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SUMMARY 
The theory of Love- and Rayleigh-wave dispersion for plane-layered earth models has 
undergone a number of developments since the initial work of Thomson and Haskell. 
Most of these were concerned with computational difficulties associated with numerical 
overflow and loss of precision at high frequencies in the original Thomson-Haskell 
formalism. Several seemingly distinct approaches have been followed, including the 
delta matrix, reduced delta matrix, Schwab-Knopoff, fast SchwabKnopoff, Kennett’s 
Reflection-Transmission Matrix and Abo-Zena methods. This paper analyses all these 
methods in detail and finds explicit transformations connecting them. It is shown that 
they are essentially equivalent and, contrary to some claims made, each solves the loss 
of precision problem equally well. This is demonstrated both theoretically and compu- 
tationally. By extracting the best computational features of the various methods, we 
develop a new algorithm (see Appendix A5), called the fast delta matrix algorithm. To 
date, this is the simplest and most efficient algorithm for surface-wave dispersion 
computations (see Fig. 4). 

The theory given in this paper provides a complete review of the principal methods 
developed for Love- and Rayleigh-wave dispersion of free modes in plane-layered 
perfectly elastic, isotropic earth models and puts to rest controversies that have arisen 
with regard to computational stability. 

Key words: elastic-wave theory, guided waves, Love waves, Rayleigh waves, surface 
waves. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 INTRODUCTION 

Present interest in seismic surface-wave theory is largely con- 
cerned with departures from the standard model consisting of 
plane uniform layers under conditions of isotropy and perfect 
elasticity. Particular examples include anisotropy, visco- 
elasticity and lateral variations in material properties. In the 
case of lateral variations, some theoretical progress has been 
made as portrayed in the works of Woodhouse (1974), 
Malischewsky zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1987) and Keilis-Borok ( 1989). Weak lateral 
variations are most conveniently analysed using perturbation 
theory. Solutions beyond the first order are rarely, if ever, 
carried out. The zeroth-order solution corresponds to the 
standard or unperturbed model. The first- and higher-order 
perturbations solutions depend strongly on the zeroth-order 
solution. Hence a thorough understanding of the zeroth- 
order solution, from both the theoretical and computational 
aspects, is required. This paper is essentially a review of 
the many different methods used to solve and compute the 
dispersion characteristics of the standard model described 
above. 

The theory of seismic surface-wave dispersion in plane- 
layered earth models is well understood. We shall show that 
the theory, which has evolved from the work of Thomson 

(1950) and Haskell (1953), and the propagator theory of 
Gilbert & Backus (1966), leads to an elegant representation 
for the dispersion equation in the form 

D(c, k )  = detIU’ TVI = 0.  (1) 

U and V are boundary matrices, respectively associated with 
the top and bottom of the model, and which also depend on 
the particular boundary conditions applied. T is the propagator 
matrix which transfers wave information from the top of 
the model to the bottom, and is the equal to the product 
TIT, . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n = no. layers) of the individual layer propagators 
7;. The above prescription holds for both L waves (Love), 
when U, V are 2 x 1 vectors, T is 2 x 2 and the determinant is 
of order 1; and R waves (Rayleigh), when U, V are 4 x 2 
matrices, T is 4 x 4 and the determinant is of order 2. In 
addition, eq. (1) applies to models bounded by a free surface 
or a stack of layers sandwiched between two half-spaces. 

In Section 2 we define the notation and state the basic 
equations. The Thomson-Haskell method, expressed in terms 
of propagators, is briefly reviewed in Section 3, and the 
representation above for D(c, k )  is derived. 

