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In an important recent paper H. E. Scheiblich gave a construction of free
inverse semigroups that throws considerable light on their structure [1]. In this note
we give an alternative description of free inverse semigroups. What Scheiblich
did was to construct a free inverse semigroup as a semigroup of isomorphisms be-
tween principal ideals of a semilattice E, say, thus realising free inverse semigroups
as inverse subsemigroups of the semigroup T, a kind of inverse semigroup introduc-
ed and exploited by W. D. Munn [2]. We go instead directly to canonical forms
for the elements of a free inverse semigroup. The connexion between our construc-
tion and that of Scheiblich’s will be clear. There are several alternative procedures
possible to reach our construction on which we comment on the way.

1. Introduction

Let X be a non-empty set. Let X-! = {x~! IxeX} be a set disjoint from
X, where x + x~! is a one-to-one mapping of X upon X~ Set Y = X U X~
Denote by #; the free semigroup on Y: the elements of %, are the non-empty
words in the alphabet Y and the product of any two words u, v in %y is the word
uv obtained by juxtaposition of u and v. #; denotes the semigroup with identity
obtained from &y by adjoining an identity element 1 to #y. We shall also call 1
a word.

A word in #y is said to be reduced if it does not contain a syllable xx~! or a
syllable x~'x, x € X, as a subword. The word 1 of % is also said to be reduced.
Any word of #} determines a unique reduced word obtained from it by deleting,
in succession, any syllables xx~! or x~'x, x € X. The set of all reduced words in
&+ we shall denote by G. G is then the frez group on X under the product

i (u,v) > u-o,u,veq,

where u - v denotes the reduced word determined by uv.
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If g is an element of G we shall denote its inverse in G by g~ 1. Set
F={g.97" gi9s '|k 2 1, each g,e G\ {1}},

and set F! = F U {1}. Then F is a subsemigroup of %, and F' is a subsemigroup
of #; . Denote by W the set F'G:

W' = {fg|feF',geG}.

The product fg is here to be evaluated in Fy. Finally set W = W'\{1}.

There are now several possible ways of proceeding to construct I, the free
inverse semigroup on X. We shall proceed by first constructing a semilattice E,
say, that will form the semilattice of idempotents of Iy. We shall then form a
semi-direct product* of E! and G. The resulting semigroup J% is not an inverse
semigroup and indeed is not regular. We shall then define a congruence on J b
such that each congruence class contains precisely one regular element. The quo-
tient of Jy modulo this congruence will be Iy. Finally Iy = I\{1}. Alternatively
Iy may be identified with the semigroup of regular elements of Jy; and this is
perhaps the simpler approach.

It will be seen at the end that what has effectively been done is to introduce an
equivalence relation on W and then to define a product on the equivalence classes
to give Iy. Although this latter procedure is on the face of it more direct— we
shall give the formal definitions required later —the verification that the con-
structed object Iy is an inverse semigroup involves much the same argument as
in the procedure we have chosen to adopt.

Another possible procedure would be to consider the cartesian product
E' x G, define an equivalence on this, and then define a product on the resulting
set of equivalence classes to give Iy and so I,. We shall not give the details of
this approach. ,

~ For each of the approaches mentioned we can instead go directly to Iy and
suppress the introduction of the 1. However the introduction of the I smoothes
the computational path.

-,

2. The construction of I

LeMMA 1. Each element of F is uniquely expressible in the form g.91!
i gugx ', where k 2 1, and g;e G\{1},i = 1,2, -, k.

PROOF. Let a = g,97" - g,9: '. Then, as an element of %y, a is a unique
product of elements of Y,a = y; *-- y,, say. Each y ; 1s itself a reduced word, and
so belongs to ‘G. Consider the product in G, y, - --+ - y,. As we successively eval-
uate y;, y, * y,, -+, itis clear that the first time we get the value 1 is when we have

* What we term a semi-direct product (see below) is a generalization of the usual concept.
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evaluated the product as far as the initial segment g,g; ' of a. This determines g,
uniquely. Similarly, the next time the value of the product is 1 is on reaching the
end of the initial segment g,g7 'g,g5'. This determines g, uniquely. A continua-
tion of the argument shows that the remaining g; are also uniquely determined.

