Title	Free involutions on non-prime 3-manifolds
Author(s)	Tollefson, Jeffrey L.
Citation	Osaka Journal of Mathematics. 7(1) P.161-P. 164
Issue Date	1970
Text Version	publisher
URL	https://doi.org/10.18910/4441
D0I	$10.18910 / 4441$
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/
Osaka University

FREE INVOLUTIONS ON NON-PRIME 3-MANIFOLDS

Jeffrey L. TOLLEFSON.

(Received December 18, 1968)
(Revised October 14, 1969)

1. The purpose of this paper is to study free (i.e., fixed point free) involutions on non-prime closed 3 -manifolds and to suggest the general problem of characterizing the relationship between the connected sum decomposition of a closed 3 -manifold and that of its closed covering spaces. Recall from [5] the following definitions. A closed connected 3-manifold is prime if there is no decomposition $M \approx M_{1} \# M_{2}$, where M_{1} and M_{2} are non-trivial closed 3 -manifolds (that is, different from the 3 -sphere S^{3}). A closed 3-manifold is irreducible if every tame 2 -sphere in M bounds a 3 -cell. We say that M is non-irreducible if M contains a tame 2-sphere that does not bound a 3-cell. All manifolds are connected in this paper.
2. If $T: M \rightarrow M$ is a free involution we will denote the orbit space M / T by M^{*}. If $M \approx A \# B$ and T induces a free involution $T^{\prime}: A \rightarrow A$, we denote A / T^{\prime} by A^{*} without specifically referring to T^{\prime}. We remark that a free involution on a closed 3 -manifold is always simplicial with respect to some triangulation.

Lemma 1. A non-irreducible closed 3-manifold M admitting a free involutionT: $M \rightarrow M$ contains a tame 2 -sphere S not bounding a 3-cell in M such that either $T S=S$ or $T S \cap S=\phi$.

Proof. Using Brouwer's fixed point theorem it is easy to show that a tame 2 -sphere S in M such that $T S=S$ does not bound a cell. So it is only necessary to consider the case when there are no such 2-spheres in M. Suppose then that $T S \neq S$ for every tame 2 -sphere S in M. It will follow that there is one such that $T S \cap S=\phi$.

Take any tame 2 -sphere in M that does not bound a cell. One exists since M is not irreducible. By performing (if necessary) a series of small $p l$ isotopies we can obtain a tame 2 -sphere $S_{0} \subset M$ not bounding a cell and such that $T S_{0} \cap S_{0}$ $=\left\{c_{1} \cdots c_{n}\right\}$, where each c_{i} is a simple closed curve disjoint from c_{j} if $i \neq j$. Let $n\left(T S_{0} \cap S_{0}\right)$ denote the number of components of $T S_{0} \cap S_{0}$.

From the class (non-empty) of tame 2 -sphere Σ in M such that Σ does
not bound a cell and $T \Sigma \cap \Sigma$ is a finite collection of pairwise disjoint simple closed curves, we select a 2 -sphere S such that $n(T S \cap S)$ is minimal. We show that $n(T S \cap S)=0$.

Suppose that $n(T S \cap S)>0$. Let c be an innermost curve on $T S$. Then c bounds a closed disk $E \subset T S$ such that Int $E \cap S=\phi . \quad c$ separates S into two closed disks, E_{1} and E_{2}. By proper choice of notation we have $T E \subset E_{1}$. Consider the tame 2-spheres $S_{1}=E \cup E_{1}$ and $S_{2}=E \cup E_{2} . \quad T c=c$ if and only if $T S_{1}$ $=S_{1}$. Hence $T c \neq c$ and $T E$ is properly contained in E_{1}.

