

(

1 0 0

0 0 1

)







X β̂ cη

β̂∗ γ̂ σ

cη∗ σ∗ 0













1 0

0 0

0 1






=

(

X cη

cη∗ 0

)

∈ projxD(A,B),

so Lemma 3.1 (1) shows η ∈ KX(projxD(A,B)). In particular this shows

(3.9) EŶ (projxD(A,B)) ⊆ KX(projxD(A,B)),

hence

(3.10) dimEŶ (projxD(A,B)) ≤ dimKX(projxD(A,B)).

Now, assume towards a contradiction that

dimKŶ (projxD(A,B)) ≥ dimKX(projxD(A,B)).

We next show that this implies that there is a real number c and a tuple σ ∈ Rg so that

(3.11) L
W ∗(A⊕d(n+2))W







X β̂ cβ̂

β̂∗ γ̂ σ

cβ̂∗ σ 0






� 0 for all W ∈ IB(n+ 2).

and such that either c 6= 0 or σ 6= 0. To see this, observe that equation (3.9) implies that if

dimEŶ (projxD(A,B)) = dimKX(projxD(A,B)), then we must have

EŶ (projxD(A,B)) = KX(projxD(A,B)).

In this case, using Lemma 3.1 (2) together with Theorem 2.1 (2) shows that there is a nonzero

c ∈ R and some (possibly zero) σ ∈ R
g such that inequality (3.11) holds. On the other hand,

if dimEŶ (projxD(A,B)) < dimKX(projxD(A,B)), then there must exist tuples η ∈ Mn×1(R)
g

and σ1, σ2 ∈ Rg such that σ1 6= σ2 and so

(3.12)

(

η

σ1

)

,

(

η

σ2

)

∈ KY (projxD(A,B)), hence

(

0

σ1 − σ2

)

∈ KY (projxD(A,B)).

In this case, setting σ = α(σ1 − σ2) for an appropriately chosen constant α ∈ R and again

using using Lemma 3.1 (2) together with Theorem 2.1 (2) shows that there is a (possibly

zero) real number c and a nonzero tuple σ such that inequality (3.11) holds. Thus we have

proved our claim that there is either a nonzero c ∈ R or a nonzero σ ∈ R
g such that inequality

(3.11) holds.

We now use inequality (3.11) together with the NC LDL∗-decomposition to show that Ŷ

cannot be a maximal 1−dilation of X , a contradiction to our definition of Ŷ . Applying the
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NC LDL∗-decomposition (up to canonical shuffles) shows that, for each fixed W ∈ IB(n+2),

inequality (3.11) holds if and only if L
W ∗(A⊕d(n+2))W (X) � 0 and the Schur complements

(3.13) In+2 − c2QW � 0

and

(3.14)

L
W ∗(A⊕d(n+2))W (γ̂)−QW

−
(

Λ
W ∗(A⊕d(n+2))W (σ)− cQW

)∗
(

I − c2QW

)†
(

Λ
W ∗(A⊕d(n+2))W (σ)− cQW

)

� 0

where

(3.15) QW := Λ
W ∗(A⊕d(n+2))W (β̂∗)L

W ∗(A⊕d(n+2))W (X)†Λ
W ∗(A⊕d(n+2))W (β̂).

It follows that

(3.16) L
W ∗(A⊕d(n+2))W (γ̂)−QW � 0

and

(3.17) ker[L
W ∗(A⊕d(n+2))W (γ̂)−QW ] ⊆ ker[Λ

W ∗(A⊕d(n+2))W (σ)− cQW ].

Inequalities (3.16) and (3.17) imply that for each fixed W ∈ IB(n+2) there exists a real

number αW > 0 such that 0 < α ≤ αW implies

(3.18) L
W ∗(A⊕d(n+2))W (γ̂)−QW ± α

(

Λ
W ∗(A⊕d(n+2))W (σ)− cQW

)

� 0.

Our next goal is to show that there is some real number α̃ > 0 which is independent of

W ∈ IB(n + 2) such that equation (3.18) holds for all 0 < α ≤ α̃ and all W ∈ IB(n + 2).

