
Free Hand-Drawn Sketch Segmentation

Zhenbang Sun1,⋆, Changhu Wang2, Liqing Zhang1, and Lei Zhang2

1 Brain-Like Computing Lab, Shanghai Jiao Tong University, P.R. China
2 Microsoft Research Asia

Abstract. In this paper, we study the problem of how to segment a
freehand sketch at the object level. By carefully considering the basic
principles of human perceptual organization, a real-time solution is pre-
sented to automatically segment a user’s sketch during his/her drawing.
First, a graph-based sketch segmentation algorithm is proposed to seg-
ment a cluttered sketch into multiple parts based on the factor of prox-
imity. Then, to improve the ability of detecting semantically meaningful
objects, a semantic-based approach is introduced to simulate the past

experience in the perceptual system by leveraging a web-scale clipart
database. Finally, other important factors learnt from past experience,
such as similarity, symmetry, direction, and closure, are also taken into
account to make the approach more robust and practical. The proposed
sketch segmentation framework has ability to handle complex sketches
with overlapped objects. Extensive experimental results show the effec-
tiveness of the proposed framework and algorithms.

1 Introduction

In Marr’s primal sketch theory [1], the importance of a sketch in the early pro-
cessing of human visual information has been particularly emphasized. Sketch
analysis not only is a fundamental problem in human perception, but also plays
an important role in human-computer interaction. For example, a deeper under-
standing to a hand-drawing on a tablet or a gesture before a Kinect camera, is
highly desired for a more natural communication between human and computers.

However, although it looks fairly easy for human to recognize a sketch as
shown in Fig. 1, it still presents a great challenge for a computer to recognize.
Existing work on sketch/shape retrieval [2, 3] and recognition [4, 5] is usually
based on the assumption that the sketch/shape query only contains a single
object, and seldom considers a complex sketch/shape without segmentation. As
shown in Fig. 1(a), without any prior information, it is not easy for a computer
to judge whether the sketch is a sun or a circle enclosed by some sticks.

In this work, we study the sketch segmentation problem, which is a primary
step for further sketch analysis and other computer vision tasks. In spite of con-
tinuous efforts in the last decade, most existing work about the so-called “sketch
segmentation” [6–8] mainly targets at segmenting a sketch at the stroke level
rather than at the object level, and partitions each stroke into basic geometric

⋆ Zhenbang Sun performed this work while being an intern at Microsoft Research Asia.

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part I, LNCS 7572, pp. 626–639, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Free Hand-Drawn Sketch Segmentation 627

(a) (b) (c) (d)

Fig. 1. Example sketches. Although it looks fairly easy for human to recognize a sketch,
it still presents a great challenge for a computer to recognize it.

components, such as straight lines, circles, and arcs. [7] and [8] leveraged the
direction and curvature of strokes to detect the vertices of basic components. [6]
transformed the problem of partitioning strokes into the operation of fitting an
implicit function to the strokes. These works were all adopted as the first step
of domain-specific sketch understanding [9, 10].

According to human perception evidences in Gestalt theory [11], two levels
of factors should be considered in sketch segmentation: low-level perception and
high-level knowledge. As for the low-level aspect, proximity [11] is the most basic
factor for perceptual grouping. When a person is asked to segment the sketch
in Fig. 1(b), even without any prior knowledge to fruits or flowers, he/she can
also successfully separate these objects, since they are far from each other. In
the meantime, the high-level knowledge plays a crucial role in human perceptual
grouping. For example, a person can easily recognize the bike from the back-
ground in Fig. 1(c). Besides the knowledge to a specific object such as the car,
some common knowledge learnt from past experience can also help human make
decisions in the face of unfamiliar objects. For example, as shown in Fig. 1(a),
if we add another ray (in red) to a sun, it could be easily predicted that the
newly added curve is only one part of the sun, because it does not change too
much to the sun. Another example is shown in Fig. 1(d). It is very likely that
the candidate (in red) is an object, because of its symmetry.