It is also well known that, for R waves, a direct computation 
of the determinant for D(c, k )  may lead to a serious loss of 
numerical precision at high frequencies (see Fig. lb). Several zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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methods have been successfully implemented to solve this 
instability problem. One popular method was the delta matrix 
method described in Pestel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Leckie (1963) and first applied 
tc R-wave dispersion by Thrower (1965) and Dunkin (1965). 
Section 4 describes the basic ideas behind the method and 
how it avoids the problems of numerical loss of precision. 
Pestel and Leckie also describe an analytical trick which, in 
rhe case of R waves, reduces the order-6 delta matrices to 
order 5. Since seismic surface-wave applications can be very 
computationally intensive, significant savings in computer time 
can be realised using the reduced delta matrix method (see 
Fig. 4). The reduced delta matrix scheme was first applied to 
R-wave dispersion by Watson (1970). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A somewhat different approach to dispersion analysis was 
introduced by Knopoff (1964). It differed from the Haskell- 
Thomson method in twb fundamental ways. First, the disper- 
sion function was expressed in terms of interface matrices, 
rather than propagators, leading to a determinant of order 
2n + 1 for L waves and 4n + 2 for R waves, as opposed to the 
order-1 and order-2 Thomson-Haskell determinants. Second, 
the determinant is evaluated using a recursive row decompo- 
sition of Laplace’s method (see Appendix A8). We shall refer 
to this recursion as the Knopoff decomposition; it is explained 
in more detail in Section 5. It transpires that the Knopoff 
decomposition, which was first computed by Randall ( 1967), 
successfully avoids the instability inherent in the Thomson- 
Haskell method. Unfortunately, the Knopoff decomposition is 
very cumbersome to apply in practice, and the general com- 
plexity of the method substantially increases the chance of 
programming error. 

Further enhancements and numerical studies of the Knopoff 
decomposition were performed in a series of papers by Schwab 
& Knopoff (1970, 1972). The common feature of these papers 
is the Knopoff decomposition for the computation of the 
dispersion function. The difficulties of this approach, mentioned 
above, have tended to detract from the real importance of 
these contributions. One of the purposes of this review is to 
make the Schwab-Knopoff method more transparent. This is 
achieved in Section 5.1 by finding explicit matrix transform- 
ations that connect the method to the more easily understood 
delta matrix representation. 

Schwab (1970) employed an inspired set of row and column 
transformations which reduced certain of his layer matrices to 
almost block diagonal form, but left the dispersion function 
invariant. As a consequence of these transformations, the 
dispersion function could be expressed in particularly simple 
algebraic form. Schwab provided further computational 
savings by the use of clever factorizations, leading to the most 
efficient algorithm yet produced. We shall call this algorithm 
the fast Schwab-Knopoff method. 

Section 3.3 provides the general theory of transformations 
of propagators, of which the fast Schwab-Knopoff method is 
a special case. In Section 6 we find the explicit matrix trans- 
formations that correspond to the fast SchwabKnopoff 
method, but which are expressed within the more amenable 
framework of delta matrix theory. It is therefore logical to call 
this the fast delta matrix algorithm. It turns out to be even 
more efficient than the fast Schwab-Knopoff algorithm, but it 
is well to remember that it has its origins in the Schwab (1970) 
transformation scheme. We point out that the fast algorithms 
also incorporate the computational advantages of the reduced 
delta matrix method. 

In Section 7 we investigate Abo-Zena’s (1979) method to 
solving the instability problem. Here, the R-wave dispersion 
function is obtained by recursively computing a sequence of 
4 x 4 antisymmetric matrices, which are closely related to the 
propagator delta matrices. Abo-Zena goes to considerable 
lengths to express the propagator as a linear combination of 
eigenfunction products, in the belief that this is the key to 
handling the high-frequency instability problem. In fact, this 
overstates the case, since it is only necessary to ensure that 
certain combinations of eigenfunctions which generate the 
instability are correctly computed. These combinations are in 
fact correctly handled in all the algorithms reviewed in this 
paper, with the exception, of course, of the Thomson-Haskell 
method. 

In Section 7.1 we apply the Abo-Zena recursion to the ‘fast’ 
representation of the dispersion function derived in Section 6. 
Quite remarkably, this leads to exactly the same representation 
as the fast delta matrix algorithm, with the factorizations 
employed by Schwab (1970) automatically carried out in 
the process. 

Section 8 reviews the Reflection-Transmission or RT-matrix 
method developed by Kennett (1974) and Kennett & Kerry 
( 1979). Unlike the other algorithms, the RT-matrix method 
requires all computations to be performed using complex 
arithmetic. This results in the loss of computational efficiency, 
but there are some compensating features of the method. The 
principal one is that the RT method neatly side-steps the 
stability problem and thus avoids the difficulty at the outset. 
It achieves this through its ingenious representation in terms 
of reflection and transmission submatrices. Remarkably, this 
representation depends only on propagating and decaying 
evanescent waves. All dependence on growing evanescent 
waves, which is present in the other algorithms, is eliminated, 
and with it the source of the instability. 

