
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Free-from Sketching with Variational
Implicit Surfaces

Olga Karpenko, John F. Hughes and Ramesh Raskar

TR2002-27 June 2002

Abstract

With the advent of sketch-based methods for shape construction, theres a new degree of
power available in the rapid creation of approximate shapes. Sketch [Zeleznik, 1996]
showed how a gesture-based modeler could be used to simplify conventional CSG-like
shape creation. Teddy [Igarashi, 1999] extended this to more free-form models, get-
ting much of its power from its ”inflation” operation (which converted a simple closed
curve in the plane into a 3D shape whose silhouette, from the current point of view, was
that curve on the view plane) and from an elegant collection of gestures for attaching
additional parts to a shape, cutting a shape, and deforming it. But despite the pow-
erful collection of tools in Teddy, the underlying polygonal representation of shapes
intrudes on the results in many places. In this paper, we discuss our preliminary efforts
at using variational implicit surfaces [Turk, 2000] as a representation in a free-form
modeler. We also discuss the implementation of several operations within this context,
and a collection of user-interaction elements that work well together to make model-
ing interesting hierarchies simple. These include stroke inflation via implicit functions,
blob-merging, automatic hierarchy construction, and local surface modification via sil-
houette oversketching. We demonstrate our results by creating several models.

Eurographics 2002, Saarbrucken, Germany

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such
whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research
Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions
of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment
of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2002
201 Broadway, Cambridge, Massachusetts 02139

Submitted January 2002, Final Copy April 2002

EUROGRAPHICS 2002 / G. Drettakis and H.-P. Seidel
(Guest Editors)

Volume 21(2002), Number 3

Free-form sketching with variational implicit surfaces

Olga Karpenko�, John F. Hughes� and Ramesh Raskar†

� Department of Computer Science, Brown University, Providence, RI, USA
† Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

{koa, jfh}@cs.brown.edu, raskar@merl.com

Abstract
With the advent of sketch-based methods for shape construction, there’s a new degree of power available in the
rapid creation of approximate shapes. Sketch [Zeleznik, 1996] showed how a gesture-based modeler could be used
to simplify conventional CSG-like shape creation. Teddy [Igarashi, 1999] extended this to more free-form models,
getting much of its power from its "inflation" operation (which converted a simple closed curve in the plane into a
3D shape whose silhouette, from the current point of view, was that curve on the view plane) and from an elegant
collection of gestures for attaching additional parts to a shape, cutting a shape, and deforming it.
But despite the powerful collection of tools in Teddy, the underlying polygonal representation of shapes intrudes on
the results in many places. In this paper, we discuss our preliminary efforts at using variational implicit surfaces
[Turk, 2000] as a representation in a free-form modeler. We also discuss the implementation of several opera-
tions within this context, and a collection of user-interaction elements that work well together to make modeling
interesting hierarchies simple. These include “stroke inflation” via implicit functions, blob-merging, automatic
hierarchy construction, and local surface modification via silhouette oversketching. We demonstrate our results by
creating several models.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Modeling packages I.3.6
[Computer Graphics]: Interaction techniques

1. Introduction

We present a system that allows the creation of certain free-
form objects with a sketching interface similar to Teddy12

and Sketch23. Everywhere in this paper by “sketching” we
mean using gestural marks to model shapes. In recent years,
free-form sketching of 3D shapes has become feasible, as
demonstrated by the work of Igarashiet al.12 and Bour-
guignonet al.7. In Igarashi’s Teddy system, the underlying
surface representation is a polygonal mesh, while we present
another way of modeling similar free-form shapes - using
implicit functions6. This allows us to introduce new opera-
tions on such models easily. Furthermore, implicit models
provide very nice smoothness characteristics.

In this paper, we take a particular representation for im-
plicit surfaces — thevariational implicit surfacesof Turk
and O’Brien20 — and show how it can be used to support
a collection of free-form modeling operations. The principal
contributions of the paper are

• operations for easy editing of free-form shapes, and

• a demonstration of how these operations are implemented
in the context of variational implicit surfaces.

We describe the user-view of the operations in detail in
section3. The operations areinflation, hierarchy generation,
merging, andlocal modification. The first operation is sim-
ilar to inflation in the Teddy system; the others have some
similarities to Teddy and some differences.

The implementation is described in section5, after an in-
troduction to the surface representation. Except for hierarchy
generation, all operations are implemented in a similar way:
by the removal of some constraints on an implicit surface
and the introduction of others. This uniformity leads to sim-
plicity of structure and coding.

2. Related Work

Several interfaces for sketching three-dimensional shapes
have been developed for different classes of models.

c© The Eurographics Association and Blackwell Publishers 2002. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Karpenko, Hughes, and Raskar / Free-form sketching

For instance, Sketch23 by Zelezniket al.was designed to
help a user with geometric modeling. It uses a system of in-
tuitive guesses to guide a user through geometrical object
creation. For example, if a user draws three segments meet-
ing in one point, and parallel to the projections of thex-,
y-, andz-axes of the scene, the system creates a cube whose
dimensions are determined by the segment lengths. Once a
user has mastered a set of agreements like this, it is easy to
create complex models consisting of many primitives.

