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Abstract

We present an algorithm for extracting object de-
scriptions from free-hand sketches of remembered
scenes, drawn as video retrieval queries. Our sketches
depict scene content, as well as indicators of motion.
We report an exploratory study investigating how peo-
ple sketch to depict recalled events. We incorporate sev-
eral observations from this study into the design of a
novel sketch parsing algorithm. We draw upon a tem-
poral HMM classifier to recognise common pictograms,
and graph-cut to identify more general objects.

1 Introduction

Falling hardware costs have prompted an explosion
in the creation of digital video assets. The ability to
efficiently search repositories to recall video clips is
increasingly important, motivating new research into
Content Based Video Retrieval (CBVR).

When people recall events, such as those depicted in
video, they draw upon their episodic memory [13]. Typ-
ically, people reconstruct a meaningful, ordered account
of an episode from fragments of prior experience. Cru-
cially, people do not literally ‘replay’ what was actually
observed at the time [7]. Conveying this to a retrieval
system using keyword (meta-data) queries can be cum-
bersome. Querying by visual example (e.g. a sketch)
is more intuitive, and a number of CBVR systems have
been proposed to this end (Sec. 1.1). However these
systems do not respect the dynamic and reconstructive
nature of episodic memory; rather, they are appearance
based, matching on photometric cues such as colour [2]
or texture [4] with little concern for object motion.

This paper presents the algorithmic design of a front-
end for a novel CBVR system, based on an exploratory
study of how people sketch their memories. We accept
queries in the form of sketches depicting scene spatial
content, alongside cues indicating the dynamics (mo-
tion) of that content. We refer to this medium as a sto-
ryboard sketch.

The contribution of this paper is an algorithm for
parsing storyboard sketches into descriptions of moving
objects. Uniquely, we ground our algorithm in a quali-
tative behavioural study investigating how users sketch

to communicate recall of events from episodic memory
(Sec. 2). Our findings contrast with prior CBVR, which
assumes photometric consistencies between sketches
and video that do not typically occur under episodic re-
call. We also study annotations used to depict motion.

We begin by reporting our empirical study demon-
strating how users sketch for event recall (Sec. 2). Us-
ing observations derived from that study, we develop
an algorithm for parsing storyboard sketches into de-
scriptions of moving objects (Sec. 3). We group sketch
strokes into common high-level pictograms using a tem-
poral Hidden Markov Model (HMM) (after Sezgin et
al. [10]), as well as more general objects using low-level
grouping [11]. We report our process for matching this
object description to video clips in [8].

1.1 Related Work

Most sketch driven CBR algorithms focus on retriev-
ing static images, but can be extended to CBVR through
key-frame extraction. QBIC [2] allows users to sketch
queries using blobs of colour. Spatial relationships be-
tween regions are used to suggest matches. Other simi-
larity measures include shape and topology [5], texture
descriptors [4], and Haar wavelets [3]. Purpose-built
CBVR systems use similar measures, but exploit coher-
ence between frames to identify stable features [6].

As with all CBR, we are faced with the task of bridg-
ing the “semantic gap” between image processing and
the meaningful action in an episode. The semantic gap
is particularly interesting in sketch-driven CBVR, since
the freedom available to the user could lead to a large
variation in both query style and content for a given re-
trieval target. Currently, CBVR systems assume photo-
metric consistency (e.g. colour, texture) across this gap;
i.e. between users’ sketch representations and the visual
properties of a clip. However, this relationship is more
complex when users’ decisions about the inclusion and
juxtaposition of elements in sketches are considered in
light of the reconstructive nature of episodic recall.

Besides the content itself, few CBVR systems take
into account how users portray motion in sketch queries.
Those that do [1, 12] expect queries in the form of
coloured polygons, with precise trajectories laid out on
the image plane. They assume users can recall the abso-
lute path and speed (e.g. in metres/sec. [1]) of objects.



In this paper, we report sketch-driven CBVR tech-
niques to parse users’ sketches of a video episode, based
on an improved understanding of how users represent a
given video clip when asked to recall it. Sec. 2 describes
how our study was conducted and the insights gained.
Sec. 3 describes how we translated these insights into a
sketch parsing algorithm to narrow the semantic gap.