We note that the proof of this fact is similar to the proof of Lemma 3.1 (2), however, we

include the details for the sake of completeness.

For each fixed W , set α̃W to be the largest real number such that equation (3.18) holds

for this fixed W and for all 0 < α ≤ α̃W . Additionally define

(3.19) α̃ = min
r≤n+2

inf
W∈IB(n+2,r)

α̃W .

A routine compactness argument shows that for each fixed r ∈ {1, 2, . . . , n+2} there is some

W̃r ∈ IB(n+ 2, r) such that

α̃W̃r
= inf

W∈IB(n+2,r)
α̃W .

From this we can conclude that there is some some r̃ ∈ {1, 2, . . . , n+ 2} such that α̃ = α̃W̃r̃
.

Recall from the previous part of the proof that α̃W̃r̃
> 0. We conclude that if one sets α̃ as

in equation (3.19), then one indeed has that α̃ > 0 and that that equation (3.18) holds for

all 0 < α ≤ α̃ and all W ∈ IB(n+ 2).
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After simplifying equation (3.18), it follows from the above that

(3.20) L
W ∗(A⊕d(n+2))W (γ̂ ± α̃σ)− (1± cα̃)QW � 0

for all W ∈ IB(n + 2). Furthermore, since X ∈ projxD(A,B), using Theorem 2.1 (3) shows

LW ∗(A⊕n+2)W (X) � 0 for all W ∈ IB(n + 2). Combining this with equation (3.20) and

another application of the Schur compliment shows that

(3.21) L
W ∗(A⊕d(n+2))W

(

X
√
1± cα̃β̂√

1± cα̃β̂∗ γ̂ ± α̃σ

)

� 0 for all W ∈ IB(n+ 2).

Note that we can naturally identify IB(n + 1) with a subset of IB(n + 2), since if W ∈
IB(n+ 1, r), then [W ∗ 0r×nd]

∗ ∈ IB(n + 2). It follows that

(3.22) L
W ∗(A⊕d(n+1))W

(

X
√
1± cα̃β̂√

1± cα̃β̂∗ γ̂ ± ασ

)

� 0 for all W ∈ IB(n+ 1).

It follows from Theorem 2.1 that
(

X
√
1± cα̃β̂√

1± cα̃β̂∗ γ̂ ± ασ

)

∈ projxD(A,B)(n+ 1).

Recalling that Ŷ was chosen to be a maximal 1-dilation of X , we must have
√
1± cα̃ ≤ 1

It follows that cα̃ = 0. Moreover, since α̃ > 0, we must have c = 0. From this we find

γ̂ ± α̃σ ∈ ΓX,β̂(projxD(A,B)).

From our construction we have that if c = 0, then σ 6= 0, so since α̃ > 0, the above implies

that γ̂ is not an extreme point of the closed bounded convex set ΓX,β̂(projxD(A,B)). However,

this is a contradiction to Ŷ being a maximal 1-dilation of X , since, from the definition of a

maximal 1-dilation, γ̂ is an extreme point of ΓX,β̂(projxD(A,B)). Thus, the assumption that

dimKŶ (projxD(A,B)) ≥ dimKX(projxD(A,B)).

leads to a contradiction. We conclude that

dimKŶ (projxD(A,B)) < dimKX(projxD(A,B)).

Using Lemma 3.1 (3) then shows that

dimDŶ (projxD(A,B)) < dimDX(projxD(A,B)).

That is, maximal 1-dilations reduce the dimension of the dilation subspace, as claimed.
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4. Arveson extreme points and generalized free spectrahedra

We now handle the case of generalized free spectrahedra. In this section, H is a real

(infinite dimensional) Hilbert space and A ∈ SA(H)g is a tuple of compact self-adjoint

operators on H. A simple observation is that with these assumptions, if X ∈ DA then

LA(X) has a smallest nonzero eigenvalue. Using this fact allows for us to define maximal

1-dilations for generalized free spectrahedra and to show that these maximal 1-dilations in

generalized free spectrahedra reduce the dimension of the dilation subspace. Though the

argument in this setting is again similar to arguments used in [23] (and in this article in

Section 3), details are given for the sake of completeness.