In this paper, a novel sketch segmentation framework is proposed by leveraging
both the low-level perception and high-level knowledge. First, the proximity-

based sketch segmentation is proposed, in which the distance between strokes is
used to measure the proximity. Then, the semantic-based sketch segmentation

is presented, in which the high-level knowledge comes from a large-scale clipart
database. The basic idea is to ask the knowledge base to confirm whether a group
of strokes is an object in “memory” or not. Since the process of the segmentation
(select a group of strokes as the query) and recognition (confirm whether it is a
meaningful object) is generally a chicken-egg problem, a robust entropy descent

merging algorithm is proposed to judge whether the group of strokes represent an
object, followed by a greedy backward segmentation algorithm for segmentation.
Furthermore, to make the algorithms more robust and efficient, this framework
incorporates some of the past experience into intuitive rules such as symmetry

and closure by designing a classifier for segmentation. Moreover, the particular

628 Z. Sun et al.

consideration to the drawing order of strokes in the algorithms, makes it possible
to conduct real-time analysis during a user’s drawing.

As far as we know, this is the first work to segment a freehand sketch at the
object level. Various experiments are performed to show the effectiveness and
efficiency of the proposed framework.

2 Object-Level Sketch Segmentation

In this section, we first introduce the proximity-based segmentation. Then the
semantic-based segmentation is presented in detail, followed by a merging strat-
egy guided by intuitive clues. Finally, the sketch segmentation framework is
developed based on the two levels of perceptual factors.

2.1 Proximity-Based Sketch Segmentation

In Gestalt theory, proximity and similarity are the most predominant factors
to influence the natural groupings of human beings: a person tends to group
together nearby items with similar appearances.

These two factors have been widely used in image segmentation tasks
[12–15]. However, different from image segmentation, in which multiple clues
such as intensity and color could be leveraged, in sketch segmentation, a sketch
is usually lack of such information. Thus, we only use the factor of proximity to
conduct the segmentation in the stroke level rather than pixel level. Moreover,
the graph segmentation strategy should also be adapted for stroke elements.

In the following part, the Efficient Graph-based Image Segmentation (EGIS)
algorithm [12] is first briefly introduced, based on which a sketch segmentation
algorithm is then presented.

Efficient Graph-Based Image Segmentation. Let G = (V,E) denote an
undirected graph to represent an image, in which the vertices v ∈ V represent
the pixels in the image. Each edge (vi, vj) = e ∈ E has a weight w(vi, vj) to
indicate the dissimilarity between pixels. A segmentation is to partition V into
segments {S}, in which each segment S corresponds to a subgraph G′ = (S,E′)
where E′ ⊆ E.

In EGIS, the internal difference of a segment S is defined as the largest weight
in the minimum spanning tree MST (S,E′) of the subgraph G′ = (S,E′), i.e.
Int(S) = maxe∈MST (S,E′) w(e).

Then, the minimal internal difference of S1 and S2 is also defined by append-
ing a tolerance τ(S) for each segment S:

MInt(S1, S2) = min(Int(S1) + τ(S1), Int(S2) + τ(S2)), (1)

in which τ(S) = k/|S|, where |S| denotes the size of S and k is a parameter.
The segment distance between S1 and S2 is defined as the minimal edge weight

between the two segments:

Dist(S1, S2) = min
vi∈S1,vj∈S2,(vi,vj)∈E

w(vi, vj). (2)

Free Hand-Drawn Sketch Segmentation 629

Proximity MEGIS Proximity MEGIS

(a) (b)

Fig. 2. Illustrations of the problems in theMEGIS algorithm. Middle column: the input
sketches. Left column: segmentation results of the proposed proximity-based algorithm
(Proximity). Right column: segmentation results of the MEGIS algorithm.

Therefore, the criterion to merge two segments is that, if Dist(S1, S2) ≤
MInt(S1, S2), these two segments will be merged together.

The algorithm begins from initializing each pixel as a segment. Then two seg-
ments with the smallest segment distance will be merged if satisfying the merging
criterion. If successful, repeat the merging process for the segments with the next
smallest segment distance. The algorithm will stop if two segments cannot be
merged. Then, the remaining segments are the results of the segmentation.

Graph Construction for Sketch Segmentation. In the sketch segmentation
task, the vertices v ∈ V represent the strokes of the drawing, and the weight
between two strokes w(vi, vj) is just the minimal distance between them.