Let us agree to write g < h, for g, hin G, if g is an initial segment of h, i.e. if
there exists g’, say, in G, such that g-g’=gg’= h. Here, to require that g-g’
= gg’ means requiring either that gg’ is reduced as it stands or that one of g and
g’ equals 1. Hence, for example, 1 < g, for all g in G. Then < is a partial order on G.

If A and B are nonempty subsets of G, we mean by A < B that each element
of A is less than some element of B. If A is finite then Max A will denote the set of
its maximal elements,

Because of Lemma 1, if f = g,g7" - g9 '€ F, then the set {g1,, g4} is
uniquely determined by f. We call it the domain, Dom f, of f, and if f = 1, we de-
fine Dom f = {1}. We define the carrier of f to be Car f = Max Dom f.

We say that two elements e and f of F! are ~ equivalent if they have the
same carrier: e ~ f if and only if Car ¢ = Car f.

LEMMA 2. ~ is a congruence on F'.

PrOOF. ~ is clearly an equivalence relation; that it is a congruence follows
from the fact that < is a partial order on G. ‘

We shall denote F'/ ~ by E'. Note that 1 is the sole element of its ~ equiva-
lence class. Set E = E'\{1}. Effectively also E = F/~.

It will frequently be convenient to denote any element f ~ of E! simply by f.
We shall consequently allow ourselves when following this convention to replace
f at any stage by any word of F* ~ equivalent to it.

LemMA 3. E is a semilattice and E' is a semilattice obtained from E by the
adjunction of an identity element 1.

Relative to the natural order of the semilattice, e £ f if and only if Car f
< Care, for e, fe E'. Hence the set of maximal elements relative to its natural
order, of E, is : '
{xx~!|xe X} U{x~'x|xeX}.

Proor. Clearly, if e, fe E, then

Car ¢? = Caree,
and
Car ef = Car fe.
Thus E! is a semilattice. '
Now e < f in the semilattice E!, relative to its natural order, means that
ef =e But ef = ¢, ie. ef ~¢, if and only if Car(ef) = Car e. Since Car(ef)
= Max(Car e U Car f), therefore Car(ef) = Car ¢ if and only if Car f < Care.
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Each element x of G determines a transformation &, of E' defined as
follows. If e = 1, we set eg, = xx~!. If e = g,97" -+~ 9,9, ' then we set

e, = xx"1(x g )x gy~ (xg)x- g0~ "

We must show that the ¢, are well-defined on E', i.e. we must show that, if e ~ f,
then es, ~ fe,. The following lemma provides what is needed. If 4 = G and xe G,

set x4 = {x-a|ae4}.

LEMMA 4. Let A< G and xe G. Let ae A and suppose that x - a is a maxi-
mal element of x - A. Then either a is a maximal element of Aorx+a = x.

PRrOOF. Suppose that a is not a maximal element of 4; then there exists b in 4
such that a < b, i.e. such that b = ac = a - ¢ for some ¢ % 1. This implies that
x - a < x - b unless the process of reducing the words absorbs the whole of q, i.e.
unless x = x’a~! = x’-a~! for some x'. (In such a case x-a = x’, while xb
= x’c, and any further reduction between x’ and ¢ will lead to a situation where
x-a<x-b)Butifx = x"+a"! then

x-a=x"<x.

Now suppose that e~ f, e, fe F'. If e = 1, then f = 1 and so es, = fe.. If
e=gig;" " gugi ', set A = Dom e. Then Car e¢, = Max({x} Ux - A), the pos-
sibility that some of the x - g; equal 1 not affecting this statement. From Lemma 4,
if x - a. a € A, is a maximal element of x - 4, either a is a maximal element of A4,
i.e. aeCar e, or x-a < x. Thus Car eg, = Max({x} Ux - Car e). Since Car ¢
= Car f, therefore Car eg, = Car fe,, i.e. eg, ~ fe,.

We shall frequently write ¢ for ee,.
LEMMA 5. For each x in G, ¢, is an endomorphism of E'.

PROOF. Let ¢, fe F'. If e =1, then (¢f)* = f* and €*f* = xx~'f* ~ f* from
the definition of ~. Similarly, if f = 1,(ef)* = €*f*.

Suppose that e # 1 and f # 1. Set A = Dom e and B = Dom f. Then Dom(ef)
= AV B. Hence

Car(ef)* = Max({x} Ux - (4 U B))
= Max(({x} Ux- 4A) U({x} Ux - B))
= Car &*f*.

Thus (ef )" ~ ¢*f*. This completes the proof.

