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ABSTRACT Accurate source localization is an important problem inmany research areas as well as practical

applications in wireless communications and acoustic signal processing. This paper presents a passive

three-dimensional sound source localization (SSL) method that employs a geometric configuration of three

soundfield microphones. Two methods for estimating the angle of arrival (AOA) and time difference of

arrival (TDOA) are proposed based on Ambisonics A and B format signals. The closed-form solution for

sound source location estimation based on two TDOAs and three AOAs is derived. The proposed method is

evaluated by simulations and physical experiments in our anechoic chamber. Simulations demonstrate that

the estimationmethod can theoretically obtain Cramér-Rao lower bound for a small Gaussian noise present in

AOA and TDOA observations. Investigation on the uncertainty of TDOA andAOAmeasurements depending

on the length of measurement interval is also conducted. Experimental results in terms of RMSE indicate

that the proposed solution can be used to accurately find a 3D position of the sound source in free-field

environment. Performance evaluation regarding the number of estimation steps shows that higher accuracy

can be achieved by longer observations of stationary sound source.

INDEX TERMS 3D sound source localization, angle of arrival, cramér-rao bound, soundfiled microphone,

time difference of arrival.

I. INTRODUCTION

The sound source localization (SSL) is an essential step in a

wide range of audio/acoustic-based applications. Nowadays-

concerned research topics on SSL are ranging from detec-

tion of the speaker position in human-computer interaction

[1] or smart video conferencing [2], robot movement in an

unknown environment [3], [4], search and rescure [5] to

advance military applications such as localization of a sniper

[6] and medium-range aircraft localization [7]. Besides, SSL

is usually used as a necessary preprocessing step before

the enhancement of an acoustic signal from a particular

location [8].

In general, the task of source localization can be viewed

either as an active localization scenario, where transmit-

ters actively emit signals to illuminate the target of interest

while the target location is inferred by collecting reflections,

wherein the scenario of passive localization, receiving sen-

sors can only collect signals emitted from the source. In many
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areas, only a passive source location is considered, where

the signals usually do not carry the time information about

their transmission. The sound localization as a type of passive

localization refers to the problem of estimating the position

from which a sound signal originates concerning the micro-

phone array geometry. In this case, a localization system is

unable to directly measure the time of arrival (TOA) between

the source location and receiving sensor, but instead, only the

difference between times when the different sensors receive

the signals can be measured.

Various methods for SSL have been proposed where all

methods can be grouped by their efforts to detect sound

source either in 2D space [9], [10] or in 3D space [3],

[11]. Fundamentally, there are two main approaches to

finding a source with respect to recorded audio signals.

Both approaches are mainly based on estimating the time

difference of arrival (TDOA) obtained by using various

configurations of microphone arrays, such as linear array

[12], circular array [13], or distributed array [14] and differ-

ent cross-correlation algorithm to estimate time lag between

microphones. The first approach aims to maximize the
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steered response power (SRP) of the output of a delay and

sum beamformer [15]. This direct approach performs an

exhaustive search in the whole SRP space to find a sound

location, which is found to be computationally expensive.

In contrast, the indirect approach is based on using estimated

TDOAsmeasurements, where the sound source is ascertained

by addressing criteria such as the hypercone fitting problem

[16]. Although results obtained by the indirect method are

more prone to error as they are more sensitive to background

noise, and reflections oppose to direct methods, the main

advantage of indirect TDOA based approach is that it can be

effectively used in distributed microphone network since it

only requires for TDOA values to be transmitted and not raw

sound signal data [17].

A. RELATED WORK

In many research papers, TDOA is a standard measurement

used for passive localization [18], [19]. Source localization

based solely on TDOA measurements demanded a specific

number of measuring devices, i.e., a minimum number of

three and four sensors are required to locate an unknown

target respectively in 2D and 3D space. The principle of

TDOA based approach is to estimate source position from

the intersection of hyperbolic arcs and surfaces respectively

for 2D and 3D cases. In the case of near-field applications

where the source range to the sensor array baseline ratio is

not large, the resulting intersection can be obtained by solving

a set of nonlinear equations. On the contrary, in the far-field

applications, resulting intersection produces a low location

estimate since the hyperbolic arcs/surfaces become almost

parallel to one another. Given the evidence that the accuracy

of the source position estimate degrades when the source

moves sufficiently far away from the sensors resulted in two

different localization problems. Recently, unified near/fat-

field TDOA based localization was proposed in [20]. The

proposed approach consisted of two formulations for the

unified localization problem in two different coordinate sys-

tems. The first formulation is of a nonlinear non-convex

weighted least squares optimization based on the modified

polar representation for the source position, and the other

is the non-convex fractional programming formulation using

the conventional Cartesian coordinates of the source posi-

tion as the optimization variable. Besides the TDOA-based

approach, a source location can also be calculated from the

AOA measurements and its derivative. Obtaining AOA often

involves a sensor that is equipped with an array of receivers;

thus, it elevates a requirement of synchronization between

different sensors since each produces angle by itself. In [21],

the authors proposed a solution that can attain Cramér-Rao

lower bound under mild conditions. Another 3D bearing-

only localization is proposed by [22], where authors achieved

a significant reduction in bias and root-mean-square error

using a pseudo-linear estimator. In general, the passive source

localization problem is not trivial since direct relationships

between the position of a source and the measurements are

complex, and procedures for solving equations for the TDOA

and AOA methods are hard because of nonlinearity.