Lipson and Shpitalni13 introduced a system for sketch-
ing CAD-like geometric objects. In an input sketch a user
draws both visible and hidden contours of a rectilinear ob-
ject and their system infers a shape. Their approach is based
on correlations among arrangements of lines on the draw-
ing and lines in space. For instance, by doing experiments,
they can notice that “the more two lines are parallel in the
sketch plane, the more they are likely to represent parallel
lines in space”13. They rely on a geometric correlation hy-
pothesis that claims that we could evaluate the likelihood of
human understanding of the sketch by the joint probability
of all correlations in the sketch.

Teddy12 is an interface for free-form modeling. There, a
user first inputs a simple closed stroke and the system creates
a shape matching this contour. Then the user can add details
by editing the mesh with operations like extrusion, cutting,
bending, and drawing on the mesh. These let the user create
fairly interesting models.

Tolba et al.16,19 describe a system that lets a user draw
a scene with 2D strokes and then view it from several new
locations as if a 3D scene were created from it. This is done
by projecting the 2D strokes on the sphere with the center
at the eye point and then viewing them in perspective. This
system’s goal is different from ours: their system is a tool for
perspective drawing and does not construct a 3D model.

Petrovicet al.17 correlate features in a simple, textured,
3-D model with features in a hand-drawn figure, and then
distort the model to conform to the hand-drawn artwork. The
warp distorts the model in only two dimensions to match the
artwork from a given camera perspective, yet preserves 3-D
effects such as self-occlusion and foreshortening.

With respect to underlying representations, there’s a long
history of implicit-surface modeling, nicely summarized in
a book by Bloomenthal6. Here we describe a few areas of
research that are particularly relevant to this paper.

The “Skin” system15, developed by Markosianet al., sup-
ports a form of constructive drawing, in which the user cre-
ates a set of basic forms over which he places a skin, whose
characteristics are then modified by small adjustments to
offset distances at various scales of subdivision of the skin
mesh. This skin is basically a polygonization of an implicit
surface, but one that’s defined by a combination of signed-
distance representations of the underlying forms. No provi-
sion is made for directly creating the underlying blobs, aside

from the operations described in Zeleznik’s “Sketch” work,
or for any blob hierarchy.

By contrast, Wyvillet al.21 describe the blob-tree, a CSG-
like hierarchy of implicit models in which shapes are com-
bined by a rich collection of operators, including various
deformation operators. Their emphasis is on the represen-
tation of complex implicit surfaces through a tree-like struc-
ture. We, too, build a tree-like structure with implicit sur-
faces at the leaves, but ours is a more conventional modeling-
transformation hierarchy, in which the internal nodes repre-
sent grouping or linear transformations; when we merge sur-
faces or make small modifications to them, these edits are
applied directly to the underlying implicit representation.

Our editing operations use a key idea described by Barthe
et al.2, a method for blending a pair of implicit surfaces de-
fined as zero-sets of functionsf andg by considering each
point of R3 as havingf andg “coordinates,” i.e., by treating
the map

(f ,g) : R3 :→ R2 : p 7→ (f (p),g(p))

as a kind of “coordinatization” of 3-space. The surfaces are
then the preimages (i.e., points that map to) of thef = 0 axis
andg = 0 axis respectively. By looking at the preimages of
other curves in(f ,g)-space, especially ones containing large
portions of these two axes, they create blends between the
two surfaces.

Finally, our surface representation is based onvariational
implicit surfaces, as described by Turk and O’Brien20 (see
section4). Such variational implicit surfaces can be used to
represent some very complex objects, as shown by Carret
al.8; their methods show how one can simplify the represen-
tation somewhat by judicious deletion of constraint points.

Another approach is to use the polygonal representation
and direct mesh algorithms, but improve the smoothness of
the meshes by using techniques like mesh subdivision and
mesh fairing14,18.

Our interaction techniques are derived from those in
Sketch, Teddy, and the curve-oversketching idea presented
by Baudel4 for the case of 2D piecewise parametric curves.

3. Overview of Operations

Just as in children’s sketching books1, one is taught to first
draw the general forms of things starting from simple pieces
(cylinders, spheres, cones, blobs, . . .), and then to draw a
more careful outline and erase the underlying shapes, we
provide the user the opportunity to roughly sketch out shapes
and then modify them to provide a final form. We call the
sketched shapes “blobs” throughout this paper.

A typical interaction session begins with a view of the
world with nothing in it but a horizontal “ground plane”
(which corresponds to thex- andz-directions in our coordi-
nates, with they-direction pointing upwards). The user may

c© The Eurographics Association and Blackwell Publishers 2002.

Karpenko, Hughes, and Raskar / Free-form sketching

(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) A single closed stroke above the ground-plane,
which (b) is “inflated” to become the body. (c) Another
stroke overlapping the body generates a leg attached to the
body. (d) Another leg has been added, and the two near-side
legs, their placement having been adjusted slightly, are du-
plicated with a “symmetrize” operation. (e) A different view.
(f) The foreleg is merged with the body.

draw an outline of a blob depicting the body of an animal, for
example, as shown in figure1(a). This outline is “inflated”
into a 3-dimensional shape whose thickness is related to the
dimensions of the 2D outline.