Both S_{1} and S_{2} cannot bound cells in M, so suppose S_{i} does not. Let c^{\prime} be a simple closed curve on E_{i} close to c such that $c \cup c^{\prime}$ bounds a closed annulus $A \subset E$, with $A \cap T S=c$. Span a closed disk E^{\prime} on c^{\prime} close to E so that $E^{\prime} \cap T E^{\prime}$ $=\phi, E^{\prime} \cap T S=\phi, E^{\prime} \cap S=c^{\prime}$, and the 2-sphere $S^{\prime}=\left(E_{i}-A\right) \cup E^{\prime}$ does not bound a cell. We have constructed a tame 2 -sphere S^{\prime} such that $n\left(T S^{\prime} \cap S^{\prime}\right)$ $<n(T S \cap S)$, contradicting our choice of S. Therefore, $n(T S \cap S)=0$.

Let N denote the non-orientable 2 -sphere bundle over the circle. P^{n} denotes real projective n-space, $n=2,3$.

Corollary (Tao [7]). The orbit space of a free involution on $S^{1} \times S^{2}$ is homeomorphic to $S^{1} \times S^{2}, N, P^{2} \times S^{1}$, or $P^{3} \# P^{3}$.

Corollary. The orbit space of a free involution on N is homeomorphic to $P^{2} \times S^{1}$.

Proof. According to Lemma 1 there are two cases.
Case 1. There is a tame 2 -sphere $S \subset N$ such that $T S=S$. Since S does not bound a cell, $N-S$ is connected. Cutting N by S we get a space homeomorphic to $S^{2} \times I . \quad T$ induces a free involution $T^{\prime}: S^{2} \times I \rightarrow S^{2} \times I$ such that $T^{\prime}\left(S^{2} \times i\right)=S^{2} \times i, i=1,2$. By [2], T^{\prime} is equivalent to $A \times e$, where $A: S^{2} \rightarrow S^{2}$ is the antipodal map and e the identity on I. So the orbit space is homeomorphic to $P^{2} \times S^{1}$.

Case 2. $T S \neq S$ for every tame 2-sphere S in N. An analysis similar to that of [6] in the proof of the previous corollary reveals that this case does not occur.

Lemma 2. If a closed 3-manifold M admits a free involution $T: M \rightarrow M$ such that the orbit space M^{*} is irreducible and contains no 2 -sided projective planes, then M is also irreducible.

Proof. Suppose that M is not irreducible. According to Lemma 1 there is a tame 2-sphere $S \subset M$ that does not bound a cell and such that either $T S \cap S$ $=\phi$ or $T S=S$. Let $p: M \rightarrow M^{*}$ be the projection.

Case 1. Suppose there is a tame 2 -sphere $S \subset M$ not bounding a cell such that $T S \cap S=\phi$. Then $p(S)$ is a tame 2 -sphere in M^{*}. But M^{*} is irreducible,
so $p(S)$ must bound a cell in M^{*} and hence S also bounds a cell in M. This is in contradiction to our choice of S.

Case 2. Suppose there is no tame 2 -sphere $S \subset M$ not bounding a cell such that $T S \cap S=\phi$, i.e. suppose Case 1 does not occur. Then there is a tame 2 -sphere S such that $T S=S . \quad S$ must separate M, otherwise $p(S)$ would be a two-sided projective plane in M^{*}. Let $M=A^{\prime} \cup B^{\prime}$, where A^{\prime}, B^{\prime} are the closures of the components of $M-S$. Since the Euler characteristic of P^{2} is odd, P^{2} cannot bound a manifold and hence $T A^{\prime}=B^{\prime}$. Let A be the non-trivial closed 3 -manifold obtained by capping the 2 -sphere boundary of A^{\prime}. It follows that $M^{*} \approx A \# P^{3}$. But this contradicts M^{*} being irreducible.

Therefore we must have M irreducible.
3. We adopt the following notational conventions. Let H_{1} denote the collection of all non-trivial prime closed 3-manifolds and let C_{1} denote the collection of all non-trivial irreducible closed 3-manifolds. Then $H_{1}=C_{1} \cup$ $\left\{S^{1} \times S^{2}, N\right\}$. For $n \geq 2$ we let $H_{n}\left(C_{n}\right)$ denote the collection of closed 3-manifolds which are homeomorphic to the connected sum of exactly n members of $H_{1}\left(C_{1}\right)$.