Based on the graph-based representation of the sketch, the EGIS algorithm is
naturally adapted for solving the problem of sketch segmentation, which is called
as the modified EGIS (MEGIS) algorithm. Notice that the |S| in the tolerance
in Eqn. 1 is defined as the total length of the strokes in the segment S divided
by the maximal side of the sketch panel.

Modified Graph Segmentation Criterion. The segmentation results of the
MEGIS algorithm are still far from satisfactory. As shown in Fig. 2, the algorithm
tends to separate a short stroke from an object (a), and also fails when some
components are enclosed by a major component in the same object (b).

The first problem is caused by equally treating the two segments when cal-
culating the minimal internal difference in Eqn. 1. Actually, in sketch segmen-
tation, a short stroke is probably a part of a large segment nearby regardless of
some distance between them. Thus, Eqn. 1 is modified to:

MInt(S1, S2) = min(Int(S1), Int(S2)) + max(τ(S1), τ(S2)), (3)

which relaxes the merging threshold if one segment is very small: τ will be large
for a short stroke.

The second problem results from the change of the graph representation.
Different from the simple spacial relationship between two pixels in image seg-
mentation, the proximity between two strokes is more complex. As shown in
Fig. 2(b), the algorithm should merge two segments together if one is predicted
to be “on” or enclosed by the other one. Thus, when segmenting the graph, the
enclosure correlation between two segments is also considered:

630 Z. Sun et al.

 bike bicycle yumi cartoonz amy kovu

sc
o

re
 o

f
ta

g

 golf kamagu beer toons sitting personal

sc
o

re
 o

f
ta

g

(a) (b) (c)

Fig. 3. Top results of the sketch-based image search from one-million clipart image
database. (a) The hand-drawn sketches. (b) Top image search results of the sketch
queries. (c) Word distributions of the top results: unbalanced for a meaningful sketch,
while more flatter for a meaningless sketch.

Corr(S1, S2) =
|CS1

∩ CS2
|

min{|CS1
|, |CS2

|}
, (4)

in which CS is the convex hull of the segment S and |CS | is its area. CS1
∩CS2

means the overlap region between C1 and C2.
This item is also added to the minimal internal difference to ensure that

highly overlapped segments will be merged together:

MInt(S1, S2) = min(Int(S1), Int(S2)) + max(τ(S1), τ(S2)) + λCorr(S1 , S2).
(5)

The modified algorithm is named as proximity-based sketch segmentation. It
is used as the first step in our segmentation framework to segment separable
sketches. To separate overlapped parts into meaningful objects, further analysis
beyond low-level perception is needed.

2.2 Semantic-Based Sketch Segmentation

The high-level knowledge is necessary for human to separate an object from a
complex background. To simulate this process, one million clipart images crawled
from the web is adopted as a knowledge base. Then, a robust entropy descent

merging algorithm is proposed to decide whether to merge two segments. Finally,
a greedy backward segmentation algorithm is introduced for sketch segmentation.

The Knowledge Base. We collected one million clipart images from the web,
and preserved the textual information of each image, such as image title and
surrounding texts. Most of these images were created by human, and thus their
contours have a similar style to the hand-drawn sketches.

We follow the technology of Edgel Index [2, 16] and build a sketch-based
clipart image search engine [17] to explore this knowledge base. For a sketch
segment submitted to this engine, the most similar images to the sketch will be
returned, as shown in Fig. 3. For details please refer to [2, 17].

Free Hand-Drawn Sketch Segmentation 631

Robust Entropy Descent Merging. From Fig. 3 we can see that, for a
meaningful sketch, the top results are usually relevant images; whereas for a
meaningless sketch, the objects in the top results usually become diverse. In the
view of information theory, the information entropy of a meaningful object is
usually lower than that of a non-object. This motivates us to leverage the en-
tropy of the concepts in the top results to decide whether to merge two segments.

The Sketch Entropy

Assume that for a sketch ‘Sketch’, there are N images {I1, I2, . . . , IN} returned
from the engine. Let W = {w1, w2, . . . , wM} be M unique words in the textual
information of the N images. We use the following equation to calculate the
word distribution of the sketch:

Pr(w) =
Score(w|Sketch)∑

w∈W Score(w|Sketch)
, (6)

in which the score between a word w and the sketch is given by:

Score(w|Sketch) =

N∑

n=1

δ(w, In)× Sim(Sketch, In), (7)

where δ(w, In) is 1, if the word w appears in the description of image In; and 0,
otherwise. Sim(Sketch, In) is the similarity between the sketch and image In,
which is provided by the search engine.