One of the more recent research directions is in combin-

ing TDOA and AOA measurements, where algebraic manip-

ulations allow transforming the relationships to the linear

form and lowering energy consumption [23]. There are sev-

eral advantages with the hybrid TDOA-AOA approach, such

as improved localization performance [24], [25], reduced

number of sensors required [26] and it can minimize the

occurrence of ghost targets which is typical for localization

approach with individual TDOA measurements [27]. Many

studies have been carried out proposing a different solution to

source localization [26], [28]–[31]. The most straightforward

method to source localization is an exhaustive search in a

feasible solution region, which is a time-consuming and inef-

ficient solution for real-time application. In general, the max-

imum likelihood (ML) estimator is introduced to estimate the

location since it is asymptotically efficient.

However, the aftermentioned approaches are computation-

ally expensive, and it is hard to find a closed-form solu-

tion, or a closed-form solution does not exist at all. One

of the solutions is to linearize equations with a recursive

approach such as Taylor-series. Nevertheless, these numerical

search techniques can converge to an optimal solution only

if the ML function is convex. The numerical methods are

prone to error since they depend on the right initial position

guess, and thus it is difficult to guarantee its global con-

vergence and calculating time. Their iterative nature does

not make them very suitable for real-time applications. To

improve the robustness and reduce the complexity, a closed-

form solution is required. A linear least-squares estimator

with the closed-form solution, called pseudo linear estimator

(PLE), was proposed in [22]. Although this approach is less

computationally demanding, the estimated source position

is biased because of the correlation between system and

measurement. Recently, authors [32] proposed a new method

for localization. The proposed method represents a simple

algebraic solution that does not suffer from the local con-

vergence problem. However, this method also has a larger

bias since localization accuracy is affected by the deviation of

the noise correlation matrix. Another fine localization solu-

tion, based on generalized trust-region subproblem technique

is proposed by [33], were authors analyzed the necessary

optimal conditions of squared range difference least square

cost function. To reduce the bias of the estimator, a few

different methods where proposed. In [34] BR-PLE method

is proposed for reducing bias. Authors in [35] proposed

a solution to find a rotation angle that could reduce the

bias of the estimator since they demonstrated that estimator

performance was sensitive to origin rotation. [36] proposed

another solution for reducing estimator bias in the presence

of sensors error. The proposed method introduces a quadratic

constraint so that estimator expectation cost function can

attain the minimum value at a true position and thus to

achieve Cramer-Rao lower bound. By analyzing different

approaches, one could conclude that for the most methods,
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an estimation bias arises from the least-squares techniques.

One of the solutions is to construct a new pseudo linear

system such as [27], where a new weight least-square method

is proposed. Authors claimed that the novel structured total

least squares method could reduce estimation bias when the

target is outside the convex hull formed by measurement

sensors. The total least squares estimator was also considered

in [37], where it has demonstrated improved accuracy over

least-square solutions. Another practical solution to position

estimation was proposed by [38]. The proposed closed-form

method was based on converting time-delay measurements

to angular information, but it couldn’t achieve the CRLB

performance. Recently, an efficient closed-form solution has

been proposed for passive source location using only two

stations [26]. In their work, a new relationship between hybrid

TDOA and AOA measurements and unknown source posi-

tions was constructed. The theoretical simulation shows that

the proposed solution can achieve CRLB for Gaussian noise,

where bias compared to variance can be ignored.