2 Exploring Episodic Recall Sketches

We devised a study in which participants were shown
video clips, and later asked to represent what they could
recall about an episode in the video in the form of a
sketch. Sketches were then analysed to identify com-
mon characteristics among the strategies adopted by
users to depict their memories. A total of 14 participants
were split evenly into two groups (A/B); each group was
shown a different (previously unseen) show-reel of 8
clips over a 2-3 minute period. Participants were inex-
perienced in sketching by computer. Reel A featured 8
clips of actors engaged in dialogue or stunts. Reel B
featured 8 clips primarily of cartoons, sports, and fur-
ther dialogue. Both reels exhibited clips shot against
simple or cluttered backgrounds with a static or panning
camera. After a 4 hour delay, participants were asked to
recall clips in a randomised order, with the instruction:

“Imagine that you wish to retrieve some video clips
from a large video database using a sketch as the query.
Most video clips include motion of some type; you
should attempt to indicate this motion when you think
it is significant.”

Participants were provided with a mouse-driven in-
terface (Fig. 1) and were allowed unlimited time both to
practice, and then to complete each recall task. Whilst
sketching, users were prompted to indicate whether
strokes form the foreground, background or a motion
cue in their drawings. Sketches were recorded as tem-
porally ordered lists of strokes, including the trajectory
(shape and speed) of each stroke, and attributes e.g.
color. On completion, discussions were held with par-
ticipants about the content and their sketching process.

2.1 Summary of Findings

Our discussions and examination of the generated
sketches revealed a number of characteristics in users’
representations of recalled clips. Despite variations
in style, sketch content and level of abstraction was
broadly consistent across participants; with similar ob-
jects and motions having been depicted for particular
clips. For brevity, we have stated the proportion of
sketches exhibiting each characteristic. Representative
examples are given in Fig. 1. Our main insights are
that participants were prepared to compose sketches in
terms of foreground and background elements, and that
the representational strategies for each of these were
distinct in terms of both composition and abstraction
characteristics. There were also commonalities in the
approaches used to sketch temporal aspects of episodes.

Figure 1. The sketching interface, and
representative user sketches of 3 clips.

A. Representation of Recalled Foreground Entities
Users draw objects as ‘foreground’ if they participate
in actions of significance, or exhibit large-scale motion
relative to the “camera”. Inclusion of objects is highly
selective; few feature in each sketch. Elements not
directly involved in the episode tend to be omitted,
regardless of visual salience. Foreground objects are
depicted using outlines (line-art), coarsely approximat-
ing shape while conserving coarse spatial relationships.
Internal detail is omitted or drawn as additional out-
lined shapes. Objects tend to be drawn using spatially
and temporally close strokes; in only 2% of sketches
did a user draw a partial object and then return later
to finish it. People were drawn pictographically (as
stick men) in 84% of all clips that included actors
(the exceptions were portrait close-ups). Coarse shape
approximations are used to depict non-pictogram
foreground objects. These symbols, coupled with
streak-lines and arrow-heads, represent a consistent
alphabet of pictograms drawn upon by our sketchers.
A few saturated, mutually distinctive colours (max. 5,
mean 1.82) were used despite availability of a 24 bit
palette. Most foreground objects were not coloured
in a way that corresponded to appearance: in 84%
of sketches a single colour was used to depict an
entire foreground object. Rather, colour was used to
discriminate between foreground object groups i.e. one
colour to categorise each group.

B. Representation of Recalled Clip Background
Background was drawn in only 68% of sketches; when
background was uncluttered, semantically significant
or when the foreground was very sparse. Background
objects were drawn very coarsely, as either simplified
geometric shapes (e.g. triangles for hills/mountains) or
expanses of colour (often scribbled, despite availability
of a fill tool). Only 20% of backgrounds were drawn in
colour, but of those 91% well approximated the colour



believed to be present in the video (e.g. blue sky when
often the sky was grey or white). Fast, short marks
tended to depict texture e.g. crowds, foliage, or water.