The mapping x — ¢, x € G, is almost an antihomomorphism of G into End E!,
The extent to which it fails to be is clarified in the next lemma.
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LEMMA 6. Let ec E',x,y € G. Then xx~1e*” = (&%)

Proor. If e = 1, then
@y =@y 'y
xx~ 1o y)xe y)Thif y £ 1

xx~! Jify=1
~ xx~1(x* y)x - )~ !, in both cases,

= xx~ 1",

Ife=g,g7" - gigx ', then

¢y @ =00 g) g)™ gy g7
If y # 1 and also no y - g; equals 1, then
(@) =xx7'(xe p)x-p) ey gy g)Tt e (x Y g dxc y e g)T!
= xx~ 1€,

as required. If y = 1, then
(@) =€ = xx~¢%,
by definition of ~ ,
= xx"~ 1 ex.y’
as required.

Finally, suppose that y # 1, and that some y - g, equal 1, Then the correspond-
ing factors (y - g)(y - g;)~"' will be suppressed in the right-hand side of (1) above.
Hence, in evaluating this right-hand side the corresponding expressions
(x.y.9:) (x - y - g)~" will not occur. However, since each such expression is equal
to xx~*!, and xx~ ! already occurs on the right-hand side, from the definition of ~,
we have, with no factors missing, from (1),

@Y =xx""x-p)x- ) x Yy g)x -y g)t e (xry g xtye gt
= xx~'e*,

completing the proof.
We can now define, in terms of the endomorphisms ¢,, the semi-direct pro-
duct Jx as the set E! x G on which a product is given by

(e&x)(f,y) = (ef*,x* y).
LeEMMA 7. JY is a semigroup.

PrOOF. Let (e, x),(f, y),(g,2) € E* x G.
Then
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(e, x)(f, g, 2) = (ef ", x - y)g,2) = (e["g™7,(x " y) * 2)
= (ef*xx"1g*",x - (y - 2)),
by the definition of ~, since f* ~ xx~1f~,

= (ef*(g”)", x(y - 2),
by Lemma 6,

= (e, x)(fg’,y " 2),

since ¢, End E',

= (e, x)((f, ¥)(9, 2)).
We now find the idempotents and the regular elements of Jy.

LEMMA 8. El x {1} is the set of idempotents of J%. It forms a subsemigroup
of Jx isomorphic to E.

ProOF. This result is immediate from the definition of the product in J.
For (e, x)* = (e, x)if and only if x * x = x,i,e. if and only if x = 1.

LEMMA 9. Let (e,x)eJ}. Then (e,x) is a regular element of J if and only
if {x} < Care, i.e. if and only if Car xx~'e = Car e.

PrOOF. Let (e, x) be regular. Then there exists (f, y) such that (e, x)(f, y)(e, x)
= (e, x). Hence
(ef "¢, x - y - x) = (e,x).
Thus x-y*x = x, so that x* y = 1, and
ef*e! =e
ie.
exx~f%e = e.

From the definition of ~ it follows that {x} £ Care.
Conversely, suppose that {x} < Car e. Set y = x~!; then

(e, XX, y)e, x) = (e(e)e, X).

By Lemma 6,(¢")" = xx~'e*? = xx~le' = xx7le. However since {x} < Care,

Car xx~'e = Car e. Hence xx~'e = e. Thus exx~'ee = e and

(e, x)(ey’ y)(e, x) = (e, X).

We may now proceed in two ways The first way is that of the next lemma.
LEMMA 10. The regular elements of Jx form an inverse subsemtgroup of Jx.

PROOF. Let a, b be regular elements of Ji. Let a’, b’ be inverses of a, b, res-
pectively. Then, since the idempotents of Jy commute, by Lemmas 3 and g,
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ab(b’a’)ab = a(bb')(a’a)b = (aa’a)(bb’b) = ab,
and similarly,
b'a’(ab)b’a b'a’.
Thus ab is regular.
Since the idempotents of this regular subsemigroup form a semilattice it forms
an inverse semigroup.

COROLLARY. If (e, x) is a regular element of J} then it hasa unique inverse,
namely (¢~ ',xY), in J4.

Proor. That any inverse is unique follows from Lemma 10 because any in-
verse of a regular element is itself regular. That (¢, x~!) is the inverse of (e, x)
when it is regular was part of the proof of Lemma 9.

Let us denote the semigroup of regular elements of J%, i.e., by Lemma 10,
the maximal inverse subsemigroup of J}, by I%.