By analyzing the aforementioned different source localiza-

tion approaches, some general remarks regarding localization

performance can be made. Investigating different types of

input data for source estimation, one can observe that using

hybrid TDOA and AOA measurements reduces the number

of sensors required, which is especially important for a real-

life scenario where the basic assumption about line-of-sight

(LOS) between unknown source position and sensor may not

be respected. In many the non-line-of-sight (NLOS) environ-

ments, signals emitted from the source are often inaccessible

by all measurement sensors, and one of the solutions is to use

wireless sensor networks (WSN) in which received signals

by each sensor are transmitted to the fusion center for source

localization. Authors in [39] proposed a distributed NLOS

cooperative localization algorithm. The proposed localization

algorithm employs the multiplicative convex model based on

the physical mechanism of the NLOS propagation to achieve

robustness in changing environments. A TDOA-based coop-

erative localization approach for mixed LOS/NLOS condi-

tions is proposed by [40]. For the location of the multiple

stationary target nodes, the authors formulated a non-convex

robust weighted least squares problem (RWLS). To effi-

ciently solve RWLS, the semidefinite relaxation technique

is used to transform RWLS into a convex mixed semidefi-

nite and second-order cone programming problem. Authors

in [41] presented the energy-based localization solution in

WSNs using received signal strength (RSS) and received

signal strength difference (RSSD). In the proposed solution,

RSSD is based on transforming the nonlinear and non-convex

objective functions into a convex optimization problem via

relaxation and semidefinite programming. Another mixed

semidefinite and second-order cone relaxation for source

localization in 3DWSN was proposed by [42]. The proposed

target node localization is based on hybrid RSS-AOA mea-

surements in both noncooperative and cooperative WSNs,

where the authors proposed new LS estimator to reduce

the implementation costs. From conducted analysis authors

concluded that proposed RSS-AOA based estimator is more

suitable for large-scale cooperative WSNs compared with

AOA-TDOA based estimators. In general, centralized algo-

rithms suffer from high computation complexity, network

traffic bottleneck, and as such, are not recommended in sce-

narios where each sensor node cannot get raw measurements

directly. To address such problem authors in [43] proposed a

completely decentralized localization approach based on aug-

mented Lagrangianmethods and alternating directionmethod

of multipliers (ADMM). Discussing performance compari-

son in terms of computational efficiency, it is visible that

the unknown source position can be directly calculated from

different sets of geometric relationships. Although compu-

tational complexity for this kind of approach is low, it fre-

quently does not perform sufficiently when measurement

error exists. Since TDOA and AOA observations have mea-

surement error, the location of a source is often estimated

by propagating these errors trough the computation, where

iterative nonlinear minimization is required for an optimal

solution. The most straightforward approaches for handling

measurement noise are iterative algorithms based on ini-

tial position estimate, obtained, for example, by the Gauss-

Newtonmethod, which has high computational requirements.

The maximum likelihood estimator is asymptotically effi-

cient, but it requires a good initial guess. To avoid the need

for good initial position guess characteristic for iterative ML

approach, different closed-form source estimation methods

are proposed. A linear LS approach is an alternative approach,

which can achieve CRLB but reports large estimation bias.

In general, various closed-form solutions have been pro-

posed, each designed to reduce biases, or to work with a

different number of sensors. To asses the performance of

localization estimation, most state-of-the-art studies perform

benchmark in terms of CRLB. Analyzing literature, one can

see that the weighted least square estimator is superior in

comparison to LS solutions in terms of lower bias. Also, it can

be concluded that even both WSL and ML approaches can

achieve CRLB, the WSL approach is more computationally

attractive and suitable for real-time application and does not

really on the initial guess. From the performance comparison

between different methods, one can conclude that while most

state-of-the-art closed-form solutions achieve CRLB, each

approach is designed to work under restricted measurement

error.

In the context of room acoustics, it is difficult to establish

measurement error as the measurement microphone captures

not only the direct-path component of the source signal but

also the multipath component caused by reflections. The

multipath component, together with the background noise,

can lead to distortion of the time delay information from

received signals, and thus it can degrade the localization

performance. To address key challenges of the realistic envi-

ronment such as room reverberation, background noise, and

sound interference, different methods to compute the TDOAs

across various combinations of pairs of spatially separated

microphones were proposed [44]–[47]. Recent work also
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suggested that deep learning can successfully be applied for

modeling rooms acoustic [48]. For instance, in [49] authors

employed deep model for SSL, where it was shown that deep

learning-based system achieved higher accuracy under low

SNR conditions in comparison with cross-correlation phase

transform (GCC-PHAT) method. Authors in [17] proposed

a novel learning approach for SSL based on TDOA esti-

mation, where coordinates of a sound source were defined

as functions of TDOA. In their work, pre-recorded sound

measurements and their corresponding source locations were

used to train the multilevel B-Splines based learning model.

A new dataset for learning-based SSL was proposed by [50]

which contained different acoustic events recorded in the ane-

choic chamber, where the anechoic chamber environmentwas

used to verify the feasibility of the proposed baseline model.

Authors in [51] addressed SSL for indoor environments

with high reverberation and low signal-to-noise ratio. The

authors proposed a novel sound source localization method

using a probabilistic neural network for the classification

of 3D space clusters. Another learning-based approach was

demonstrated in [52], where authors evaluated the Structural

Sparse Bayesian Learning model with signals recorded in

an anechoic chamber with one reflective plate. Moreover,

it can be seen that many researchers validated their SSL

methods by using recorded audio signals simulating free field

conditions or experimental analysis was carried out inside a

semi-anechoic and anechoic chamber. The anechoic chamber

provides a good simulation of the outdoor conditions due to

the low level of reflections. This environment provides the

possibility to precisely control the conditions and to measure

the levels of sound events and noise, which is substantial

for many experiments. Kotus et al. [53] performed multiple

sound sources localization in the anechoic chamber, where

different methods for obtaining the direction of arrival were

tested. In the work [54], the authors proposed a modified

cross-correlation algorithm to obtain a more reliable mea-

surement of time difference of arrival in the reverberation

environment. They performed a triangulation procedure using

calculated TDOA values to obtain a sound source position

in 3D space. Another three-dimensional method for SSL

was proposed by Ding et al. [55]. The authors performed

theoretical simulation accompanied by experimental results

in the anechoic chamber. They proposed the use of a planar

microphone array combined with a beamforming technique

to obtain the location of the point sound source.

B. OUTLINE

This paper presents a passive sound source localization

method using three soundfield microphone stations. The geo-

metric configuration of three soundfield microphones can be

employed to obtain two TDOA and three AOAmeasurements

concerning unknown source position. A closed-form mathe-

matical solution for SSL estimation is presented. Results are

given in terms of RMSE, where it was shown that simulation

of the sound source estimation algorithm can reach Cramér-

Rao lower bound for small Gaussian noise presented in mea-

surements. Theoretical simulation is supported by the exper-

imental analysis conducted in our anechoic chamber [56].

In this work, TDOA and AOA measurements are directly

obtained by exploiting the A and B format of the soundfield

microphones, which can achieve small measurement devi-

ations. This paper also demonstrates the value of using a

soundfield microphone for the SSL task because AOA can

be easily obtained due to the configuration of the soundfield

microphone capsules.