The user can then draw further blobs indicating the legs
of the animal, as in figure1(c). These are again drawn at the
same depth as the first blob, but the depth may be adjusted
as described below. Because these overlap the first blob, the
system infers that they are to be attached, and places the new
blob in a modeling hierarchy with the first blob as parent; if
the parent is later rotated or translated (through a Unicam-
like 3rd-button mouse interface22) the child is moved as well.
As the parent is determined, it briefly flashes pink to tell the

user what inference has been made. If a newly-drawn blob
overlaps multiple others, one of these is chosen as its parent
(based on degree of overlap in the image plane).

If the position of the newly-created blob is not ideal, the
user may select the blob (or any other blob) by left-clicking
it once; at this point, a transparent bounding sphere appears,
ready for use as a “virtual sphere rotater,” and the color of
the shadow of the selected blob is changed to make it easier
to select. The user then may

• translate the blob and its children in thexy-plane,

• translate the blob and its children in thexz-plane by drag-
ging the “shadow” of the object, as described by Herndon
et al.11, or

• rotate the object around either its center of mass or the
center of mass of its intersection with the parent (imple-
mented only for ellipsoids).

The choice of operation is based on where the user clicks
when starting to drag the mouse cursor: a click on the
bounding sphere indicates trackball rotation; a click on the
“shadow” of the blob or near it (which we define as “in-
side the shadow of the bounding sphere of the blob”) moves
the object in thexz-plane; otherwise the object moves in the
xy-plane. The amount ofxy translation is determined by the
vector from the first-click to the current mouse-point.

Having drawn the legs, the user may “symmetrize” the
model, relative to some parent node, i.e., may create a sym-
metric copy of all children relative to the plane of symmetry
of the parent, by pressing the “S” key, as in figure1(d, e).
The user can add further blobs to the model (e.g., a tail, a
head, a nose, . . .) and adjust their positions and orientations.
When the approximate form is correct, the user may begin
to mergeblobs in one of two ways. In the first, the user se-
lects two blobs and the two are merged together into a single
larger blob with a fillet at the junction between them, as in
figure1(f), where foreleg and body have been merged.

In the second form, the user draws a “guidance stroke”
starting on the silhouette of one blob and ending on the sil-
houette of the other, and the fillet is placed so as to match
(approximately) this guidance stroke, as shown in figure2.
In this figure, all blobs are transparent; the original blobs
that are merged are gray, the guidance strokes are red, and
the resulting surface is pink. Notice that this operation suc-
cessfully merges even non-intersecting blobs, as long as they
are reasonably close to each other. This can be used, for ex-
ample, to join the head and the body of an animal.

In our current implementation, the two merged blobs are
separated from the modeling hierarchy entirely, and the new
merged blob is inserted to the hierarchy at the same level
as the first blob; all the children of the second blob are also
attached to it. If the first blob had no parent, then before
a new merged blob is inserted in the hierarchy, the system
would try to find a parent for it. While this is asymmetric, it

c© The Eurographics Association and Blackwell Publishers 2002.

Karpenko, Hughes, and Raskar / Free-form sketching

seems reasonable compared to placing this merged blob into
the hierarchy as an independent blob.

Guidance strokes have another use: the user may draw a
stroke starting on the silhouette of an object, briefly leav-
ing that silhouette, and then returning to it; points on the
surface near the stroke are displaced to lie on the newly-
drawn guidance curve. The user can thus make small de-
formations (giving a camel a hump, for instance, or putting
a dent in a cushion) directly by sketching. This operation,
called “oversketching”, is demonstrated in figure3.

Some examples of the animal hierarchies we can build
with the program are shown in figure4.

Figure 2: Merging with guidance strokes. In each case, the
guidance stroke constraint points are shown as red dots, and
the new surface is shown in pink.

4. Surface representation

Variational implicit functions are based on thin-plate
interpolation20, which is widely used in solving scattered
data interpolation problems where one needs a smooth func-
tion, minimizing squared second-derivatives, that passes
through a given set of data points. Such a function (athin
plate function) is known to be a sum of an affine term and
a weighted sum of ‘radial basis functions,’ i.e., functions of
the form

fi(p) = φ(‖p−qi‖)
which depend solely on the distance from the argument to
the ith data pointqi . The exact form ofφ depends on the
dimension; for functions onR3, the form isφ(x) = x3.

Figure 3: Oversketching: The upper left blob is modified by
the user’s drawing a stroke near the silhouette (upper right).
The surface deforms to match the stroke (lower left).

Figure 4: Examples of hierarchies created automatically.

Thus, any thin plate function can be expressed as

f (x) =
n

∑
j=1

dj φ(x− cj)+P(x)

where thedjs are real-number coefficients, thecjs are “cen-
ters” for the basis functions, and

P(x) = a ·x+b

c© The Eurographics Association and Blackwell Publishers 2002.

Karpenko, Hughes, and Raskar / Free-form sketching

is an affine function of positionx.

Given a collection ofn locations at whichf is to take on
particular values, one can choose thecjs to be the firstn−4
given locations, and can then solve for thedjs anda andb;
this is simply a large linear system.

Thus, the specification of a variational implicit function
requires the specification ofn values atn points; we re-
fer to such specifications asconstraints. Turk and O’Brien
consider two kinds of constraints: “zero points” and “plus
points.” A zero point is a pointcj at which f (cj) = 0. This
means that the implicit surfaceS = {x| f (x) = 0} passes
through such a point.