In order to make the text more readable and still provide a 
full self-contained theoretical description, most of the math- 
ematical detail is relegated to a sequence of appendices, A1 to 
A8. Attention is given to unifying the notation as far as 
possible. Section 2.1 provides a list of the main symbol 
definitions and notation used throughout the paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 BASIC EQUATIONS 

Since the basic theory of surface waves in plane-layered media 
is well understood, we shall be content here to introduce the 
notation and state the fundamental equations. 

The model contains a stack of n plane horizontal layers, 
indexed 1,2, ... , n, with constant elastic parameters. The top 
of the first layer of the stack will usually correspond to the 
Earth’s surface, assumed to be stress-free. The stack is further 
assumed to overlie a uniform half-space indexed by layer 
number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL = n + 1. We shall also consider the case of the stack 
of layers sandwiched between two half-spaces corresponding 
to buried strata within the Earth, such as a sequence of coal 
seams. In this case the upper half-space will be indexed by 
layer number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 0 and we shall refer to the top of the first 
layer as a buried surface. A local coordinate system is adopted 
for each layer with z pointing vertically downwards and the 
origin at the top of the layer.’ In this system, each finite layer 

‘In the case of an overlying half-space the origin is placed at the 
bottom of the half-space, which will then occupy the region z < 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Free-mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwave computations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA871 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
occupies a local region 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< z < di, where di is the layer thickness. 
The underlying half-space occupies the local region z > 0. 

Surface waves propagate horizontally in the x-direction with 
phase velocity c = c(k) where k is the horizontal wavenumber. 
The frequency is given by o=ck .  True surface waves satisfy 
the radiation condition that all wavefields vanish asymptoti- 
cally as z + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco into any half-space. The relation c = c(k) or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc(w) is the dispersion equation we seek. It is obviously 
dependent on the layer parameters, but is also critically 
determined by the assumed boundary conditions and conti- 
nuity conditions at adjoining interfaces. Free mode dispersion 
corresponds to a configuration in which there are no physical 
sources in the model. The dispersion exhibits a spectrum 
which contains both continuous and discrete components. 
Specifically, the spectrum has a discrete modal structure and 
each mode is associated with a unique continuous dispersion 
curve c = c,(k), where m indexes the mode number and m = 0 
corresponds to the fundamental mode; m = 1 to the first 
overtone etc. Each mode, except the fundamental, also displays 
its own cut-off frequency w,, below which surface-wave propa- 
gation is impossible. For true surface waves, the phase velocity 
is restricted to be less than the slowest half-space S velocity. 
Phase velocities violating this condition are pseudo-leaking 
modes and are not true surface waves. Such waves propagate 
a component of energy vertically into the half-space(s) and 
hence violate the radiation condition. 

2.1 Notation and parameters 

2.1.1 Dispersion parameters 

k, w 
c = w/k phase velocity 
D(c, k) dispersion function 

wave number and frequency 

2.1.2 Model layer parameters 

i = 1,2, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 
i = O  
t = n + l  

ai, Bi 

pi, pi = piBt 
di thickness of layer-i 

layer index numbers 
upper half-space index (if it exists) 
lower half-space index (always exists) 
P and S velocities in layer-i 
density and rigidity in layer-i 

yi = p ; / 2  
ti = (2 - C’/B’) 

2.1.3 Layer eigenfunctions 

c < ai(c < Pi) c > ai(C > p i )  
ri (1 - c’/c(:)’i’ i(c’/at - I)’/’ = i~~ 
si (1 - c’//p:)’/’ i(c’/pf - I)’/’ = isi 

Cai(k) cosh( kridi) cos(kfi di) 
S,(k) sinh(kridi) i sin(kFidi) 
C,, (k) cosh(ksidj) cos(kSidi) 
S,,(k) sinh(ksidi) i sin(k.$di) 

2.1.4 Wave-field parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x, z, t horizontal coordinate (direction of surface-wave 

propagation); vertical coordinate (positive 
downwards and locally zero at top of each finite 
layer); and time 

elastic displacement field (functions of x, z, t )  
vertical stress field gxz, gyz, ozz 
P wave up and down amplitudes (complex 
conjugates if c > m i )  
SV wave up and down amplitudes (complex 
conjugates if c > B,) 
SH wave up and down amplitudes (complex 
conjugates if c > pi) 

2.1.5 

ai 

ad* 

Yi (z) 
pi = yi(0) 
j i  = yi(di) 