The rest of the paper is organized as follows. Section II

describes the mathematical formulation of the SSL algo-

rithm. Section III presents our TDOA and AOA estimation

methods using soundfield microphones. The simulation and

experimental results in the anechoic chamber are given in

Section IV, and Section V concludes the paper.

II. 3D SOURCE LOCATION ESTIMATION

This section explains a novel sound source localization

method based on three soundfiled microphone stations. First,

we establish a geometrical relationship between an unknown

position of the sound source and known positions of sen-

sors, over obtained AOA and TDOA observations. Second,

we define a weighted least squares estimator, where the sum

of the squared residuals is minimized with respect to the

error measurement vector. Measurement error is modeled as

a covariance matrix containing measurement uncertainties.

In experimental phase those measurement error parameters

are obtained through testing in the anechoic chamber [56].

Here we presented the theoretical formulation of the local-

ization scenario where a geometric configuration of three

stations mi = [mx,i,my,i,mz,i]
T ∈ R

3 is used to estimate

the position of the single sound source s = [sx , sy, sz]
T ∈ R

3

in 3D space. Assuming that each station on position mi can

determine bearing angles of received sound wave transmitted

from the unknown source position s, geometric relationship

between s andmi can be expressed trough observed AOAs by

nonlinear equation:

[

θi
φi

]

=













arctan

(

sy − my,i

sx − mx,i

)

arctan





sz − mz,i
√

(sx − mx,i)2 + (sy − my,i)2

















,

i = 1, 2, 3 (1)

where θi ∈ (−π, π) and φi ∈ (0, π/2) form an AOA pair

corresponding to azimuth and elevation angles in the right-

hand coordinate system.

Let ri be the Euclidean distance between the source and

microphone mi:

ri = ||s−mi|| =

√

(

s−mi)T (s−mi

)

, i = 1, 2, 3. (2)

and r1 is the true distance from m1 to the unknown source,

then all TDOA observations with respect to mi are given as:

τi1 = ri − r1 = 1ti1 ∗ v, i = 2, 3. (3)
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FIGURE 1. Localization geometry.

where τi1 is the range difference, 1ti1 is the actual TDOA

measurement obtained as the propagation lag betweenmi and

m1 and v is the speed of signal propagation.

To estimate the unknown source position s using

true TDOA and AOA values, we define vector µ =

[τ 21, τ 31, κ
T
1 , κT2 , κT3 ]

T ∈ R
8 containing two TDOA obser-

vations with respect to m1 and three AOA observations pro-

duced from positions m1, m2 and m3. In practice, the AOA

and TDOA are noisy observations where we assume that true

values are influenced by additive Gaussian noise as:

κ̂ i = κi + ǫi =

[

θi + ni
φi + mi

]

,

τ̂i1 = τi1 + εi1 (4)

When expressing noisy TDOA and AOA in vector form

results in:

µ̂ = µ + ε (5)

where µ̂ is actual noisy measurement vector µ and ε =

[ε21, ε31, ǫ
T
1 , ǫT2 , ǫT3 ]

T ∈ R
8 is zero-mean Gaussian with

covariance matrix Q ∈ R
8×8

For localization scenario shown in Fig 1. we construct a

unit norm vector bi = [cosφi cos θi, cosφi sin θi, sinφi]
T ∈

R
3 so that bTi bi = 1 and to satisfy the given geometric

relation:

s−mi = ribi, i = 1, 2, 3. (6)

By constructing the matrixGi in order to have columns that

are orthonormal basis of the plane orthogonal to bi, it follows

that GTi Gi = I2×2 and GTi bi = 02 where I2×2 and 02 are

identity matrix and zero vector. Let Gi ∈ R
3×2 be:

Gi =





sin θi sinφi cos θi
− cos θi sinφi sin θi

0 − cosφi



 , i = 1, 2, 3. (7)

By performing left multiplication on (6) with GTi we get

the following expression:

GTi u = GTi mi, i = 1, 2, 3. (8)

By realizing that bTi bj = bTj bi and b
T
i bi = 1 we construct

identity:

bTi bi + bTi bj − bTj bi + bTj bj = 0, i 6= j = 1, 2, 3. (9)

Equation (9) can be rewritten with respect to m1 as

ri(bi − b1)
T (bi + b1) = 0, i = 2, 3. (10)

where ri is the geometric distance from mi to s. Substituting

(3) as ri in (10) we have ri(bi + bi) = ribi + (r1 + τ i1)b1 and

after using (6) as ri = bTi (u−mi) equation (10) becomes:

2(bi − b1)
T s = (bi − b1)

T (m1 +mi − τ i1b1), i = 2, 3.

(11)

A closed form solution was obtained in [26] for two sta-

tions and one source, while in this work, we expand the solu-

tion to work with three stations. Using (8) and (11) together

in matrix form gives:

h = GT s (12)

h = [β21, β31, s
T
1G1, s

T
2G2, s

T
3G3]

T ∈ R
8 (13)

βi1 = (bi − b1)
T (m1 +mi − τi1b1), i = 2, 3 (14)

G = [2(b2 − b1), 2(b3 − b1),G1,G2,G3] ∈ R
3×8 (15)

Equation (12) represents an ideal condition which doesn’t

hold in practice since there is a measurement error ε in h and

G matrix. To analyze the influence of the error ε for a given

measurement vector µ̂ in (5) on localization accuracy, ε will

be introduced in (1) and (3) where the true geometric values

of TDOA and AOA will be expressed in terms of their noisy

observations (4). We can approximate (12) up to first order

noise terms which gives:

ĥ ≈ Ĝ
T
s+ Tε (16)

where ĥ and Ĝ are matrices containing noisy measurements

instead of true TDOA and AOA values as their counterparts h

andG. The formulation of T matrix is shown in (18) - (20), as

shown at the bottom of the next page. From (5) it follows that

Tǫ in (16) is zero-mean Gaussian with covariance matrix Q.