Lemma 3. Let $M \in C_{m}\left(H_{m}\right)$ and suppose $T: M \rightarrow M$ is a free involution. Then $M^{*} \in C_{n}\left(H_{n}\right)$, where $n \leq m(n \leq m+1)$.

Proof. A proof for the case when $M \in C_{m}$ may be found in [8]. A similar argument establishes the case when $M \in H_{m}$, noting the corollaries to Lemma 1.

Theorem. Let $T: M \rightarrow M$ be a free involution on $M \in C_{m}, m>1$. Then there exist closed 3-manifolds A and B, with B irreducible (possibly trivial) such that $M \approx A \# B \# A$ and $M^{*} \approx A \# B^{*}$.

Proof. The proof follows by a straight forward induction. We present an argument for the case when $m=2$ which indicates the general technique. It follows from Lemmas 2 and 3 that $M^{*} \in C_{2}$ when $m=2$. Write $M^{*} \approx A \# B=$ $A^{\prime} \cup B^{\prime}$, where $A, B \in C_{1}$ and A^{\prime}, B^{\prime} are obtained from A, B respectively, by deleting tame open 3-cells so that $A^{\prime} \cap B^{\prime}=S$ is a 2 -sphere. Let $p: M \rightarrow M^{*}$ be the projection. $\quad p^{-1}(S)=S_{1} \cup S_{2}$, a pair of disjoint 2-spheres each separating M. Let U_{1}, U_{2}, V be the three components of $M-p(S)$, labeled so that $B d$ $\left(C l U_{i}\right)=S_{i}$ and $B d(C l V)=S_{1} \cup S_{2}$. Capping the 2 -sphere boundary components of $\mathrm{ClU}_{1}, \mathrm{ClU}_{2}, \mathrm{ClV}$ with 3-cells we obtain the closed 3-manifolds Q_{1}, Q_{2}, R respectively. Then $M \approx Q_{1} \# R \# Q_{2}$.

But $T U_{1}=U_{2}$ and $T V=V$. Since Q_{1} and Q_{2} both cover either A or B, say A, exactly once and $M \in C_{2}$, it follows that $A \approx Q_{1} \approx Q_{2}$ and $R \approx S^{3}$. Since $B \approx$ R^{*}, Livesay's result [4] gives us $B \approx P^{3}$. Therefore $M \approx A \# S^{3} \# A$ and $M^{*} \approx$ $A \# P^{3}$.

Corollary. A 3-manifold M belonging to C_{2} admits a free involution if and
only if $M \approx A \# A$ for some $A \in C_{1}$, in which case $M^{*} \approx A \# P^{3}$.
We remark that Kwun [3] first observed that $P^{3} \# P^{3}$ is the only non-prime orientable closed 3 -manifold to double-cover itself.

Tulane University

References

[1] M. Greenberg: Lectures on Algebraic Topology, Benjamin, 1967.
[2] M.W. Hirsch and S. Smale: On involutions of the 3-sphere, Amer. J. Math. 81 (1959), 893-900.
[3] K.W. Kwun: 3-manifolds which double-cover themselves, Amer. J. Math. 91 (1969), 441-452.
[4] G.R. Livesay: Fixed point free involutions on the 3-sphere, Ann. of Math. 72 (1960), 603-611.
[5] G.R. Livesay: Involutions with two fixed points on the three-sphere, Ann. of Math. 78 (1963), 582-593.
[6] J. Milnor: A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7.
[7] Y. Tao: On fixed point free involutions of $S^{1} \times S^{2}$, Osaka Math. J. 14 (1962), 145-152.
[8] J.L. Tollefson: On 3-manifolds covering themselves, Mich. Math. J. 16 (1969), 103109.