Mi 

Ei (z) eigenfunction matrix; 

Layer vector and layer matrix dejnitions 

up-down amplitude vector for layer-i 
[Ci, C;]’ for L waves; [A, ,  A; ,  Bi, B;]’ for R waves 
[C,] for L waves; [Ac, BL]‘ for R waves 

displacement-stress state vector for layer-i 
state vector at top of layer-i 
state vector at bottom of layer-i 

rigidity matrix; diag[ 1, pi] for L waves and 
diag[ 1, 1, pi, pi] for R waves 

diag[ek”iz, e-ks,z] for L waves 
diagCekri’, e-k*,z , eks,z , e-ks,z ] for R waves 

layer matrices with Qi = MiPi and yi(z) = QiEi(z)ai 

Q; ‘Ei(di)Qi layer propagator or transfer matrix 

Pi ,  Q i  

T 

2.1.6 Other vector and matrix definitions 

T denotes the transpose of matrix T 

T denotes the order-2 delta matrix associated with T 
T* denotes the reduced delta matrix associated with T 

ej a length-2 unit column vector with 1 in row j ,  0 otherwise 
ejk a 4 x 2 matrix with 1s in (row j ,  col 1); (row k, col 2) and 

0s elsewhere. 

2.2 Love waves 

In each layer for 0 < z < di: 

a%, azvi 1 azv, -+s=-- ax’ pf at2 ’ 

v~(x, Z, t) = %(z) cos [k(x - ct)] , 

T;(X, Z, t )  = - kx(z) cos[k(x - ct)] , 
~ ( z )  = ci e-ksaz + Ci eks.2, 

-kY,(z) = pi> = -pis,k(Ci e-s,kz - C; estkz). 
i3V 

aZ 
State vector and amplitude vector: 

(2) 

where Mi, Pi,  Ei(z)  are the 2 x 2 matrices 

E,(z)= [ eks’z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,-ks,z O 1 .  (3) 
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Surface, interface and radiation conditions can be expressed 
entirely in terms of state vectors yi  or amplitude vectors ai. 
The state-vector representation leads to the usual Thomson- 
Haskell formalism, while the amplitude representation is 
adopted in the Knopoff scheme. 

2.2.1 Boundary conditions 

(1) At a stress-free surface: Y,(O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 or e;y,(O) = e ; j l  = 0. 
( 2 )  At an internal interface: continuity of displacement and 

stress means that state vectors at the bottom of layer-i and 
top of layer-(i+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 )  are equal, i.e. y i ( d i ) = y i + , ( 0 )  or f i=ji+l 
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi =  1, 2, ..., n. 

(3) In any half-space, (i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG and possibly i = 0): all state 
vectors must vanish with distance measured away from the 
finite layers. Thus, for an upper half-space (i = 0), Co = 0; while 
for a lower half-space (i = f): C; = 0. These are equivalent to: 
e; a, = 0 and e; a, = 0 respectively. 

It is convenient to define the reduced half-space vector 
(actually a scalar for L-waves) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa? = C,. Then the lower half- 
space radiation condition is equivalent to the statement 

r c,i 
a, = elat  = 1 o" 1. 
2.2.2 Remarks 

( 1 )  The depth dependence of the state vector y i (z )  is con- 
tained wholly in the eigenfunction matrix Ei ( -z ) .  The choice 
of - z  in the definition of Ei  is made for later algebraic 
convenience. In particular, its inverse is readily seen to be 
E; ' ( - z )  =E i ( z ) .  

(2) The elements of the matrix Ei ( -z )  are real exponentials 
when c < pi  and are complex exponentials equivalent to sines 
and cosines when c > pi. In the former case, C i ,  Ci are real; in 
the latter case, they are complex conjugates in order that K(z) 
and x ( z )  remain real-valued. 

(3) When c = pi, si = 0 in layer-i, and the eigenfunctions are 
no longer exponential. The correct solutions are then of the 
form 

&(z) = Ci  + kCiz and K(z) = -pic;. 

Formally, the matrix Pi defined above becomes singular and 
the dispersion analysis blows up. This potential problem is 
solved, however, by replacing Pi  and Ei by the matrices 

P i = [  1 kz 1; Ei=[: :] 
O k  

With this representation, it transpires that we need only 
consider the c # p i  case. The solution for c = p i  then results by 
taking the limit si + 0 in thefinal expressions for the propagator 
matrices, even though the limit does not exist for matrices in 
the intermediate calculations. 