To calculate a weighted Least Square estimate of s from (16),

the sum of squared residuals is minimized with the respect to

error measurement vector ε.

s̈ = argmin ||ĥ− Ĝ
T
||2

= argmin(ĥ− Ĝ
T
s)TW−1(ĥ− Ĝ

T
s)

= (ĜW−1Ĝ
T
)−1Ĝ

−1
ĥ (17)

where W = TQTT is weight matrix. The expression (17) is

based on the implicit assumption that the measurement errors

are uncorrelated with each other and that TDOA and AOA

observations have corresponding σRD and σAOA uncertainties.

This is insured bymodelingQ as a matrix, where the diagonal

elements are given in form of two TDOA and three AOA

variances, setting the rest of off-diagonal entries to null.

VOLUME 8, 2020 87753



L. Kraljević et al.: Free-Field TDOA-AOA Sound Source Localization Using Three Soundfield Microphones

III. TDOA-AOA ESTIMATION METHOD

In this section, we explain the proposed approach for estimat-

ing TDOA and AOA values, computed from the real sound

measurements collected by three soundfield microphone sta-

tions. Given that the solution (17) performs minimization of

the sum of squared residuals with respect to measurement

error, it was essential to determine observation uncertain-

ties σRD and σAOA of the proposed TDOA-AOA estimation

method in free field conditions. In this work, to ensure uni-

versal reference regarding methods uncertainties, all mea-

surements are made in a small anechoic chamber [56] which

facilitates free-field conditions where no reverberation of

the sound source is present. Fig. 2 displays our measure-

ment setup with three soundfield microphones and a loud-

speaker representing a single sound source inside an anechoic

chamber.

FIGURE 2. Anechoic chamber with triangular stand counting three
soundfiled microphones and speaker representing sound source.

Soundfiled microphone uses 4 subcardioid capsules

mounted as close as possible to form a tetrahedron. Each

soundfield microphone can be viewed as four symmetrical

receivers positioned on the surface of the sphere where it can

produce two distinct sets of audio signals called A-format and

B-format. A-format consists of 4 signals coming from each

microphone capsule arranged as shown in Fig. 3.

FIGURE 3. Soundfield microphone.

The B-format signals comprise a truncated spherical har-

monic decomposition of the sound field. They correspond to

the sound pressure and the three components of the pressure

gradient at a point in space. The transformation from A to

B-format can be easily performed by knowing the measure-

ment values of the individual capsules in A-format. A linear

system of equations displayed below can be used for format

conversion:

pw = pLF + pRB + pRF + pLB,

px = pLF − pRB + pRF − pLB,

py = pLF − pRB − pRF + pLB,

pz = pLF − pRB − pRF − pLB, (21)

where pw is sound pressure signal at the microphone position,

px is the sound velocity in the direction back and forth, py is

the sound velocity information in the direction left to right,

and pz is the sound velocity information in the direction

up and down. Additionally signal filtering can be used to

compensate for inequalities between individual capsules.

To validate estimation algorithm (17) using real mea-

surements, this paper proposes two methods for calculating

TDOA and AOA values from observed sound signal emitted

from unknown source location s.

A. TDOA ESTIMATION

The system is composed of an unknown sound source and

three soundfield microphones. If the sound source transmits

a signal at time T = 0, the microphones will sense the

T =













−(b2 − b1)
T b1 0 r1b

T
2 L1 −r2b

T
1 L2 01×2

0 −(b3 − b1)
T b1 r1b

T
3 L1 01×2 −r3b

T
1 L3

02×2 T1 02×2 02×2

02×2 02×2 T2 02×2

02×2 02×2 02×2 T3













(18)

Li =





− cosφi sin θi − sinφi cos θi
cosφi cos θ1 − sinφi sin θi

0 cosφi



 (19)

Ti = −ri

[

cosφi 0

0 1

]

, i = 1, 2, 3. (20)
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signals at the unknown times T1, T2, and T3. Following (3),

the difference between TOAs can be measured as follows:

1T21 = T2 − T1,

1T31 = T2 − T1, (22)

where the microphone at position m1 is taken as a reference.

Note that for the case of three microphones 1T32 value could

be additionally calculated to introduce redundancy in the

system. To calculate the time lag between two microphones,

in this work we used the generalized cross-correlation phase

transform (GCC-PHAT) algorithm as follows:

ĜPHAT (f ) =
X1(f )[Xi(f )]

∗

|X1(f )[Xi(f )]∗|
,

d̂PHAT (1, i) = argmax(R̂PATH (d)) (23)

where xi is a sound signal received by the microphone at posi-

tion mi, Xi is Fourier transform and R̂PATH (d) is the inverse

Fourier transform of i-th signal and []∗ denotes the complex

conjugate. The term d̂PHAT corresponds to the estimated time

difference between m1 and mi. To estimate TDOA using

soundfieldmicrophones, in this work, A-format is usedwhich

enables to calculate TDOA as average time lag between

corresponding four capsules of the observed microphones

i.e d̂PHAT (1LF , iLF ), d̂PHAT (1LB, iLB), d̂PHAT (1RB, iRB) and

d̂PHAT (1RF , iRF ). Note that for this pairwise TDOA calcu-

lation, each soundfield microphone should be aligned with

global coordinate axes. Calculating the range difference from

(3) is straightforward, where v = 331.57 + 0.607λ [m/s]

is speed of sound in the air and λ is air temperature in C◦.