A “plus point” is one for whichf (x) = 1 must be satisfied.
We will consider points for whichf (x) < 0 to be “inside,”
so these “plus points” determine locations which must be
outside the implicit surface we are defining.

Turk and O’Brien observed that if one had a set of points
through which one wanted a surface inR3 to pass, one could
build a function f : R3 −→ R by placing zero-points at the
given points, and plus-points at the endpoints of the desired
normals. The zero-level set of this function is then a surface
interpolating the points and with approximately the given
normals.

It’s also worth noting that if the function

f (x) =
n

∑
j=1

dj φ(x− cj)+a ·x+b

interpolates the pointscj with valuesej , then the function

f (x− k) =
n

∑
j=1

dj φ(x− k− cj)+a · (x− k)+b

=
n

∑
j=1

dj φ(x− (cj +k))+a ·x+(b−a ·k)

interpolates the pointscj + k with the same valuesej ,
i.e., that translating the “interpolation centers” induces no
change on the radial-basis-function coefficients, and a sim-
ple change in just the constant of the affine term. Similarly,
if one multiplies all the control points by some fixed rota-
tion matrix R, i.e., replacescj with R(cj), then again the
coefficientsdj remain the same, and only the coefficienta
changes, being replaced bya′ = Ra.

Finally, note that if we have a real-valued function and
build a mesh-approximation of its zero-level surface, then
we can take the points of that mesh as zero points for a
new variational implicit function, and the endpoints of mesh
normals as plus-points, and thus create a new real-valued
function whose zero-level surface will closely resemble the
mesh. This idea, which comes from Turk and O’Brien is crit-
ical in our merging and small-modification algorithms.

5. Implementation details

In this section, we will describe in more detail each of the
operations previously mentioned, and then how each is im-
plemented in the framework of a variational implicit surface.
We begin with some basic facts about our implementation,
and then move on to inflation and the other operations.

Our system’s coordinates are such that the initially-visible
section of the world, at middle-depth, is about 6 units wide;
our view of the world is through a 512 pixel wide window.
By “middle-depth,” we mean “the depth at which strokes
are placed into the world,” namely, on thez= 0 plane. This
choice of size, although arbitrary, is necessary to clarify the
other dimensions mentioned below.

5.1. Inflation

Inflation is the process of converting a user stroke to a 3D
blob, represented as a variational implicit surface, whose sil-
houette matches the given stroke.

We need to go from a 2D visible-contour drawing to a 3D
shape. We follow a sequence of operations, namely:

1. Collect the user-input, i.e. astroke

2. Re-sample the stroke;

3. Assign depths (i.e., distances from the eye) to the points
of the stroke; we call the resulting path in 3D thecontour.

4. Create a surface model consistent with the locations, in-
cluding depth, of the points of the contour, represented as
a variational implicit surface.

5.1.1. Preprocessing an input stroke

User input is gathered from the mouse as a collection
of screen-space points. The user begins a stroke by left-
clicking, and then drags over the path of the desired stroke,
and finishes by releasing the mouse button. During the in-
put, the 2D points arrive at a rate that we cannot control. We
re-sample these points so that they are not bunched up too
closely. We use Igarashi’s12 algorithm: when there are too
many points close together, we simply ignore some samples.
If the distance between the previous point and the current
point is less than 15 pixels, we do not add the current point.
This rather crude re-sampling seems to have no real impact
on the results.

To inflate such an input stroke into a blob, we need to
explicitly specify the “constraints” (“plus points” and “zero
points”) that determine a variational implicit function. We
first project the 2D points of this stroke onto thez= 0 plane;
the resulting points are used as zero-points for the implicit
function we want to create; we’ll refer to the path defined by
these zero-points as thecontour. (If the view of the world has
been rotated, we put the points on a plane through the ori-
gin, orthogonal to the current view direction, but it’s easier

c© The Eurographics Association and Blackwell Publishers 2002.

Karpenko, Hughes, and Raskar / Free-form sketching

Figure 5: Inflating a stroke: (a) the user’s stroke is resam-
pled and projected onto the z= 0 plane. (b) The points defin-
ing the stroke are used as zero-points for inflation (indicated
by small circles), and points slightly offset along the normals
are used as plus-points (indicated by plus-signs).

to express the remainder of the construction in an un-rotated
frame of reference.) Still within thez = 0 plane, we com-
pute points slightly displaced (distance 0.05) from the zero-
points along the normals to the contour, and make these all
plus-points (see figure5). To place additional constraints in
space (having all constraints in a plane leads to a degenerate
situation) we tried three approaches:

5.1.2. Placing the constraints

1. Two plus constraints in 3D are placed at the center of
mass of the contour, and then moved off thez= 0 plane to
depthsz= depthConstandz=−depthConst, where we
useddepthConstant= 1.5. This makes the “thickness” of
the object a constant, which makes a leg look almost as
“fat” as a body.

2. As opposed to having the same thickness for all objects,
we make it depend on the shape of the user’s stroke. We
wanted, for example, that long cigar-shaped contours be-
come blobs with circular cross-section whose radius is
the “width” of the cigar, while spherical-looking blobs
should be fairly “fat”. We therefore use a simple measure
for “width” of the stroke shapes:

Given the 2D shape as a contour consisting of points, we
first find the two points that are furthest from each other,
and call this theaxisof the shape. Then we find the center
of this axis, draw a perpendicular through this point and
find the point closest to the center along this perpendic-
ular. This closest distance is our measure for the “width”
of the 2D shape drawn by a user.