Thus, the sketch entropy is defined as:

H =
∑

w∈W

−Pr(w) logPr(w). (8)

To further illustrate the difference between object entropies and non-object en-
tropies, we compared the entropies of 100 object/non-object pairs1. As shown
in Fig. 4(a), most entropies of objects are lower than those of non-objects.

Fig. 4(b) illustrates the entropy change when drawing a bicycle and a tree. We
can see that, the entropies of the bicycle and the tree reached local minimums.

Robust Entropy Descent Merging

Thus, we leverage sketch entropy to judge which segment is more meaningful.
For sketch segmentation, we can merge two segments S1 and S2, if their entropies
are larger than that of the merged sketch, i.e. H(S1∪S2) < min{H(S1), H(S2)}.

In practice, adding a short stroke to an object might cause small entropy
fluctuation. To be more robust, we also take into account the difference of word
distributions. First, the KL-divergence2 between the word distributions of two
sketches is defined as:
1 The 100 sketches of objects were randomly sampled from the Sketch500 database
(see the experiments), and the 100 non-object sketches were collected by randomly
adding or deleting some strokes based on the above 100 sketches of objects.

2 The KL-divergence is not symmetric. Thus we use Sketch2 to represent a newer
stroke than Sketch1 for differentiation.

632 Z. Sun et al.

0 20 40 60 80 100
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Sketch

E
n

tr
o

p
y

Object

Non−Object

1 2 3 4 5 6 7 8 9 10

2.6

2.8

3

3.2

3.4

Sequence of Strokes

E
n

tr
o

p
y

(a) (b)

Fig. 4. The entropy of sketches. (a) The entropy comparison between 100 object/non-
object pairs. (b) The entropy curve of all steps when drawing a bicycle and a tree. The
entropies of the tree with different strokes are also illustrated.

DKL(Sketch1, Sketch2) =
∑

w∈W1

Pr1(w) log
Pr1(w)

Pr2(w)
. (9)

Then, the reciprocal of the KL-divergence is added to the merging criterion.
It ensures that a small stroke will not make the sketch entropy increase if the
word distribution does not change too much. That is, S1 and S2 will be merged
together, if H(S1 ∪ S2) < min{H(S1) +

β
DKL(S1,S1∪S2)

, H(S2) +
β

DKL(S2,S1∪S2)
}.

Here β is set to 0.3 empirically.

Greedy Backward Segmentation Algorithm. Based on the merging strat-
egy, a greedy algorithm is proposed to segment a sketch into meaningful objects.

The order of the drawing is leveraged in the segmentation process. The basic
idea is that, for each newly drawn stroke, we first check whether it could be
merged with all existing segments to be one segment. If unsuccessful, we will
exclusive the oldest segment, and check again, until the merging criterion is
reached. The detailed algorithm is listed in Algorithm 1.

In the worst case, the algorithmic complexity is O(n3), where n is the stroke
number of the drawing. This needs to frequently query the knowledge base, and
thus is inefficient. In order to reduce the querying time and make the segmenta-
tion algorithm more practical, we leverage some intuitive clues learnt from the
past experience to help make decisions before querying the knowledge base.

2.3 Classification Based on Intuitive Clues

Without any prior knowledge, human beings can still have some feelings about
whether an unfamiliar part is an object, or whether two parts belong to one
object. Psychological research [11] pointed out that some common rules learnt
from past experience could intuitively help human in the perceptual grouping.