As already mentioned, algebraic solution (17) assumes that

the measurement vector is corrupted with small Gaussian

noise defined by covariance matrix Q, pointing to the need

of investigating the uncertainty of our TDOA estimation

method. In order to analyze our TDOA based estimation per-

formance given measurement duration t , we examined uncer-

tainty reduction when the length of the sound signal used for

estimation increases. From the results shown in Fig. 4 it is vis-

ible that by choosing measurement duration t > 300 ms will

provide stable TDOA observations (RD < 5cm). Fig. 4 illus-

trates deviation of time difference regarding m1 and m2 for a

given sound source location s = [160, −30, −20]T .

B. AOA ESTIMATION

In this work, we propose a method for calculating AOA

estimation by exploiting B-format signals of the soundfield

microphone. The AOA estimation technique is based on

obtaining directivity vector d = [dx , dy, dz]
T ∈ R

3. The pro-

cedure is performed by calculating the power of each velocity

signal for a given integration interval t , where each velocity

signals corespondent toX, Y, Z component of B-format. Next,

normalization is applied by dividing each p component with

R =
√

p2x + p2y + p2z where px , py and pz represents the total

power over t for each discrete axis. To produce a pair of AOA

observations from the calculated directional vector d , similar

FIGURE 4. Dependency between standard deviation of TDOA estimation
and measurement length.

FIGURE 5. Dependency between standard deviation of AOA estimation
and measurement length.

expression as (1) is used:

[

θi
φi

]

=













arctan

(

dy,i

dx,i

)

arctan





dz,i
√

d2x,i + d2y,i

















, i = 1, 2, 3 (24)

where θi and φi are angles concerning microphone internal

origin. It should be noted here that (24) is prone to the error

if the axis of each soundfield microphone used for AOA

estimation are not perfectly aligned with the axis of global

geometry.

Following similar logic as in previous subsection III-A,

we investigated the dependency between the directivity error

and integration time i.e. duration of the sound signal used for

calculating AOAobservations. From the Fig.5 it is visible that

for t > 400 ms our methods starts to stabilize, providing

estimation results with standard deviation of σAOA < 0.5◦.

Fig. 5 illustrates standard deviation of the estimated angle of

directional vectors, measured bym1 given the position of the

sound source s = [160, −30, −20]T .
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Based on our findings in terms of dependency between

σAOA and t and by following the conclusion regarding σRD
and t from subsection III-A, we have chosen duration of the

signal measurement to be t = 500ms in all our subsequent

experiments.

IV. LOCALIZATION RESULTS AND PERFORMANCE

EVALUATION

This section presents the performance study regarding the

localization accuracy of the proposed SSL approach in the

free field conditions. First, a simulation is made to demon-

strate a margin of localization error regarding uncertainty in

TDOA-AOA observations. To alleviate the dependency on

the particular geometry, TDOA-AOA values are calculated

by sampling the angles between three microphone stations

from a uniform distribution. In total, three scenarios are con-

ducted to analyze how measurement error affects the devi-

ation of localization results compared to theoretical CRLB.

Second, the experimental validation of the simulation results

is made in the anechoic chamber containing one sound source

and three soundfield microphones. Anechoic environment,

however far from being realistic, gives the possibility to

precisely control the environmental conditions and to accu-

rately determine the measurement deviations of the proposed

TDOA-AOA estimation method, which is substantial in this

experiment. If the experiment was carried out in a reverberant

room, the room acoustics would influence the estimation of

TDOA-AOA values and thus obtained measurement uncer-

tainties would not make a universal reference. Identifying

measurement uncertainties σRD and σAOA, proposed solution

(17) can be tested using estimated TDOA-AOA values calcu-

lated from real sound source.

A. SSL SIMULATION UNDER GAUSSIAN NOISE

This subsection presents performance analysis of the pro-

posed estimation method where it will be shown that for the

given localization scenario, the proposed method can reach

CRLB for Gaussian noise present in TDOA and AOA mea-

surements. For the known source position s, CRLB matrix is

defined by [57]:

CRLB(s) = FIM−1(s) (25)

FIM(s) = (
∂µ

∂sT
)TQ−1 ∂µ

∂sT
(26)

where FIM is the Fisher information matrix given as (26) for

zero-mean Gaussian with a covariance matrix Q ∈ R
8×8.

Taking partial derivative of µ with respect to sx , sy and sz
yields:

∂µ

∂sT
= [c21, c31,D

T
1 ,DT2 ,DT3 ]

T ∈ R
8×3 (27)

where:

ci1 =
s−mi

ri
−
s−m1

r1
, i = 2, 3. (28)

Dm =









−dy,i

l2i

dx,i

l2i
0

−dx,idz,i

r2i li

−dy,idz,i

r2i li

li

r2i









,

li =
√

d2x,i + d2y,i, i = 1, 2, 3 (29)

values dx,i = sx − mx,i and respectively dy,i and dz,i are the

difference from source position s andmi for a given direction.