We now place the two additional “plus points” as before,
but instead displace them not byz=±1.5, but rather by
z=±1.5 ·width.

3. To ensure that the surface curves “in” (i.e., away from the
outward normal at thez = 0 slice) as one moves away
from thez = 0 plane, we take two copies of the stroke
points and translate one of them in the positivezdirection,
the other in the negativez direction, and put plus-points
at the resulting locations. The distance we move each of

these copies is calculated as in our second method above
– but this time using 0.8 ·width.

In all the examples in the paper we have used the second
inflation technique, although there are some cases where it
is not ideal, such as highly convex curves. Finding a more
principled approach to inflation is critical for future devel-
opment.

Having determined the set of all zero-points and plus-
points, we use the method described in section4 to compute
a variational implicit surface. We then use Bloomenthal’s5

polygonizer to create a 3D mesh corresponding to this sur-
face, which is what we actually display. We set the size of
the grid-cells in the polygonizer to be 0.5 ·width, so that
even thin objects get polygonized reasonably.

5.2. Hierarchy

Our current implementation is in Java3D, so we organize all
the blobs in a hierarchy that’s stored in the Java3D scene-
graph. Our scenegraph is a tree consisting of branch nodes,
each of which contains a blob, with a modeling hierarchy
above them. Each branch node has an associated transfor-
mation and a shape to render. In our case, the shape for each
blob node is the mesh built by polygonizing the implicit sur-
face of the blob. When rendering each blob, Java3D auto-
matically parses the scenegraph transforming each leaf node
with the transformation accumulated by multiplying all the
transformations from the nodes that are in the path to this
shape. All blob nodes have the structure shown in Figure6.
Initially, each blob is placed according to the position of the
2D input stroke and at some fixed depth. Next, the system at-
tempts to find a parent of this blob based on the intersection
with the other blobs. The algorithm for finding a parent for
a blob is given below. If a blob does not have “big enough”
overlap with any of the previous blobs, it has no parent and
is placed on the high level of the hierarchy as an independent
blob. If the system finds the parent, then the transformation
of the child is updated as follows:

• Find the “accumulated transformation” of the parent -
a multiplication of all the transformations in the nodes
above the parent and the transformation of the parent node
itself.

• Multiply the blob’s transformation from left with the in-
verse of the parent’s “accumulated transformation”. Place
the result into the transform node of this blob.

Operations such as rotation around the center of mass of
the blob and translation either inxy-plane orxz-plane up-
date the transformations of the corresponding blob in the
scenegraph. Children are updated automatically because of
the way the blobs are placed in the hierarchy.

The algorithm for finding the parent of the blob is the fol-
lowing:

c© The Eurographics Association and Blackwell Publishers 2002.

Karpenko, Hughes, and Raskar / Free-form sketching

1. Render this blob to an off-screen buffer and save it in an
image; find the 2D bounding box of the blob’s projection.

2. For each blob previously placed in the hierarchy, render it
to the off-screen buffer and find the overlap with the new
blob by comparing pixels of the two images. Note that we
only need to compare pixels in the sub-area of the image
corresponding to the 2D bounding box found in step 1.

3. Calculate the ratio of overlap with this blob by dividing
the number of points found in step 2 by the area of the
current blob.

4. Among all blobs for which the ratio is more than a certain
threshold, choose the one with maximum overlap. Choose
this as the parent.

BranchGroup

Transl*Rot

Blob (mesh)

Virtual sphere

. . .

ChildChild

Figure 6: The underlying branch graph for a blob

For the “symmetrize” operation, for each child of the par-
ent, we find its “symmetrical” copy as follows:

• First we reflect/flip the vertices and normals of every mesh
stored in the branch subgraph of a child around the center
of the parent and with respect to the normal of the parent;
Then we change the transformations in each transforma-
tion node in this subgraph as discussed in the second step.

• Let’s say the child has the transformation matrixT relative
to the parent, we extract the translationalTr and rotational
Rotcomponents from this matrix. We define the operation
“flip” applied to the vectorv as follows:

Flip(v) = v−2∗ (v ·n)n

where then is the normal to the plane of symmetry of the
parent. Then we create a new transformation whose trans-
lation component isFlip(v) and whose rotational compo-
nent is determined as follows: if the rotation matrix is the
rotation around the axisa with angleφ, then the new ro-
tation matrix is the rotation around the axisFlip(a) with
the angle−φ.

This set of operations on the hierarchy, although simple, al-
lows us to create a variety of interesting shapes as seen pre-
viously.

5.3. Merging

Blending operations to allow smooth transition between two
implicit surfaces defined byf : R3→ Randg : R3→ Rhave
been proposed by many researchers; we follow the general
idea laid out by Barthe et al.3. Here is the central idea:

Define a function

H : R3→ R2 : P 7→ (f (P),g(P)).