Lemma 4.1. Let A be a g-tuple of bounded self-adjoint compact operators on H and let

X ∈ SMn(R)
g be a g-tuple of self-adjoint n× n matrices. Then

ΛA(X) := A1 ⊗X1 + · · ·+ Ag ⊗Xg

is a compact operator self-adjoint on H⊗ Rn

Proof. Straightforward.

Lemma 4.2. Let Q ∈ B(H) be a compact self-adjoint operator. Then I −Q has a smallest

nonzero eigenvalue.

Proof. Since Q is compact and self-adjoint, Q is diagonalizable and only can have zero as a

limit point of its spectrum. It follows that

LA(X) := I − ΛA(X)

is diagonalizable and can only have one as a limit point of its spectrum. Therefore, I − Q

has a smallest nonzero eigenvalue.

Corollary 4.3. Let A be a g-tuple of compact self-adjoint operators on H such that DA is

a generalized free spectrahedron and let X ∈ SMn(R)
g be any g-tuple of self-adjoint n × n

matrices. Then LA(X) has a smallest nonzero eigenvalue.

As an immediate consequence LA(X)† is a bounded self-adjoint operator on H⊗ Rn.

4.1. The dilation subspace of generalized free spectrahedra. Similar to as was done

for free spectrahedrops, we now describe an alternative characterization of the dilation sub-

space for generalized free spectrahedra. To this end, define the subspace KX(DA) by

KX(DA) = {β ∈ Mn×1(R)
g| kerLA(X) ⊆ ker ΛA(β

∗)}.

Lemma 4.4. Let DA be a generalized free spectrahedron and let X ∈ DA(n).
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(1) If β ∈Mn×1(R)
g and

Y =

(

X β

β∗ γ

)

∈ DA(n+ 1)

is a 1-dilation of X, then β ∈ KX(DA).

(2) Let β ∈ Mn×1(R)
g. Then β ∈ KX(DA) if and only if there is a tuple γ ∈ DA(1) real

number cγ > 0 such that
(

X cγβ

cγβ
∗ γ

)

∈ DA(n+ 1).

In particular, one may take γ = 0 ∈ Rg.

(3) One has

DX(DA) = KX(DA).

As a consequence, X is an Arveson extreme point of DA if and only if

dimKX(DA) = 0.

Proof. Corollary 4.3 shows that LA(γ)
† is a well-defined bounded operator on H. From this

point, the proof if Item (1) is essentially identical to the proof of Lemma 3.1 (1).

We now prove Item (2). Note that LA(0) = IH, so using the Schur complement shows

Y0 =

(

X cβ

cβ∗ 0

)

∈ DA(n+ 1)

if and only if

(4.1) LA(X)− c2ΛA(β)ΛA(β
∗) � 0.

Using Corollary 4.3 shows that LA(X) has a smallest nonzero eigenvalue, so we may pick

c small enough so that ‖c2ΛA(β)ΛA(β
∗)‖2 is less than the smallest nonzero eigenvalue of

LA(X). Furthermore, β ∈ KX(DA) implies kerLA(X) ⊆ ker ΛA(β)ΛA(β
∗). Thus this choice

of c then guarantees that inequality (4.1) holds, hence Y0 ∈ DA(n+1). The reverse direction

is a consequence of Item (1).

Item (3) follows from Items (1) and (2).

4.2. Maximal 1-dilations for generalized free spectrahedra. We now present our no-

tion of maximal 1-dilations for generalized free spectrahedra.