The theoretical value of CRLB presents the best possible

accuracy that estimator can achieve given small measurement

error. To adequately analyze the performance of the proposed

method, evaluation is made in terms of the difference between

the theoretical value of square root CRLB and root mean

square error (RMSE) of the estimation algorithm for a given

measurement error variance σ 2
AOA, σ 2

RD. In this work, mea-

surement error covariance matrix Q is modeled as:

Q =

























σ 2
RD 0 0 0 0 0 0 0

0 σ 2
RD 0 0 0 0 0 0

0 0 σ 2
AOA 0 0 0 0 0

0 0 0 σ 2
AOA 0 0 0 0

0 0 0 0 σ 2
AOA 0 0 0

0 0 0 0 0 σ 2
AOA 0 0

0 0 0 0 0 0 σ 2
AOA 0

0 0 0 0 0 0 0 σ 2
AOA

























(30)

In total, three different simulations for a sound source

localization scenario is made. Firstly, we inspect the per-

formance of the proposed estimation method when the

uncertainty of TDOA measurement increases. Secondly,

we perform a similar test by increasing the standard deviation

σAOA. And for the third simulation, a difference of RMSE

from theoretical root CRLB will be analyzed in a scenario

where the range of the source s is increasing from the origin.

For an input simulation data, TDOA andAOAobservations

are modeled as (4), where τi1 and κi correspond to true

geometrical values calculated from (1) and (2), while εi1 and

ǫi are corresponding zero-mean Gaussian noise defined by

error variance σ 2
AOA, σ

2
RD. We should also note that measure-

ment noise between each TDOA and AOA observation is

uncorrelated.

Each simulation results are reported in terms of RMSE

which is defined as RMSE(s) =

√

∑L
l=1 ||s̈l − s||2/L, where

s̈l is the estimated source position after l-th iteration and s

is true position of the source. L = 500 is the number of

estimation runs for a given σRD, σAOA and s. Note that weight

matrix W in (17) depends on actual source position via (18)

which is not know in advance.We can defineW as an identity

matrix I ∈ R
8×8 to obtain an initial position estimates s̈1 from

(17) which in this case reduces (17) back to LS estimation.

For the rest of the simulation, the matrix W is computed

using previously estimated source position s̈l−1 together with

the current AOA observation. Simulation procedure respects

geometric configuration shown in Fig. 1 where three stations

are placed 1m apart forming vertices of an equilateral triangle
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FIGURE 6. Simulation 1: RMSE dependency on σRD.

FIGURE 7. Simulation 2: RMSE dependency on σAOA.

with the center at the origin and lying on the XY plane.

For each simulation, the calculated RMSE value is given by

averaging results obtained for ten different rotations of the

equilateral triangle around Z-axis.

Results of the first simulation are shown in Fig. 6 For

a fixed parameters σAOA = 0.5◦ and s = [160, 40, 40]T

cm, reported RMSE closely follows theoretical CRLB given

increase in σRD. Fig. 7 illustrates the performance of the sec-

ond simulation where σAOA varies from [0.5◦ − 2.5◦] while

parameter σRD is fixed at 10 cm leaving source at position

s = [160, 40, 40]T cm. The third simulation shows the

performance evaluation depending on the distance from the

source for the fixed σRD = 10 cm and σAOA = 0.5◦. For this

case the source moves away from the origin in accordance

with the expression s = a[50, 50, 50]T where a ranges from

1 to 5. From Fig. 8 it is clear that proposed method provides

near CRLB performance.

B. EXPERIMENTAL EVALUATION

In this section, we present experimental results on sound

source localization in 3D space. Following theoretical sim-

ulation given in subsection IV-A, three TetraMic soundfield

microphones were placed 1 m apart forming vertices of an

FIGURE 8. Simulation 3: RMSE dependency on the distance of the source.

equilateral triangle. Arta measurement software was used as

the white noise generator, which was then converted to the

analog audio signal by MOTU STAGE B-16 audio inter-

face, amplified with Pioneer SA-8500 II sound amplifier and

then played through Magnat 145 801 12 loudspeaker, which

represented the source. The TetraMic is connected to audio

interface via four XLR-M connectors coming from the PPA

receiver. For each soundfield microphone, the four-channel

signal is digitized with the B-16 audio interface and recorded

with Reaper software in A-format. To obtain B-format from

four-channel A-format in this work, we used an official soft-

ware VVMic which also performs the corrections using the

calibration file, provided with the specific microphone.

FIGURE 9. Measurement plan.

In the experiment we used 48 different sound source loca-

tions. Due to space limitations of our anechoic chamber all

measurements were conducted regarding sx > 0 by following

measurement plan shown in Fig. 9, where after performing

measurements for each 12 different sound source locations,

an equilateral triangle holding TetraMic microphones was

rotated around Z-axis for 90◦.

For each source location si white noise signal of 18s dura-

tion was recorded. As concluded in the previous section,

t = 500 ms interval was chosen for measurements’ duration

which resulted in 36 observations for each source position si.
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FIGURE 10. Sound source position estimation for 4 different locations in anechoic chamber.