ClearlyH sends all points on the level-zero isosurface of
f (which we’ll call the “isosurface” from now on, the “level
zero” being understood) to points on they-axis of R2; sim-
ilarly it sends those on the isosurface ofg to points on the
x-axis. Consider a pointQ on the positivex-axis. A point
in 3-space that maps toQ is evidently in the isosurface for
g, but outsidethe isosurface forf . Similarly, anything that
maps to a point on the positivey-axis is on the isosurface
for f , but outside the isosurface forg. Letting L denote the
union of the positivex- andy-axes, we see that the preimage
of L, i.e., H−1(L), is simply the union of parts of the two
isosurfaces that are outside each other (see figure7).

g=0 f=0

f

g

L

Figure 7: Isosurface blending in 2D. The level set for f and
the level set for g intersect. When points of these level sets
are mapped to R2 by H, they land at corresponding points in
the right-hand figure. One can see that the preimage of the
positive axes consists of a merge of the “outside” parts of
the two level sets.

If we have a function,G : R2→ R whose level-zero level
set is exactlyL, the union of the two positive axes, then
G◦H : R3→ R is a function onR3 whose level set is the
union of the outside parts of the two level surfaces. If, on
the other hand, we have a functionG whose level-zero level
set is an approximation ofL, then the level-surface ofG◦H
will be very similar to the union of the two outside parts; in
particular, if the level set forG deviates from the axes only
near the origin, then the level set ofG◦H will deviate only
near the intersection of the level sets off andg.

5.3.1. Automatic Merging

Let’s say we want to merge two blobs with implicit functions
f andg. We implement the idea just described in a particu-
larly simple way. First, each blob is sampled at a fixed reso-
lution and polygonized to create vertices and corresponding

c© The Eurographics Association and Blackwell Publishers 2002.

Karpenko, Hughes, and Raskar / Free-form sketching

normals, which are used as zero-points and plus-points for a
new implicit representation of the blob.

We now create a new implicit function from a subset of
these vertices and normals. The vertices (and corresponding
normals) to be eliminated are determined by the restriction
(G◦H)(P) < 0; in other words, we eliminate all verticesv
(and their corresponding normal points) that lie inside the
intersection of the two blobs, i.e.,

∀v∈ first blob, eliminatev if g(v) < 0.

∀v∈ second blob, we eliminatev if f (v) < 0.

The implicit surface reconstructed from the remaining
vertices (and corresponding normals) is a smooth merge be-
tween the two surfaces (see figure8). The same idea can be
used for merging three or more blobs.

Figure 8: Automatic merging: the hollow constraint points
on the left are eliminated, leading to the new iso-set in purple
on the right.

5.3.2. Merging with a guidance stroke (with local
influence)

The user can specify the shape of the merged blob in one of
the cross-sectional planes along the intersection. In this case,
the input consists of two blobs and a 2D guidance stroke
(Figure9). In addition, the user may specify a limit on the
region of influence of the guidance stroke specified by the
3D distanceσ (set to the constant value 0.8 in our imple-
mentation). The influence of the guidance stroke decreases
with distance from the stroke, until at distanceσ there is no
influence at all. Beyond the region of influence on the two
implicit surfaces, the resultant merged surface is same as the
one produced by automatic merging. Below we describe the
process of computing the blending functionG for this guided
version of merging.

We first find the 3D location of the start and end point
of the guidance stroke,S andE, by finding the nearest sil-
houette point on the appropriate blob. We then project the
2D guidance stroke onto the plane passing throughS and
E and parallel to the average normal at those two points.
Without loss of generality, let’s sayS lies on the first blob,
defined by the functionf andE lies on the second, defined
by the functiong. The “extrusion space coordinates” for the
point S are then are(f (S),g(S)) = (0,s); for E they are
(f (E),g(E)) = (e,0). We sample the guidance stroke and
plot the corresponding points in the extrusion space by com-
puting implicit function values(f ,g). To achieve a smooth

transition with limited region of influence, we add a third di-
mension to the extrusion space. The third coordinated(x) for
a 3D pointx is the minimum of the Euclidean distance to the
pointsS or E. In the extrusion space, the surface generated
by our guidance stroke in thef -g plane and the point(0,0,σ)
defines the blending surface on whichG(f 1, f 2,d) = 0. The
shape of this surface naturally determines the shape of the
new surface in the blended region. (Note, however, we do
not explicitly construct this surface in the extrusion space.)

For a practical implementation, we eliminate all vertices
in the region of influence (and the plus-points correspond-
ing to their normals) and add new zero points correspond-
ing to the sampled locations on the 3D guidance stroke. For
example, for vertices on the first blob, we eliminate allv
for which (g(v) < δ2) or (f (v),g(v),d(v)) is inside the tri-
angle with vertices(0,s,0), (0,0,σ) and (0,0,0). Similarly
for the second blob: we eliminate all verticesv for which
(f (v) < δ1) or (f (v),g(v),d(v)) is inside the triangle with
vertices(e,0,0), (0,0,σ) and(0,0,0).

For each new zero-point added from the projected and
sampled guidance stroke, we add a corresponding plus-point
by using the normal to the guidance curve in the plane of
projection as the surface normal, and putting a plus-point a
small distance (0.05) out along this normal. Once the appro-
priate constraints on the original blobs have been eliminated,
and the new ones corresponding to the guidance stroke have
been added, a new merged surface is generated.

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

g = 0

f = 0

E
S (e,0,0)

(0,s,0)

g

f

d
curve

intersection

(0,0,sigma)

Figure 9: Merging with a guidance stroke: The region of
influence is shown in gray and light gray colors.