2.3 Rayleigh waves 

In each layer-i: 

-+-=-- az#i  a2#i 1 a2#i 
ax2 az2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE; at2 

$i(x, z, t) = (Bi eCkS,' + B: eksi2) sin[k(x - ct)], 

ui(x, z, t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(dx + $Ji = - kUi(z)  sin[k(x - ct)] , 

w~(x, Z ,  t )  = (#= - $Ji = - kU.;(z) cos[k(x - ct)] , 

tZ(x, z, t )  = pi (2dXz + $zz - $xx ) i  = kZX j (z )  sin[k(x - c t ) ]  , 

G(x, Z ,  t) = ~ i ( ~ # z z  + qdxx - 2$xz)i = k2Zi(z) cos [k(x - c t ) ] ,  

where pi = clf/pf and qi = p i  - 2. 
The state and amplitude vectors for Rayleigh waves are 

r A i i  

(4) 

where Mi, Pi ,  Ei(z) are the 4 x 4 matrices 

( 5 )  

2.3.1 Boundary conditions 

( 1 )  At a stress-free surface: X , ( O ) = Z , ( O ) = O  which are 
equivalent to the single vector equation: e;4j1 = 0. 

(2) As for L waves, the continuity of displacement and 
stress across internal interfaces is expressed by: j i  = j i + l  for 
i = l , 2  ,..., n. 

(3)  Radiation conditions for half-spaces are given by A, = 
B, = 0 for i = 0 (upper half-space) and A; = B; = 0 for i = L 
(lower half-space). These are equivalent to &ao = 0 and 
ei4a, = 0 respectively. 

Again, we shall find it convenient to define the reduced 
amplitude vector a: = [A,, Bd]' .  Then the lower half-space 
radiation condition can be expressed as 

I n 1  

Remarks similar to those made for Love waves also apply 
to Rayleigh waves. In particular, the cases c = cli and c = p i  
require special attention, since the eigenfunctions are then no 
longer exponential functions in layer-i. The correct solutions 
are 

q$(z) = (Ai  + kAlz) cos [ k ( x  - ct)] if c = cli, 

t+ki(z) = (Bi + kB;z) sin[k(x - c t ) ]  if c = p i .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Free-mode wave computations 813 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The corresponding adjustments to matrices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEi and Pi are 

then as follows 

For c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm i :  take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEi(-z) = diag[ 1, 1, e-s*kz, esxkz] and replace 
the second column of Pi by the vector [kz, - 1, -2ti, kz]’. 

When c = Bi: take Ei(-z) = diag[e-‘XkZ, erzkz, 1, I] and 
replace the fourth column of Pi  by the vector [- 1, kz, kz, -21’. 

These adjustments then lead to the correct limiting form of 
the dispersion equation when c -+ mi or c --f p i .  

3 PROPAGATOR MATRICES A N D  THE 
THOMSON-HASKELL METHOD 

We see from the previous section that both Love and Rayleigh 
waves are governed by matrix equations of the form 

yi(z) QiEi(-z)ai, ( 6 )  

where Qi is a new layer matrix defined by Qi = MiPi. Since Mi 
is a diagonal matrix, Qi is obtained by multiplying each row 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPi by the corresponding diagonal element of Mi. The layer 
propagator (or transfer) matrix T,(z) is defined by 

~ ( 2 )  = Q ~ E ~ ( ~ ) Q ; ~ .  (7) 

The components of T are listed in the Appendix for both Love 
(A l )  and Rayleigh (A2) waves. All the elements of IT; are seen 
to be real, even though the elements of Qi and Ei(z) may be 
complex. Two elementary but important properties of T ( z )  are 
the following. For any z1 and z2, 

T(zl)q(z2) = T(zl + z2) and T;’(z) = T(-z ) .  

There results are also useful for checking the computer code. 

then 

yi(zl) = QiEi(-zl)ai and y i ( z 2 )  = QiEi(-z2)ni. 