Following the procedure explained in section III, for each

segment we calculated two TDOAs from A-format and three

AOAs from B-format. Measured observations were first used

in (17) to get the initial position estimate s̈1 of the source

which is needed to calculate the weight matrix W . After

obtaining an initial position estimate, method (17) was used

35 more times where for each position update, source esti-

mation from the previous step was used to calculate W

which was used in conjunction with new TDOA and AOA

observations to estimate new sound source position in 3D

space. Since the computational step (17) is performed for

each position update, it is interesting to analyze the efficiency

of (17) in terms of computation time given its corresponding

TDOA-AOA values. In this work, all processing procedures

were carried out on the platform of Matlab 2019 on a 64-bit

PC with the computational capability of Intel(R) Core(TM)

i5 CPU @ 3.80 GHz and memory of 32.00 GB 400 MHz

DDR4. In the average running time of our algorithm (17)

for initial position estimation is 25.4ms and 3.9 ms for each

additional position update.

To show the effectiveness of the proposed approach,

Fig. 10 illustrates the estimation results for 4 different sound

source locations, where reported RMSE results were 11.17,

15.56 18.90, and 10.47 cm respectively for each location. It is

interesting to note that the estimate (shown in cyan) distant

from the rest of the estimation group corresponds to the initial

position guess, where the true source location is indicated

by the coordinates label. Narrow estimation spread is clearly

visible.

It was also interesting to analyze the dependency between

reported RMSE and the number of iterations. From Fig. 11 it

is visible that by using more iterations, (17) will provide bet-

ter results. For longer measurement intervals, we can achieve

even higher accuracy. The obtained result indicates that the

proposed procedure can be used to locate the stationary sound

source with excellent precision in the free-field. We plot

the experimental cumulative distribution function (CDF) of

positioning error RMSE in Fig.12 to show the localization

performance of the proposed weighted least square estimator

(17). CDF in Fig. 12 is calculated for 48 source positions with

a median value of 21.58 cm. Given a measurement interval

of 18 sec, i.e., 36 estimations per point, the worst reported

RMSE value reaches 38.90 cmwhile the best point has RMSE

of 10.47 cm. From the CDF graph, it is visible that for 90%

source positions, localization error falls within the margin

of 28.38 cm.
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FIGURE 11. Dependency between reported RMSE and number of
estimation steps.

FIGURE 12. The CDF of the RMSE for 48 measurement points.

From the presented results, it is evident that the pro-

posed measurement method provides accurate estimations of

azimuth and elevation angles of the unknown sound source

in the anechoic chamber. In particular, free field conditions

play a major role in the acoustic measurements and sound

perception experiments, as the results are influenced only by

the direct-path component of the sound source and not by

multipath component caused by room reflections. Given that

the experimental evaluation in the SSL task was performed

using real sound measurements, the above results indicate

the potential for further research, where it can be expected

that by employing the more robust method for estimating

TDOA, such as method in [54], the results can translate to

real-world cases. Although it is undeniable that the room

acoustics would influence the SSL recognition results, con-

ducting experimental evaluation in a controlled environment

provides universal reference to localization performance.

Since most state-of-the-art TDOA-based SSL either do not

have experimental analysis (where results are given through

simulation) or experimental evaluation is performed in non

reproducible environmental conditions, a direct comparison

is often inaccessible. Regardless of the results obtained under

certain conditions, our comparison with state-of-the-art is

made to demonstrate the performance of the proposed SSL

approach. For instance, the state-of-the-art method in [17]

reported a localization performance of 0.3m in terms of

RMSE concerning the typical room experiment. Authors

also compared themselves with commonly used SRP-HAT

method, and they showed that their approach outperformed

the SRP-HAT method, which reported a localization error

of 0.76m. It is to expect that evaluation results obtained in

the free-field will outperform results obtained in a real-life

environment [17], and from comparison, it can be seen that

the proposed TDOA-AOA approach, based on three sound-

filed microphones, achieves 0.09 m lower localization error

compared to Multilevel B-Splines-Based Learning Approach

and 0.55 m compared to SRP-HAT method [17]. Given the

fact that the SSL results presented are 30% and 72% lower

in terms of RMSE indicate the effectiveness of the proposed

approach in free-filed with great potential to operate under

realistic conditions.

V. CONCLUSION

This paper proposes a sound source localizationmethod in 3D

space using a geometric configuration of three microphone

stations. The closed-form solution for estimating a sound

source location based on two TDOAs and three AOAs is

presented. In this work, a soundfield microphone is used

as a measurement station. By exploiting A-format of the

soundfield microphone, a pair-wise TDOA estimation using a

general cross-correlation is obtained as the time lag between

the signals from two microphones. The method for obtain-

ing AOA measurements is proposed, based on a calculating

directional vector derived from B-format. The investigation

of the impact of the signal measurement interval length on

TDOA and AOA estimation performance is made. The pro-

posed method was evaluated by simulations and physical

experiments in our anechoic chamber. The simulation results

of the sound source localization reported that (17) reaches the

theoretical CRLB performance regarding a small Gaussian

noise presented in measurements. Since (17) can be viewed

as iterative algorithm, an investigation between accuracy and

number of iteration steps was made, concluding that with

a longer recording of the analyzed signals from unknown

source position, we can achieve even higher accuracy. The

obtained experimental results indicate that the proposed pro-

cedure can be used to locate the stationary sound source with

good precision in free-field environment. In our future work,

it is planned to extend the proposed method for multiple

source localization and tracking, first in free-field anechoic

chamber conditions, and later in different SNR and rever-

beration conditions. Special efforts will be put on problems

tackling real-life scenarios, like detecting speech in noisy

environments when distant recording is required, in order to

increase speech recognition performance.
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