The second possible construction of Iy is as a homomorphic image of J%.
We shall say that (e, x) ~ (f,y) if and only if x = y and Car xx~'e = Car yy-!
It is immediate that (e, 1)~ (£, 1) if and only if e ~ f, where the latter ~ denotes
our earlier equivalence on E'. Since we have already seen (Lemma 8) that E' x {1}
may be identified with E', our new definition of ~ may be regarded as merely
extending ~ from E' to J.

LeEMMA 11. ~ is a congruence on Jy.
PROOF. Let (e, x),(f, 1),(g, z) € J4 and suppose that (e, xX)~(f,y). Thusx =y

and Car xx~'e = Car yy~'f,i.e. Car xx~'e = Car yy~'f.
To prove right compatibility, consider

(e,x)(g,2) = (eg™,x - 2)
and
(f,9)9,2) = (fg7,x - 2),
since x = y. Now, by the definition of ~ on F', g* ~ xx~!g*, so by Lemma 2,
(x-2)(x z)"leg* ~ (x - z)(x - z)~'exx~'g*
~(x - 2)(x 2)"xx~1g%,

since exx~! ~ fxx~!

~(x - z)(x - 2)"fg";
hence (e,x)g,2) ~ (f, ¥)(g,2).

To deal with left compatibility, consider

(9,2Xe,x) = (ge’,z * x)
and
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g, 2(f,y) =(f*,z" %),
since x = y. Since
xx"le ~ xx7f,
therefore,
(xx~e)e, ~ (xx ~'fe,,
so, by Lemma 5,

zz7 Nz XNz - x)~ 1" ~ zz7 1 (z - x)(z - x)"If%
Thus
(z-xNz-x)" e ~(z x)Nz-x)"'f*.
By Lemma 2, therefore
(z-xNz-x)"'ge* ~ (z- x)z - x)""gf*.
Hence ~ is right compatible.

LEMMA 12. Each congruence class of ~ in J}( contains precisely one regular
element. Hence Jy |~ = I}.

Proor. The final statement follows immediately from Lemma 10, for the set
of regular elements of Jy form the inverse semigroup I5.
Let (e, x)€Jx. Then
(xx~'e,x) ~ (e, x)

and, by Lemma 9, (xx~'e,x) is regular. Thus each ~ class contains a regular
element. »

Suppose that (e, x) ~ (f, y) and that (e, x) and (f, y) are regular. Since (e, x)
~ (f,y), therefore x = y and Car(xx~'e) = Car(yy~'f). Since (e, x) is regular,
Car xx~'e = Car e; since (f, y) is regular, Car (yy~'f) = Car f. Thus x = y and
Car e = Car f, i.e. e~ f. Thus (e,x) = (f, y).

We now define Iy to be Iy \{1}. Iy is clearly an inverse subsemigroup of I.
Define ¢ : X — I thus

¢ :x - (xx~1x),xeX.

Then ¢ is one-to-one i.e. ¢ embeds X in Iy. In the next section we show that
(I, @) is a free inverse semigroup on X.

We comment now an another possible construction of I, mentioned earlier,
starting from the set W. We define an equivalence ~, say, on W thus:

fg ~ eh if and only if g = h and Car fgg~' = Car ehh™!,
for f, ee F',g,heG, fg,ehe W. On W/~ we then define a product as follows:
(f9) ~ (eh) ~) = (fgg9~'kg - h) ~,

where, if e = hyh," - hhY, then
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k=(g-h)g-h)~"(g-h)g-h)".
With this product we then take W/~ as Iy.

3. The freedom of (I, ¢)

In what follows we take I, as the subsemigroup of Ji consisting of all the
regular elements of Jy other than 1.

We are to show that (I, ¢) is a free inverse semigroup on X. In other words,
we are to show that if S is an inverse semigroup and « : X — S is any mapping,
then there is a unique morphism 8 : Iy — S, say, such that ¢80 = «.