Definition 4.5. Given a bounded generalized free spectrahedron DA and a tuple X ∈ DA(n),

say the dilation

Ŷ =

(

X β̂

β̂∗ γ̂

)

∈ DA(n+ 1)
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is a maximal 1-dilation of X if β̂ ∈Mn×1(R)
g is nonzero and the following two conditions

hold:

(1) The real number 1 satisfies

1 = max
α∈R,γ∈Rg

α

s.t. LA

(

X αβ̂

αβ̂∗ γ

)

� 0

(2) γ̂ is an extreme point of the closed bounded convex set ΓA,β̂(DA) where ΓA,β̂(DA) is

as defined in equation (3.8).

We now show that maximal 1-dilations in generalized free spectrahedra reduce the di-

mension of the dilation subspace.

Theorem 4.6. Let A ∈ B(H)g be a g-tuple of compact self-adjoint operators on H such that

DA is a bounded real free spectrahedron and let X ∈ DA(n). Assume X is not an Arveson

extreme point of DA. Then there exists a nontrivial maximal 1-dilation Ŷ ∈ DA(n + 1) of

X. Furthermore, any such Ŷ satisfies

dimDŶ (DA) < dimDX(DA).

Proof. The existence of maximal 1-dilations in a bounded generalized free spectrahedron

follows from a routine compactness argument together with Lemma 3.4.

Now, let Ŷ be a maximal 1-dilation of X . Using Lemma 4.4 (3), it is sufficient to show

dimKŶ (DA) < dimKX(DA).

Assume towards a contradiction that

dimKŶ (DA) ≥ dimKX(DA).

Following the same argument as was given at the beginning of the proof of Theorem 3.7

shows that there exists a real number c and a tuple σ ∈ Rg so that

(4.2) LA







X β̂ cβ̂

β̂∗ γ̂ σ

cβ̂∗ σ 0






� 0.

and such that either c 6= 0 or σ 6= 0.

Now, applying the NC LDL∗-decomposition (up to canonical shuffles) shows that in-

equality (4.2) holds if and only if LA(X) � 0 and the Schur complements

(4.3) IH − c2Q � 0
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and

(4.4) LA(γ̂)−Q− (ΛA(σ)− cQ)∗
(

IH − c2Q
)†
(ΛA(σ)− cQ) � 0

where

(4.5) Q := ΛA(β̂
∗)LA(X)†ΛA(β̂).

It follows that

(4.6) LA(γ̂)−Q � 0

and

(4.7) ker[LA(γ̂)−Q] ⊆ ker[ΛA(σ)− cQ].

Recall from Corollary 4.3 and Lemma 4.1 that LA(X)† is a bounded self-adjoint operator

and ΛA(β̂) and ΛA(β̂
∗) are compact operators. It follows that Q is a compact self-adjoint

operator. Therefore

LA(γ̂)−Q = IH − (ΛA(γ̂) +Q)

is the identity minus a compact self-adjoint operator and by Lemma 4.2 has a smallest

nonzero eigenvalue. Therefore, picking α̃ > 0 so that α̃‖ΛA(σ) − cQ‖ is smaller than the

smallest nonzero eigenvalue of LA(γ̂)−Q and using inequalities (4.6) and (4.7) guarantees

LA(γ̂)−Q ± α̃ (ΛA(σ)− cQ) � 0.

It follows from the above that

(4.8)
LA(γ̂ ± α̃σ)− (1± cα̃)Q

= LA(γ̂ ± ασ)−
(

ΛA(
√
1± cα̃β̂∗)LA(X)†ΛA(

√
1± cα̃β̂)

)

� 0.

Since LA(X) � 0, equation (4.8) implies

(4.9) LA

(

X
√
1± cα̃β̂√

1± cα̃β̂∗ γ̂ ± α̃σ

)

� 0.

Recalling that Ŷ is a maximal 1-dilation of X , we must have
√
1± cα̃ ≤ 1.

It follows that cα̃ = 0. Since α̃ > 0, it follows that c = 0. From our construction, this in

turn implies that σ 6= 0. But then equation (4.9) implies that

γ̂ ± α̃σ ∈ ΓX,β̂(DA),

which contradicts the fact that γ̂ is an extreme point of the convex set ΓX,β̂(DA). We

conclude that

dimKŶ (DA) < dimKX(DA),
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from which we can use Lemma 4.4 (3) to conclude that

DŶ (DA) < DX(DA),

as claimed.