Fig. 5 illustrates some examples of this kind of factors. (a) Similarity: similar
strokes of ‘mountains’ or ‘water’ are likely to be merged together; (b) Continuity
of Direction: nearby strokes with a continuous direction tend to belong to the
same object; (c) Symmetry: a symmetric sketch is likely to be an object; (d)

Free Hand-Drawn Sketch Segmentation 633

Algorithm 1. The Greedy Backward Segmentation Algorithm

1: Input The set of strokes ordered by the drawing sequence, si, i = 1, ..., n.
2: Output Ensemble of segmentations, S = {Sj , j = 1, ..., m}.
3: Process

4: Set S = ∅, m = 0.
5: For each stroke si, i = 0, ..., n,
6: S ← S ∪ {si}, m ← m+ 1. For the last j segments Sj = {Sm−j+1, ...Sm},
7: let Cj denote a segment with all strokes in Sj .
8: For j = m, ..., 1,
9: For each segment Sk ∈ Sj ,
10: If H(Cj) < H(Sk) +

λ
DKL(Sk,Cj)

,

11: S ← {S1, ..., Sm−j} ∪ {Cj}. Go to 14.
12: End
13: End
14: End
15: End
16: Return S .

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. Example sketches. Some common clues learnt from past experience can help
human in the perceptual grouping: (a) similarity, (b) continuity of direction, (c) sym-
metry, (d) closure, (e-f) compactness, (g-h) change of bounding box.

Closure: if one part is enclosed by another part, they might be merged together;
(e-f) Compactness : a part of an object should not change too much the com-
pactness of the object; (g-h) Change of Bounding Box : if a newly drawn stroke
does not bring too much information to the original object, it tends to be one
part of that object.

Based on the psychological studies in [11] and our observations, eight fea-
tures are defined to quantitatively measure these intuitive clues. Then, a random

forests regression algorithm is leveraged to predict whether and how to merge
the newly drawn stroke. We assume that the inputs are a newly drawn stroke
s and an existing segment S = {ŝ1, ..., ŝm}. Besides, let Snew denote the new
segment after merging s and S.

Similarity. First, the stroke s is equally divided into 2 sub-strokes, denoted
by s1 and s2. Second, we calculate the orientation of each sub-stroke by
fitting a line to it, denoted by θ1 and θ2. Then a feature of s is obtained:
α1 = θ1− θ2. In a similar way, we equally divided s into 4, 8, 16 sub-strokes,
and get another 3, 7, 15 features respectively. Thus, a 26-dimension feature
vector αs is obtained for s. Then, the final similarity feature between the
stroke s and the segment S is defined as fsim = minŝ∈S ||αŝ − αs||2.

634 Z. Sun et al.

Continuity of Direction. Let p denote the first point of the newly drawn
stroke s, and p̂ denote the closest point to p in the segment S. Then, the
orientation difference of the strokes at these two points is used as the feature:
fdirection = θp − θp̂.

Symmetry. First, we compute the centroid of Snew. Then, the sketch is hor-
izontally flipped to S′

new centered by the centroid. Finally, we obtain the
feature fsymH by calculating the Chamfer distance [18] between Snew and
S′
new. Similarly, by vertically and centrosymmetrically flipping the sketch,

we can obtain another two features fsymV and fsymC . We use the minimal
value of the three features as the final symmetry feature fsym.

Closure. The enclosure correlation defined in Eqn. 4 is used here: fclosure =
Corr(S, s).

Compactness. The internal difference, which was introduced in Section 2.1,
is used to measure the compactness of a segment. Thus, the compactness

feature is defined as: fcompact =
Dist(S,Snew)

Int(S) , in which Dist(S, Snew) is the

segment distance defined in Eqn. 2, and Int(S) is the internal difference.
Change of Stroke Length, Convex Hull, and Bounding Box. Let |S|

and |Snew| denote the total length of the strokes in segment S and Snew.
Then, the change of stroke length is given by: flength = |Snew |/|S|. Similarly,
let |C| and |B| denote the areas of convex hull and bounding box of S. Then
we can obtain the other two features in a similar way: fconvex = |Cnew |/|C|,
and fbounding = |Bnew|/|B|.

Learning for Segmentation Given a segment and a newly drawn stroke, we
first extract the above features. Then, a Random Forests Regressor is trained to
predict whether to merge or not.

In practice, for a newly draw stroke, there might be multiple segments avail-
able to merge. In this case, we use this classifier to classify each segment. If more
than one segments are qualified to merge, we consider the order of drawing and
select the latest segment to merge with the newly drawn stroke.