5.4. Small modifications on the blobs

The user can make local modification of the profile of a blob
simply by drawing a new target profile. The shape near to
the target profile stroke is modified with the influence lim-
ited by 3D distance from the stroke. There are many 3D
techniques to make local distortions, but most of them work
on polygonal meshes. They involve cumbersome process of
finding displacement vectors in the region of influence that
vary smoothly across the region. Some 2.5D techniques de-
form the polygonal meshes so that they conform to the target
profile stroke from the given viewpoint, but may have arti-
facts when seen from a different viewpoint9.

c© The Eurographics Association and Blackwell Publishers 2002.

Karpenko, Hughes, and Raskar / Free-form sketching

We instead use an idea similar to the one used for merging
with guidance stroke above. The input is a blob and a target
profile stroke is drawn near its silhouette. In addition, there is
a limit on the region of influence specified by 3D distanceτ
(again, set to 0.8 in our implementation). The main idea is to
eliminate zero points (and corresponding plus points) in the
region of influence and add new zero (and plus) points from
sampled and projected 3D target profile stroke. Note, that the
user draws only a target stroke and does not draw a source
stroke, as required earlier work12,9. The source silhouette is
automatically computed for the viewpoint in which the tar-
get profile was specified. This is an important improvement.
It provides simplicity and eliminates the often seen error in
clicking on or specifying the source curve.

By providing only new constraints (and relying on the
mechanism of variational implicit surfaces), we also avoid
the problem of enforcing smooth variation in the displace-
ment vector along the modified surface.

To create the new implicit surface constraints, we first find
the nearest silhouette point for start and end of the target
(profile) stroke, and assign 3D coordinates,S andE as be-
fore. The target stroke is assumed to be snapped to these
points if the stroke is within a few pixels. Next, we project
the target stroke on the plane passing throughS andE and
parallel to the average normal at those two points, creating
a planar 3D curve. For each point on the target curve, we
find the nearest silhouette point on the blob. This creates the
corresponding source stroke.

We find the region of influence, by comparing 3D Eu-
clidean distance of each vertex on the blob with respect to
the source stroke.

We assign a normal to each point on the sampled target
stroke in the direction normal to the stroke curve and paral-
lel to image plane. This provides new zero points and corre-
sponding plus point constraints. The vertices in the region of
influence are eliminated. The reconstructed implicit surface
has the matching target profile because the surface interpo-
lates the zero points on the target stroke and respects the
specified normals parallel to the image plane.

Figure 10: Left: Blob and modification stroke. Middle: Blue
dots indicate zero points in the green region of influence.
Right: The blue points are eliminated and the new red zero
points from the target stroke are added.

6. Results, Limitations, and Future Work

We have described our system for creating free-form models
from gestural input, using variational implicit surfaces in a
modeling hierarchy as a surface representation. Our choice
of modeling operations allows a user to construct shapes in
a way that closely parallels the way that they draw, starting
from basic forms and then refining.

The advantage of the implicit surface representation is
that the natural modeling operations — inflation, merging,
stroke-based merging — are all easy to implement in this
context. Nonetheless, there are some limitations in our ap-
proach. As the number of constraints increases, the time it
takes to compute the coefficients for the variational implicit
surfaces grows as well. Presumably it’s possible to reduce
the number of constraints substantially, using methods like
that of Carret al.8, and we hope to do so in the future.

Because the ratio of an overall size of an object to the
cube size in the polygonizer is fixed, it is impossible to rep-
resent objects smaller than a certain size. In particular, when
a small object is merged with a large one the details of the
small one may disappear.

Our representation cannot support sharp edges in a sur-
face; to do so would require a great many constraints. Pre-
sumably this can be remedied by some sort of hybrid polyg-
onal/implicit representation or by using anisotropic basis
functions10.

Because our operations depend on implicit function val-
ues, and because these values, far from our surfaces, may
have no intuitive meaning, our operations may produce un-
expected results unless the guidance strokes (for example)
stay close to the underlying surface. Furthermore, the region
of influence of an operation depends on the gradient(s) of
the implicit function(s) involved, and hence may be unpre-
dictable.

There are also some non-critical limitations in our cur-
rent implementation: at present we cannot handle the re-
parenting of blobs, although we expect this limitation to be
easy to address. Our shadow-selection algorithm is based on
the shadow of the bounding sphere of the blob rather than
the blob itself. Merging is too slow for truly convenient in-
teractive use. And we would like to improve our overlap-
detection algorithm to make it faster.

6.1. Future work

We’d like to extend our merging algorithm to take into ac-
count the intersection curve between the two blobs: it would
be nice to use a single guidance stroke to make a “reason-
able” blend or fillet at all points of this curve.

We’d also like to extend the hierarchy-detection algorithm
to include better placement of child blobs (sticking legs to
the sides of bodies, for instance, rather than placing them
along the body’s medial plane and requiring that the user

c© The Eurographics Association and Blackwell Publishers 2002.

Karpenko, Hughes, and Raskar / Free-form sketching

translate them), and a better use of the inferred hierarchy in
determining inflation-depths for child blobs.

Finally, we want to add a “painting” component to allow
the user to decorate the resulting shapes, drawing feathers on
birds’ wings, for example, or spots on a leopard.