5. Free spectrahedrops versus generalized free spectrahedra

We now discuss a class of generalized free spectrahedra that are not free spectrahedrops.

The class arises by considering the polar duals of the matrix convex sets introduced in [21]

which have no free extreme points. Following the notation in [21], let A ∈ SA(H)g and for

each n ∈ N define the set KA(n) ⊆ SMn(R)
g by

(5.1) KA(n) = {Y ∈ SMn(R)
g|Y = V ∗(IH ⊗X)V for some isometry V : Rn → ⊕∞

1 H}.

We then define KA ⊆ SM(R)g by

(5.2) KA = ∪nKA(n).

We call KA the noncommutative convex hull of X. The set KA is closely related to the

matrix range of A, see [45] for further discussion. For a g-tuple A ∈ SA(H)g, say 0 is in

the finite interior of KA if there exist an integer d ∈ N and a nonzero vector v ∈ (H)d

such that.

v∗(Id ⊗A)v = 0 ∈ R
g.

Theorem 5.1. Let A ∈ SA(H)g be a tuple of compact operators such that DA is a bounded

generalized free spectrahedron. Additionally assume that A has no finite dimensional reducing

subspaces and that 0 is in the finite interior of KA. Then DA is not a free spectrahedrop.

Proof. Using [21] shows that KA is a closed bounded matrix convex set that has no free

extreme points. It then follows from Theorem 2.3 that KA cannot be a free spectrahedrop.

On the other hand, combining the discussion in [45, Example 4.6] with [12, Proposition 3.1]

shows that K◦
A = DA. Furthermore, using [34, Lemma 4.2] (also see [12, Lemma 3.2]) shows

that since 0 ∈ KA, we have that (K◦
A)

◦ = KA, hence D◦
A = KA. To complete the proof note

that if DA was a closed bounded free spectrahedrop, then [34, Theorem 4.11] would imply

that D◦
A = KA is also a closed bounded free spectrahedrop. We have already shown that KA

is not a free spectrahedrop, so it follows that DA cannot be a free spectraherop.

As it turns out, the precise examples of tuples A such that A has no finite dimensional

reducing subspaces and KA contains 0 in the finite interior considered in [21, Proposition 4.1]

do not have the property that DA is bounded. It is possible however to lightly modify these

example to make them appropriate for our current use. Similar to [21, Proposition 4.1], set
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H = ℓ2(N ) and set H2 = ℓ2({1, 2}). Additionally, given a weight vector w = (w1, w2, . . . ) ∈
R∞, define the weighted forward shift Sw : H → H by

Swv = (0, w1v1, w2, v2, . . . )

for all v ∈ H.

Proposition 5.2. Let A1 = diag(λ1, λ2, . . . ) where the λi are nonzero real numbers con-

verging to 0 with distinct norms and where that λ1 > 0 and that λ2 < 0. Also let Sw be a

weighted shift where the weight vector w ∈ R∞ is chosen so wi 6= 0 for all i and such that

Sw is compact. Set

A2 = Sw + S∗
w.

Then (A1, A2) is a tuple of compact operators on H which has no finite dimensional reducing

subspaces such that KA contains 0 in its finite interior and such that DA is bounded.

Proof. The proof that A has no finite dimensional reducing subspaces is identical to proof

appearing in [21, Proposition 5.1]. We next show that DA is bounded. To this end, consider

the inclusion map ι : H2 → H. By identifying H2 with R2 we have

ι∗Aι =

((

λ1 0

0 λ2

)

,

(

0 w1

w1 0

))

Since λ1 > 0 and λ2 < 0 and w1 6= 0, no linear combination of ι∗A1ι and ι∗A2ι can be

positive semidefinite, from which it follows that Dι∗Aι is bounded. It is straightforward to

check that

DA ⊆ Dι∗Aι,

so we conclude that DA is bounded.