2.4 The Sketch Segmentation Framework

Fig. 6 shows the flowchart of the proposed sketch segmentation framework. This
framework can automatically obtain segmentation results in real time during
a user’s drawing. As shown in Fig. 6, when the user adds a new stroke s, the
proximity-based segmentation is first used to segment all existing strokes. As-
sume s belongs to a segment S. Then, the intuition-based classifier is used to
check whether s can be merged to S or any sub-segments3 in S. If yes, the cur-
rent task is finished, and the system will wait for the next drawing. Otherwise,
it will turn to the semantic-based method to decide whether to merge.

3 In each segment S obtained by proximity-based segmentation, there might be mul-
tiple segments such as S1 and S2 in S. The two segments can be separated by the
semantic-based method when analyzing a previous stroke, in spite of not separated
by proximity-based step. This segmentation information was recorded and will be
leveraged when analyzing a newly drawn stroke.

Free Hand-Drawn Sketch Segmentation 635

New Stroke

Input

Proximity-based

Segmenta�on

Intui�on-based

Segmenta�on

Seman�c-based

Segmenta�on

new stroke

is merged

No

Yes

Fig. 6. Flowchart of the sketch segmentation framework

Fig. 7. Example hand-drawn sketches in the Sketch-500 dataset

It should be noted that, the proximity-based segmentation is indispensable
in this framework. Besides the effect of reducing the query space in semantic-
based segmentation, it can help a lot if a user does not draw objects one by
one, since it does not leverage the order of drawing. For example, if a user draw
objects S1 and S2 in turn, and then add another stroke s to S1. The proximity-
based method will group S1 and s together. Thus, it greatly reduces the risk of
leveraging the order of drawing in the semantic-based segmentation.

3 Experimental Results

3.1 Experiment Setup

The Sketch-500 [4] data set was used in this experiment. Sketch-500 contains 500
hand-drawn sketches, each of which corresponds to a meaningful object selected
from 1000 frequently-used non-abstract nouns. The drawing sequences were also
recorded in Sketch-500. Example sketches are shown in Fig. 7.

The relative distance α is introduced as a parameter for composing simple
sketches in Sketch-500 to complex sketches for training/testing. It is defined as

α = Dist(S1,S2)
min(dS1

,dS2
) , where Dist(S1, S2) is the minimal distance between two simple

sketches, and dS is the diagonal length of the bounding box of sketch S. If there
is some overlap between the two sketches, Dist(S1, S2) becomes negative and
measures the width of the overlap region. For a constructed sketch composed of
N simple sketches, α will be set to be the average of all relative distances be-
tween simple sketches. The accuracy, which is the number of correctly segmented
objects divided by N , is used as the measurement.

100 sketches from Sketch-500 were selected to randomly compose 2,000 sketches
using α ∈ [−0.7, 1] and N = 2 for training the random forests. The other 400
sketches in Sketch-500 were used to randomly compose 2,000 sketches for testing.

We first evaluate the proximity-based segmentation algorithm, followed by
the experiments related to the semantic-based framework.

636 Z. Sun et al.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

A
c
c
u

ra
c
y

Proximity

Proximity−corr

MEGIS

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α (Relative Distance)

A
c
c
u
ra

c
y

Semantic

Semantic−C

Proximity

NormalizedCut

MEGIS

0 10 20 30 40
0

20

40

60

80

100

120

140

160

180

200

Number of Strokes

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

Semantic

Semantic−C

(a) (b) (c)

Fig. 8. (a) Performance comparison for proximity-base sketch segmentation. (b) Per-
formance comparison of different segmentation algorithms under different α. (c) The
times of querying the knowledge base for each sketch with different number of strokes.

3.2 Proximity-Based Sketch Segmentation

Three algorithms were compared, i.e. 1) the MEGIS algorithm, 2) the proximity-
based segmentation algorithm (Proximity), and 3) the Proximity algorithm with-
out considering the enclosure correlation (Proximity-corr). Since the parameter
k in the minimal internal distance in Eqn. 1 is very crucial to control the sizes
of segments, we compared the algorithms for different k. 2,000 testing sketches
were randomly composed using α ∈ [−0.1, 1.0].

The average accuracies of different algorithms are shown in Fig. 8(a). We
can see that both of Proximity-corr and Proximity greatly outperform MEGIS,
which shows the effectiveness of the two major modifications in the graph seg-
mentation criterion. It is also an evidence that image segmentation algorithms
are inappropriate to directly use for solving the sketch segmentation problem.