7. Acknowledgments

We thank Takeo Igarashi, Thomas Crulli and Tomer
Moscovich for their suggestions and helpful discussions.
This work was partly supported by the NSF Graphics and
Visualization Center (NSF grant EIA 8920219).

References

1. AMES, L. J., Ed. Draw 50 Animals. Main Street
Books, 1985.2

2. BARTHE, L., GAILDRAT , V., AND CAUBET, R. Im-
plicit extrusion fields. InThe 2000 International Con-
ference on Imaging Science, Systems, and Technology
(CISST’2000), CSREA press, pp. 75–81.2

3. BARTHE, L., GAILDRAT , V., AND CAUBET, R. Extru-
sion of 1D implicit profiles: Theory and first applica-
tion. In International Journal of Shape Modeling(De-
cember 2001), vol. 7/2.7

4. BAUDEL, T. A mark-based interaction paradigm for
free-hand drawing. InACM Symposium on User Inter-
face Software and Technology(1994), pp. 185–192.2

5. BLOOMENTHAL, J. An implicit surface polygonizer.
In Graphics Gems IV, P. Heckbert, Ed. Academic Press,
New York, 1994. 6

6. BLOOMENTHAL, J., Ed. Introduction to Implicit Sur-
faces. Morgan-Kaufmann, 1997.1, 2

7. BOURGUIGNON, D., CANI , M.-P.,AND DRETTAKIS,
G. Drawing for illustration and annotation in 3D.Com-
puter Graphics Forum 20, 3 (2001), 114–122.1

8. CARR, J. C., BEATSON, R. K., CHERRIE, J. B.,
MITCHELL, T. J., FRIGHT, W. R., MCCALLUM ,
B. C., AND EVANS, T. R. Reconstruction and rep-
resentation of 3D objects with radial basis functions.
In Proceedings of SIGGRAPH 2001(August 2001),
pp. 67–76. 2, 9

9. CORRJA, W. T., JENSEN, R. J., THAYER, C. E.,AND

FINKELSTEIN, A. Texture mapping for cel animation.
In SIGGRAPH’98(August 1998), pp. 435–446.8, 9

10. DINH, H. Q., TURK, G., AND SLABAUGH , G. Re-
constructing surfaces using anisotropic basis functions.
In Proc. ICCV(Vancouver, Canada, July 2001), vol. 2,
pp. 606–613.9

11. HERNDON, K. P., ZELEZNIK, R. C., ROBBINS,
D. C., CONNER, D. B., SNIBBE, S. S.,AND VAN

DAM , A. Interactive shadows. InACM Symposium on
User Interface Software and Technology(1992), pp. 1–
6. 3

12. IGARASHI, T., MATSUOKA, S., AND TANAKA , H.
Teddy: A sketching interface for 3D freeform design. In
Proceedings of SIGGRAPH 99(August 1999), pp. 409–
416. 1, 2, 5, 9

13. LIPSON, H., AND SHPITALNI , M. Conceptual design
and analysis by sketching. InAIDAM-97 (1997). 2

14. MAILLOT , J., AND STAM , J. A unified subdivision
scheme for polygonal modeling. InProc. Eurographics
(2001), vol. 20/3.2

15. MARKOSIAN, L., COHEN, J. M., CRULLI , T., AND

HUGHES, J. F. Skin: A constructive approach to mod-
eling free-form shapes. InProceedings of SIGGRAPH
99 (August 1999), pp. 393–400.2

16. OSAMA TOLBA, JULIE DORSEY, L. M. Sketch-
ing with projective 2D strokes. InACM Symposium
on User Interface Software and Technology(1999),
pp. 149–157.2

17. PETROVIC, L., FUJITO, B., WILLIAMS , L., AND

FINKELSTEIN, A. Shadows for cel animation. In
Proceedings of SIGGRAPH 2000(July 2000), pp. 511–
516. 2

18. SCHNEIDER, R., AND KOBBELT, L. Geometric fair-
ing of irregular meshes for free-form surface design.
Computer Aided Geometric Design 18, 4 (May 2001),
359–379. 2

19. TOLBA, O., DORSEY, J.,AND MCMILLAN , L. A pro-
jective drawing system. In2001 ACM Symposium on
Interactive 3D Graphics(March 2001), pp. 25–34.2

20. TURK, G., AND O’BRIEN, J. Shape transformation
using variational implicit functions. InProceedings of
SIGGRAPH 99(August 1999), pp. 335–342.1, 2, 4

21. WYVILL , B., GUY, A., AND GALIN , E. Extending the
CSG tree - warping, blending and boolean operations in
an implicit surface modeling system.Computer Graph-
ics Forum 18, 2 (June 1999), 149–158.2

22. ZELEZNIK, R. C.,AND FORSBERG, A. Unicam — 2D
gestural camera controls for 3D environments. In1999
ACM Symposium on Interactive 3D Graphics(April
1999), ACM SIGGRAPH, pp. 169–174.3

23. ZELEZNIK, R. C., HERNDON, K., AND HUGHES, J.
Sketch: An Interface for Sketching 3D Scenes. InPro-
ceedings of SIGGRAPH 96(August 1996), pp. 163–
170. 1, 2

c© The Eurographics Association and Blackwell Publishers 2002.

	Cover pages
	page 2

	Report
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