It remains to show that 0 is in the finite interior of KA. Set

v1 =

(√−λ2
0

)

and v2 =

(

0√
λ1

)

Then one can verify that

v∗1(ι
∗A1ι)v1 + v∗2(ι

∗A1ι)v2 = v∗1(ι
∗A2ι)v1 + v∗2(ι

∗A2ι)v2 = 0.

It follows that if one sets

w =

(

ιv1

ιv2

)

∈ (H)2,

then w∗(I2 ⊗A)w = 0 ∈ R2. That is 0 is in the finite interior of KA.
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5.1. Thoughts on “generalized” free spectrahedrops. To end the article, we briefly

discuss the case of generalized free spectrahedrops. From our results, it is natural to wonder

if it is necessary to consider finite dimensional defining tuples when working with free spec-

trahedrops. That is, suppose H is an infinite dimensional real Hilbert space and A ∈ SA(H)g

and B ∈ SA(H)h are tuples of compact self-adjoint operators on H such that projxD(A,B) is

a closed bounded “generalized” free spectrahedrop. One may wonder if projxD(A,B) is the

matrix convex hull of its free extreme points.

As it stands, it is unclear how to extend our approach to this setting. A key issue is that

in the proof of [18, Theorem 3.2], given an element of X ∈ projxD(A,B)(n) one considers a

map

W → tr(W )In −
g
∑

i=1

〈Ai,W 〉Xi

defined on B(H). Of course, such a map is not defined for general operators in B(H), which

leads to difficulties.

Aside from this, we mention that other problems do appear to arise when one makes

the jump from free spectrahedrops to generalized free spectrahedrops. For example, [34,

Theorem 4.11] shows that if H is finite dimensional and projxD(A,B) is a closed bounded free

spectrahedrop, then projxD(A,B) is the projection of a bounded free spectrahedron. That is,

one can assume that D(A,B) is bounded if projxD(A,B) is closed and bounded. The proof of

this result constructs a bounded free spectrahedron K such that projxD(A,B) is a projection

of K. However, the number of variables in K depends on the dimension of H. Thus, if

one attempts to naively extend this proof to generalized free spectrahedrops, one would

encounter dimension free sets in infinitely many variables.

Working with dimension free sets in infinitely many variables causes a number of chal-

lenges. For example, this would cause the approach of successive maximal 1-dilations to fail.

A critical aspect of this approach is that the dimension of the dilation subspace is bounded

above by ng, hence is finite.
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Henri Poincaré, 22 (2021), pp. 593–614, https://doi.org/10.1007/s00023-020-01003-2,

https://doi.org/10.1007/s00023-020-01003-2. 4
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6. Appendix

The appendix gives a self-contained proof of Theorem 2.1, our version of [18, Theorem

3.2].

Proof. We first prove Item (1). Suppose X ∈ projxD(A,B) and W ∈ ZB(n). Then there

exists some Y ∈ SMn(R)
g such that

Idn − ΛA(X)− ΛB(Y ) � 0

from which it follows that

Id2n2 − ΛA⊕nd(X)− ΛB⊕nd(Y ) � 0.

Left multiplying by W ∗ ⊗ In and right multiplying by W ⊗ In shows that (2.1) holds.

The proof of the converse closely follows the proof of [18, Theorem 3.2]. We first note

that using [34, Theorem 4.11], since projxD(A,B) is closed and bounded and contains 0, we

can assume that D(A,B) is bounded. Now, set

S := span{B1, . . . , Bh} and V = S⊥.

Since D(A,B) is bounded, the vector space S is an indefinite subspace of SMd(R). That is,

S does not contain a positive semidefinite element. Furthermore, following the discussion in

[18], we can without loss of generality assume that tr(Bi) = 0 for all i = 1, . . . , h, that the

B1, . . . , Bh are orthonormal, and that Ai ∈ S⊥ for each i = 1, . . . , g.

With this set up, we have that Id ∈ V and that V is closed under taking adjoints since

each element of S is a real symmetric matrix. Thus V is an operator system contained in

Md(R). Given an element X ∈ projxD(A,B)(n), consider the following linear map φ : V →
Mn(R) defined by

φ(W ) = tr(W )In −
g
∑

i=1

〈Ai,W 〉Xi.