In the rest of the experiments, k was set to be 15.

3.3 Semantic-Based Sketch Segmentation

We extensively evaluate the proposed image segmentation framework (Seman-

tic) in this experiment. The Proximity algorithm, and the Semantic algorithm
without intuitive classification (Semantic-C) are also compared.

Algorithm Comparison. Fig. 8(b) shows the average accuracies of different
algorithms. Each testing image is composed of two single objects (N = 2). From
Fig. 8(b) we can draw the following conclusions. First, the performances of all
algorithms consistently increase as the distance between objects being larger.
Second, Proximity performs quite well when objects are separable (α > 0), but
significantly drops if there is some overlap (α < 0). This is reasonable since only
the proximity factor is used. Third, both of Semantic-C and Semantic perform
much better than Proximity when α < 0, owning to the leveraging of high-level
knowledge. Semantic is a little worse than Semantic-C when there are signifi-
cant overlaps, since some intuitive features such as closure and change of convex

hull sometimes do not work for highly overlapped objects. However, highly over-
lapping of objects seldom appears in freehand drawings, which makes Semantic

Free Hand-Drawn Sketch Segmentation 637

(a) (b) (c) (d)

Fig. 9. Example sketches for analysis: (a) a lock, (b) a tree, (c) a sketch composed
with six objects, and (d) a sketch with noisy line segments.

still quite useful for real cases. Fourth, when α > 0, Semantic-C performs worse
than the other methods. The reason is that it might over-segment some sketches.
For example, the algorithm wrongly recognized the sketch without the red part
in Fig. 9(a) as a ‘bag’, and Fig. 9(b) as a ‘cloud’. However, these errors could
be corrected by the intuitive features such as symmetry or change of bounding

box in the Semantic algorithm. We also show the performances of MEGIS and
Normalized Cut [13]4 in Fig. 8(b), which are worse than the proposed methods.

Efficiency. Semantic avoids frequently querying the knowledge base, and thus
is much more efficient than Semantic-C. Fig. 8(c) shows the querying times of
the two algorithms as the number of strokes n changes. We can see that, the
complexity has been reduced from O(n3) to O(n) by Semantic. We conducted
the experiments on an Intel Xeon 2.4GHz QuadCore server with 16GB memory.
Fig. 10(a) shows the average time cost for each newly drawn stroke. We can
see that the segmentation speed of Semantic-C significantly drops as the user
draws more strokes. However, the speed of Semantic is almost constant, i.e.,
smaller than 0.3 second. This makes the segmentation system have the ability
of real-time segmenting a user’s sketch during his/her drawing.

Add More Objects. If adding more objects to the testing sketches, as illus-
trated in Fig. 9(c), the problem becomes more challenging. Fig. 10(b) shows that
the performance is decreasing when the sketches become more complex. This is
reasonable since it is still very challenging for human to segment and recognize
all the objects in Fig. 9(c). Another reason comes from the strict evaluation
strategy. In our evaluation, an object cannot be deemed as correctly segmented
unless a segment contains and only contains all the strokes in the object. This
strategy makes it more difficult to segment complex sketches.

Add Noises. To evaluate the robustness of the proposed algorithms, we added
noisy line segments to each testing sketch with random length and at random
position, as shown in Fig. 9(d). The testing sketches were composed using α ∈
[−0.7, 1] and N = 2.

4 The graph was constructed in the same way as MEGIS. The number of segments
was determined by the number of eigenvalues larger than 0.7.

638 Z. Sun et al.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Strokes

A
v

e
ra

g
e

 T
im

e
 C

o
st

Semantic

Semantic−C

−0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α (Relative Distance)

A
c
c
u

ra
c
y

N = 2

N = 3

N = 4

N = 5

N = 6

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Noisy Strokes

A
cc

u
ra

cy

Semantic

Semantic−C

Proximity

(a) (b) (c)

Fig. 10. (a) The average time cost for each newly drawn stroke. (b) Performance of
the Semantic algorithm with different numbers of objects in the testing sketches. (c)
Performance comparison under different numbers of noisy strokes.

Fig. 11. Examples of segmentation results. The labeled word and its probability are
also automatically provided for each segment.