C. Time and Motion in Sketches
Motion is indicated by straight or simple curved trajec-
tories capped with arrows (36% of cues), by streak-lines
(59%), and occasionally by edge ghosting (5%) – Fig. 1.
Arrows are drawn in front of an object’s path; streak-
lines trail the object. In 92% of cases, cue strokes are
drawn in a consistent direction with respect to motion.
Only objects sketched as foreground are decorated with
motion cues; motion is sketched relative to the back-
ground. Periodic motion was indicated by cues either
side of the object. Motion cues were drawn as an un-
interrupted sequence of strokes — in 97% of cases this
was after the moving object was completed. Although
the direction of motion was correctly depicted in 98% of
cases, there was no reliable indication of motion mag-
nitude. The scene is usually collapsed into a canonical,
front-facing perspective that reconstructs memories of
action in the episode. Spatial layout of objects was well
approximated; objects tend to be sketched near the start
of their trajectories, relative to the background. Sketch-
ing was temporally inconsistent; objects co-present in a
sketch may not appear simultaneously in a clip.

3 Stroke Grouping Algorithm

Our study was exploratory. It was not our inten-
tion to derive an immutable set of rules by which peo-
ple sketch in CBVR, but to look for consistencies in
representational strategy and so gain insights into the
sketch-based CBVR semantic gap. Our study indicated
that users sketched using a combination of coarse shape
approximations and a shared alphabet of pictograms
for depicting common objects or motions. In contrast
to the assumptions of prior work, our study indicates
that users include stereotypical, tokenised motion infor-
mation in sketches, encoding neither absolute path nor
speed realistically in these representations. Sketch pars-
ing proceeds as a two step process: pictogram recogni-
tion and grouping of the remaining strokes.

3.1 A HMM for Pictogram Recognition

Following [10], we incorporate the temporal or-
dering of strokes into pictogram recognition. Since
sketched pictograms display greater within-class varia-
tion than the diagrams considered in [10], we introduce
a modified feature set and model. Also, queries contain
many non-pictogram strokes, so rather than attempting
to explain the entire sketch, we adopt a greedy approach
that terminates when no more pictograms can be identi-
fied. The simple structure of arrows and streak-lines can
lead to false positives. We mitigate this by prompting
users to sketch motion cues with a ‘motion ink’, which
separates the motion and non-motion recognition tasks.

We describe each sketch stroke by a feature vec-
tor x and for each class of pictogram m, we train a
model λH

m which generates sequences x1..T with as-
sociated (hidden) states z1..T . The training sequences
have different numbers of strokes and contain exam-
ples of one/multiple strokes being used for one/multiple
‘parts’. The model used is a modified HMM whereby
the emission distribution also depends on the vari-
ables at the previous step: p(xt|xt−1, zt−1, zt). This
enables the use of relative features e.g. (stroke
length)/(previous stroke length), but in contrast to [10],
the distribution of these higher order features depends
on both zt−1 and zt, whereas ‘absolute’ features such
as stroke curvature only depend on zt. We also learn
a spatial model λG

m over global object features for each
class. The number of strokes is the only feature used for
motion cue recognition, whereas for the stickman class,
we use more discriminative features such as bounding-
box ratio and extrema – e.g. “x-value at maximum y”.
The likelihood score of a sequence x1..T for class m is:

α ln(p(x1..T |λH
m))

T
+ (1 − α) ln(p(x1..T |λG

m)) (1)

Given a test sketch, we evaluate and rank this score for
every contiguous subsequence of strokes for each object
class; all sequence lengths present in the relevant train-
ing set are considered. If the subsequence with the high-
est score exceeds a threshold, its strokes are labelled ac-
cordingly and overlapping subsequences removed from
the list of candidate pictograms. The best remaining
subsequence in the list is considered iteratively.

Fig. 2 shows representative results; motion cue di-
rection has been interpreted using simple heuristics.
Fig. 2 summarises performance against 30 manually la-
belled sketches; measured by our generalised Rand in-
dex eq. (2) with the added condition that strokes con-
tributing to the score must have the correct label, e.g.
‘stickman’ or ‘non-pictogram’. Measuring classifica-
tion and clustering accuracy penalises both under- and
over-segmentation (e.g. two stickmen identified as one).
Note that a single wrongly classified stroke prevents all
associated stroke pairs from contributing to the score
and hence near perfect recognitions may score ∼85%.