We will show that φ is n-positive on V.
To this end, let (Wi,j)i,j ∈ Mn(V) be positive semidefinite. Since (Wi,j)i,j has rank at

most nd, there is a collection of vectors {wk}ndk=1 ⊆ Rnd such that

(Wi,j)i,j =
nd
∑

k=1

wkw
∗
k.

Partition each wk as

wk =







w1,k

...

wn,k
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with respect to the decomposition Rnd ∼= Rn ⊗ Rd. Then for each i, j = 1, . . . , n we have

Wij =
nd
∑

k=1

wi,kw
∗
j,k ∈ V ⊆ R

d×d.

We then have that

φ(Wi,j) =
∑nd

k=1

(

tr(wi,kw
∗
j,k)In −

∑g

ℓ=1〈Aℓ, wi,kw
∗
j,k〉Xℓ

)

=
∑nd

k=1

(

tr(wi,kw
∗
j,k)In −

∑g

ℓ=1 tr(wj,kw
∗
i,kAℓ)Xℓ

)

=
∑nd

k=1

(

tr(w∗
j,kwi,k)In −

∑g
ℓ=1 tr(w

∗
i,kAℓwj,k)Xℓ

=
∑nd

k=1

(

(w∗
j,kwi,k)In −

∑g

ℓ=1(w
∗
i,kAℓwj,k)Xℓ

)

.

From this we obtain

φ((Wi,j)i,j) =
∑nd

k=1

(

W ∗
kWk ⊗ I −∑g

ℓ=1W
∗
kAℓWk ⊗Xℓ

)

= W ∗W ⊗ In − Λ
W ∗(A⊕nd)W (X)

where Wk is the matrix d × n with w1,k, . . . , wn,k as its columns for each k = 1, . . . , nd and

where W is the block matrix

W =







W1

...

Wnd






.

Now observe that that for each i, j = 1 . . . , n and ℓ = 1, . . . , h the ij entry ofW ∗B⊕nd
ℓ W =

∑nd

k=1W
∗
kBℓW is given by
(

nd
∑

k=1

W ∗
kBℓW

)

ij

=

nd
∑

k=1

w∗
i,jBℓwi,j = tr

(

nd
∑

k=1

Bℓwi,jw
∗
i,j

)

= 〈Wij , Bℓ〉 = 0

where the last equality follows from the fact that Wij is in V = (span{B1, . . . , Bh})⊥. We

conclude that W ∗B⊕ndW = 0, i.e. that W ∈ ZB(n). It follows from our assumptions that

φ((Wi,j)i,j) = W ∗W ⊗ In − Λ
W ∗(A⊕nd)W (X) � 0,

hence φ is n-positive.

Having shown that φ is an n-positive map from V → Mn(R) we may use [46, Theorem

6.1] to conclude that φ is completely positive. We may then use Arveson’s extension theorem,

see again [46], to conclude that φ has a completely positive extension ψ : Md(R) → Mn(R).

Note that [46] works over the complexes; see [32] for a discussion of these results over the

reals. Also note that it is straightforward to check that these results hold over the reals using

Choi’s characterization of completely positive maps [11, Theorem 2].
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Now, for any matrix U ∈Md(R) we have

ψ(U) =ψ

(

U −
h
∑

j=1

〈U,Bj〉Bj

)

+ ψ

(

h
∑

j=1

〈U,Bj〉Bj

)

=φ

(

U −
h
∑

j=1

〈U,Bj〉Bj

)

+
h
∑

j=1

〈U,Bj〉ψ(Bj)

= tr(U)−
g
∑

ℓ=1

〈Aℓ, U〉Xℓ −
h
∑

j=1

〈U,Bj〉ψ(−Bj).

Here the last inequality follows from the facts that U−∑h

ℓ=1〈U,Bℓ〉Bℓ ∈ V and that tr(Bj) =

0 and 〈Aℓ, Bj〉 = 0 for all j, ℓ.