Fig. 10(c) shows the comparison results of different algorithms. We can see
that, as the number of noisy strokes increases, the performance of Proxim-

ity drops faster than the other two algorithms. This is because noisy strokes
might indirectly connect different objects and thus affect the proximity factor.
Semantic-C is most robust to noises owning to the leveraging of high-level knowl-
edge. Since the intuitive clues might be affected by the noises, Semantic is not
so robust as Semantic-C. However, it still consistently outperforms Semantic-C.

Recognize the Sketch. The output segments can be naturally labeled in the
segmentation process. We can use the word with the highest Score(w|Sketch)
(Eqn. 7) as the label of a segment. Some examples are shown in Fig. 11. We
can see that, for some overlapped objects, the results are still acceptable. Sketch
recognition is beyond the scope of this work, and please refer to [4] for the sketch
recognition work.

4 Conclusions

In this paper, we studied the problem of sketch segmentation, which might be one
of the most fundamental problems in sketch-related research. A sketch segmen-
tation framework was developed to support real-time analysis during a user’s

Free Hand-Drawn Sketch Segmentation 639

drawing. The proposed sketch segmentation framework took into account the
basic factors in human perceptual organization, the effectiveness of which has
been shown in the experiments.

Acknowledgments. The work of Zhenbang Sun and Liqing Zhang was partially
supported by the National Natural Science Foundation of China (Grant No.
90920014, 91120305) and NSFC-JSPS international exchange program (Grant
No. 61111140019).

References

1. Marr, D.: Early processing of visual information. Philosophical Transactions of the
Royal Society of London. B, Biological Sciences (1976)

2. Cao, Y., Wang, C., Zhang, L., Zhang, L.: Edgel index for large-scale sketch-based
image search. In: CVPR (2011)

3. Bronstein, A., Bronstein, M., Guibas, L., Ovsjanikov, M.: Shape google: Geometric
words and expressions for invariant shape retrieval. TOG (2011)

4. Sun, Z., Wang, C., Zhang, L., Zhang, L.: Query-adaptive shape topic mining for
hand-drawn sketch recognition. In: ACM Multimedia (2012)

5. Temlyakov, A., Munsell, B., Waggoner, J., Wang, S.: Two perceptually motivated
strategies for shape classification. In: CVPR (2010)

6. Pu, J., Gur, D.: Automated freehand sketch segmentation using radial basis func-
tions. In: Computer-Aided Design (2009)

7. Sezgin, T., Stahovich, T., Davis, R.: Sketch based interfaces: Early processing for
sketch understanding. In: ACM SIGGRAPH (2006)

8. Sezgin, T.: Feature point detection and curve approximation for early processing
of freehand sketches (Masters thesis, Massachusetts Institute of Technology)

9. Hammond, T., Davis, R.: Ladder, a sketching language for user interface develop-
ers. Computers & Graphics (2005)

10. Sezgin, T., Davis, R.: Hmm-based efficient sketch recognition. In: ACM IUI (2005)
11. Wertheimer, M.: Laws of organization in perceptual forms. A source book of Gestalt

psychology (1938)
12. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation.

IJCV (2004)
13. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI (2000)
14. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient nd image segmentation. IJCV

(2006)
15. Carreira, J., Sminchisescu, C.: Constrained parametric min-cuts for automatic ob-

ject segmentation. In: CVPR (2010)
16. Cao, Y., Wang, H., Wang, C., Li, Z., Zhang, L., Zhang, L.: Mindfinder: Interactive

sketch-based image search on millions of images. In: ACM Multimedia (2010)
17. Wang, C., Zhang, J., Yang, B., Zhang, L.: Sketch2cartoon: composing cartoon

images by sketching. In: ACM Multimedia (2011)
18. Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algo-

rithm. PAMI (1988)

	Free Hand-Drawn Sketch Segmentation
	Introduction
	Object-Level Sketch Segmentation
	Proximity-Based Sketch Segmentation
	Semantic-Based Sketch Segmentation
	Classification Based on Intuitive Clues
	The Sketch Segmentation Framework

	Experimental Results
	Experiment Setup
	Proximity-Based Sketch Segmentation
	Semantic-Based Sketch Segmentation

	Conclusions
	References