3.2 Object stroke grouping via Graph Cut

Non-pictogram strokes are grouped into objects us-
ing graph-cut. We compute an adjacency graph A over
all stroke pairs {i × j} using four normalised heuris-
tics: âij =

∑4
f=1 ωfxf (i, j). Here, x1(i, j) is the

‘shortest path’ between strokes — L2 distance is mea-
sured between the closest points on all stroke pairs,
yielding a separate graph of inter-stroke distances. Di-
jkstra’s algorithm is applied to that graph yielding a
‘shortest path’ between stroke i and j. x2(i, j) is a
binary test for colour equality. x3(i, j) similarly tests
stroke foreground/background; a property derived both
from users’ labelling, and from shape e.g. scribbles tend



strokes toward ‘background’. x4(i, j) is a temporal dis-
tance; normalised difference between stroke start times.

Weights ωf are discovered via a priori optimization
over ground-truth labelled sketches. For a sketch of n
objects comprising s strokes, we define the correctness
of a sketch grouping as a generalised Rand index [9]:
∑
i>j

[
(oi = oj) (ôi = ôj) +

(oi �= oj) (ôi �= ôj)
n − 1

]
(2)

where oi is the ground-truth object labelling of stroke
i, and ôi the label assigned by the algorithm. We nor-
malise this score over all p = s(s − 1)/2 stroke pairs.

We average (2) over all training sketches to obtain
an score for ω1..4. Nelder-Mead search yields the ω =
ω1..4 maximising (2) under constraint ω · ωT = 1.

We cut A using standard n-way cut to maximise
graph energy within each sub-graph, and minimise sum
of weights along cut boundaries. This yields a partition-
ing of A and a cost, for a given n. We independently
compute costs over range n = [1, s] and choose n ex-
hibiting lowest cost as our resultant grouping (Fig. 2).

We construct a simple shape model for each object
by fitting an active contour around the object’s con-
stituent strokes. Motion pictograms are associated with
the closest object (or non-motion pictogram) using a
distance transform seeded at the base of arrows or centre
of streak-line sets. Objects are then recorded as moving
in the direction of the cue (or in many directions for
multiple cues, used to indicate periodic motion).

4 Conclusion and Discussion

Most sketch driven CBVR employs matching tech-
niques similar to those of CBIR. However video recall
depends on episodic memory, with consequences for
sketch depiction. We suggest that sketch CBVR will
not proceed far without analysis of this query medium.
To this end we reported a exploratory user study in to
how people actually sketch, and encoded our findings
into an innovative sketch parsing algorithm.

Optimizing parameter set ω over typical (Fig. 1)
training sketches with well-spaced, distinctively
coloured objects led to ω = [0.346, 0.279, 0.210, 0.164]
(used for results in Fig. 2), whereas cluttered (over-
lapping) objects without much use of colour produced
ω = [0.160, 0.038, 0.448, 0.426]; the algorithm biases
toward weights that have greater discriminatory power.
Fig. 2 (right) shows promising accuracy over 30 test
sketches; measured using eq. (2) summed over all
objects (non-motion pictograms and grouped strokes).

We make a number of assumptions that could be ad-
dressed in future; we assume no mis-labelling of strokes
by users; we do not handle edge ghosting, or inter-
spersed pictograms (these are rare, Sec. 2). However,
we believe our combined contributions of (i) a study
exploring sketch recall in CBVR, (ii) an algorithm for
parsing such sketches, will provide a valuable resource
for researchers of sketch driven CBVR systems [8].
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Figure 2. Two groupings (top): solid lines
indicate pictograms; dashed lines objects
and cue associations. Grouper accuracy,
30 sketches (bot.): HMM pictogram recog-
nition (l.); Cut-based grouper (r., cyan);
Combined HMM/cut grouper (r., blue).
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