To construct 0, first let us adjoin an identity element 1, an additiona’ one if S
already has one, to S to form the inverse semigroup S*. Define 8 : G — S* as

follows: :
xB = xa,xe X,
x7'p=(xx)" ', x"le X!,
where (xa)~! is the inverse in S*,

18=1,
1Yz VB = 1B)¥2B) -+ (1) yi€ Y,
where y,y,---p, is reduced. o

LEMMA 13. Let g,he€ G and suppose that g £ h. Then
9B P~ = (hBY(hP)~!
in S*. :

ProOF. There exists g’ in G such that # = gg'= g - g’ . Hence, from the defini-
tion of S, i
hB = (9B)g’B).
Thus
(9BXgB)~'(hBXHP)~" = (9B)gB)~"(9B)g'B)(hB)~*

= (9B)g'B)(hp)~"
= (hB)(hp)~".

We may now define 0 as follows. Let (e,g) e Iy. Then e # 1, for Car gg~le
= Car e, and (e,g) # (1,1).-Hence e = g,g; '--g,gs !, say. Define

(€909 = @:8)g.B " (9GP~ 9B

where, on the right of this equation, (g;8)~!, i = 1,---,k, denotes the inverse of
g.f in S. From Lemma 13, if e ~ f (in F'), so that (e,g) = (f,g) in I, then the
above definition gives (e, g)0 = (f,9)0. Thus 6 is well-defined.
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The following lemma contains two results needed to show that ¢ is a mor-

phism.

LEMMA 14. Let T be any inverse semigroup. Let a,b,me T. Then
® (am)(m='b)m~'b)~" = (ab)ab)~'am,
@) ' (am)(m=1b) = (am)am)~'ab.

ProoF. (i) (am)(m='b)Ym~'b)~' =a-mm=1-bb~'-m = abb~'mm~'m
=a-a"'a-bb"! m=abb 'a"'am.
(ii) (@am)(m='b) =a-a 'a-mm~' b =amm-'a"'-ab.
Consider now (e, g), (f,h) in Ix. Then
(e g}/, 1) = (ef%g - h).

Since e and f are not equal to 1, we have e = g,g7" - 9,9, ' and f = h,hi!
"'hlhl_19 say. Set glﬁ = si’i = 1""’k’ h_,ﬁ =‘tj) j= 12,1, gﬁ = s, and hﬂ
=t.

Suppose that g-h = g'u-u~'h’, where g = g’'u, h =u~'h’, and g-h
=g’ -h'hg = g'h’, and that

g- h_,- — é(j’uj . uj.lh_,'-,
where
gPu; =g, u ) =h;, g-h; = gP h = g¥h,
forj =1,--,1.Setg¥8 = sV u;p=r;, hjp=t,,g'8=s,h'B="t,anduf =r.
Then, by definition of 8,
(ef%9 WO = (9197 " 9u05 997 (@ B )@ - )" (g~ h)g - k)", g - h)P
= 5y57 " s 1ssTHg h)Bg k)BT (g R)BUg - h)B) (g WB
= 5,57 L eeessy s ) O P ) st |
On the other hand,
(e, 9)0(1, 1)8 = (sy57 "+ sis¢ ')(taty  otyty 1)
= s;57 0 ceesisg tssT (st )it Mt
= 5,57 58y tss T M )V ) " sty Lt

= sy51 " eesisic 88T TR (PP s,

L

by successive applications of Lemma 14, part (i),

= 5,57 Leeesese Issm DD D)L (s P (s D)~ 1ss st
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by Lemma 14, part (ii),
= (ef’,g - h)3,

completing the proof that 6 is a morphism.
Now, immediately from the definition of 6,

xp0 = (xx~',x)0
= (uo)(x) ™ (x)
= xa, if xe X .

Thus ¢8 = «. It remains to show that 8 is uniquely determined by this condition.
This will be so if X¢ is a set of generators of Iy. This is so, for we easily check
that, if e = g,917" - 9,95 ' then

(1) (eag) = (glgIl’l)"'(gkg;lﬁ1)(gg—1’g)’
and for any h in G,
)] (hh=1,1) = (hh=*, hY(h=*h,h™").

Moreover, if h = y;---y,,y;€ Y, then

A3) (hh= 1) = 7 Sy Days Ly - e s vk

a product of elements of X¢ and their inverses.

The final remarks of the above proof lead to a canonical form for the elements
of Iy. If (e, g) € Iy, we may choose e, by the definition of ~ (on F'), so that Care
= Dom e. Suppose that then e = g,g;" --- g,g, . Then e is uniquely expressible
in this form, modulo ~, up to a permutation of the factors g,g; ! Modulo such
permutations, equations (1), (2) and (3), above, enable each element of Iy to be
expressed as a unique product of elements of X and their inverses.
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