Let Eij ∈ Md(R) be the matrix with 1 in the (i, j)-entry and zeros elsewhere. Then the

Choi matrix E = ((Ej,k)j,k) ∈Md(Md(R)) is positive semidefinite and thus

0 � ψ(E) =
(

tr(Ei,j)−
g
∑

ℓ=1

〈Aℓ, Ei,j〉Xℓ −
h
∑

ℓ=1

〈Ei,j, Bℓ〉ψ(−Bℓ)
)

i,j

=I − ΛA(X)−
h
∑

ℓ=1

Bℓ ⊗ ψ(−Bℓ).

We conclude that
(

X1, . . . , Xg, ψ(−B1), . . . , ψ(−Bh)
)

∈ D(A,B),

hence X ∈ projxD(A,B). This completes the proof of Item (1).

We now prove Item (2). The forward direction of the proof uses the same argument as

the forward direction of Item (1). To prove the reverse direction, we use the same strategy

as in [18, Proposition 3.3]. To this end, assume that equation (2.2) holds for all W ∈ IB(n).

We will show that this implies that equation (2.1) holds for all W ∈ ZB(n).

Let W ∈ ZB(n) and let r be the rank of W ∗W ∈ Mn(R). Then there is an invertible

matrix U ∈Mn(R) such that

U∗W ∗WU =

(

Ir 0

0 0

)

=: P

Define

ι :=

(

Ir

0

)

∈Mn,r(R)

and V =WUι. Then we have

V ∗(B⊕nd)V = ι∗U∗(W ∗BW )Uι = 0
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and

V ∗V = ι∗U∗W ∗WUι = ι∗Pι = Ir.

That is V ∈ IB(n, r), hence

L
V ∗(A⊕nd)V (X) � 0.

We next show that WUP = WU . To prove this, let x ∈ Rn and set x1 = Px and

x2 = x−x1. Then we have WUPx =WUx1 = WUx−WUx2. Hence it is sufficient to show

that WUx2 = 0. To see this, first observe that since P = P 2, we have Px = P 2x = Px1.

Next observe that

〈WUx2,WUx2〉 = 〈U∗W ∗WUx2, x2〉 = 〈Px2, x2〉 = 〈Px− Px1, x2〉 = 0.

We conclude thatWUx2 = 0, henceWUP = WU as claimed. Using this and the observation

that P = ιι∗ gives

U∗W ∗WU ⊗ In − ΛU∗W ∗(A⊕nd)WU(X) = PU∗W ∗WUP ⊗ In − ΛPU∗W ∗(A⊕nd)WUP (X)

= (ι⊗ In)LV ∗(A⊕nd)V (X)(ι⊗ In)
∗

� 0.

Moreover, since U is invertible, we obtain

W ∗W ⊗ In − ΛW ∗(A⊕nd)W (X) � 0.

Thus we have shown that our assumptions imply that equation (2.1) holds for allW ∈ ZB(n).

Using Item (1), we conclude that X ∈ projxD(A,B) as claimed.

It remains to prove Item (3). If m ≤ n, then the result follows immediately from Item

(2) as one can naturally embed IB(m) in IB(n) when m ≤ n. Now assume m > n. If

X ∈ projxD(A,B)(n), then since 0 ∈ projxD(A,B) and since projxD(A,B) is matrix convex, we

have X ⊕ 0m−n ∈ projxD(A,B). Using Item (2) then shows that for any W ∈ IB(m) we have

LW ∗(A⊕m)W (X ⊕ 0) � 0. By applying the canonical shuffle we obtain

LW ∗(A⊕m)W (X ⊕ 0) ∼=
(

LW ∗(A⊕m)W (X) ΛW ∗(A⊕m)W (0)

ΛW ∗(A⊕m)W (0) LW ∗(A⊕m)W (0)

)

=

(

LW ∗(A⊕m)W (X) 0

0 Im−n

)

� 0.

We conclude LW ∗(A⊕m)W (X) � 0, as claimed.
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