Eliminating ai from these two matrix equations then leads to 

If z1 and z2 denote any two depths within the same layer, 

Yi(z1) = T(z2  - 21 ) Y i ( Z z )  . (8) 

The propagator 7;(z2 - zl) therefore relates state vectors at 
any two depths within the same layer. To determine how state 
vectors from different layers are related, define two other 
vectors for each layer: 

j i  = y i (0 )  = Qiui and ji = y i (d i )  = QiEi(-di)ai. (9) 

Thus j$ and ji denote the state vector at the top and bottom 
of the current layer. It follows that ji = T(di)ji = T j i ,  where 
?; = T,(di) = QiEiQ;’ and Ei = Ei (d i ) .  The continuity condition 
for state vectors implies that at the interface between layers i 
and (i + 1) we have ji = j i +  1 .  This immediately leads to the 
Thomson-Haskell recursion 

j i  = T j i+ lF  i = 1,2, ... , n ,  (10) 

j 1=(T ,T2 ... x)yt ( G = n + l ) .  (11) 

with solution 

This means that the state vector at the top of the first layer is 
related to the state vector at the top of the lower half-space 
through the product T =  TIT, ... T, of all layer propagator 
matrices. 

To obtain the dispersion equation, it remains only to apply 
the surface condition and radiation condition to j1 and j c .  In 

all cases, the boundary conditions lead to a matrix equation 
of the form U‘ TVa: = 0. The dispersion equation therefore 
has the implicit form 

D(c, k )  = det I U‘ TVI = 0 ,  (12) 

where U, V are boundary matrices (listed below) which depend 
on the type of surface wave (Love or Rayleigh) and also the 
type of surface condition (free surface or buried surface). For 
L waves, U, V are 2 x 1 matrices and so the determinant is of 
order 1 and therefore redundant. For R waves, U, V are 4 x 2 
matrices and the determinant is of order 2. 

For Love waves 

Buried surface: U‘ = e‘ 1 Q-’ 0 - - 2 c 1  PSIO. 
Free surface: U‘=e’ - [  2 -  0 11. 

Bottom half-space: V =  Qcel = [ 
For Rayleigh waves 

Buried surface: U’ = ei3 Q;’ 

Note that multiplication of a matrix Q on the left by eij selects 
rows i and j of Q, while multiplication on the right by eij 
selects columns i and j of Q. 

Within the theoretical framework developed above, it is a 
simple matter to find the dispersion equation for standard 
Rayleigh waves on a half-space and Stoneley waves at an 
interface separating two half-spaces. In both cases there are 
no intervening layers (n  = 0), and the dispersion equation 
reduces to D = det I U’ VI = 0. 

DR(c) = detle;,QleI3l = 0 

for Rayleigh waves, and 

Ds(c) = detle;3Q;1Qle131 = O  

for Stoneley waves. These are readily reduced to standard 
formulas which turn out to be non-dispersive (independent 
of k) .  Rayleigh waves, for example, have the dispersion 
equation 4r1s1 - t :  = 0, which expands to the classical fotmula 

Specifically, 

4( 1 - c2/a:)l’z( 1 - c2/p:)”2 - (2 - c”/p:)’ = 0 .  

3.1 Low- and high-frequency solutions 

Low frequencies correspond to the limit k + 0. In this case the 
layer eigenfunction matrix Ei + I ,  the identity matrix, and 
hence IT; + QiIQ;’ = I  also. It follows that the dispersion 
equation simplifies to D(c, 0) = det I U‘ VI = 0. However, as seen 
above, this is the dispersion equation for the case when there 
are no intervening layers. Thus for free-surface Rayleigh waves, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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the phase velocity in the low-frequency limit will tend to the 
lower half-space Rayleigh velocity, just as if the layers were 
not present. In effect the wavelengths are so large that the 
finite layers become 'invisible'. 

In the high-frequency limit, we first consider the case of a 
very thick layer-j with c<B j  so that the exponential eigen- 
functions in E j  dominate all other terms in the dispersion 
equation. We may then approximate E j  by the diagonal matrix 

E j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx diag[ekridj, 0, eksidj, 01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= diag[R, 0, S, 01, 
where R, S are real and numerically large. In this case, the 
dispersion function can be factorized as 

D(c, k) = RSDl(c, k)D2(c, k) = 0. 

Here, D, =detIU'(T, ... q-,)Yl is the dispersion function for 
layers 1 to j overlying a half-space with the properties of 
layer-j, and D, = det I U;(7;+ . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,)V,l is the dispersion func- 
tion for layers (j + 1) to n, sandwiched between two half-spaces 
with properties corresponding to layer-j and layer-! respect- 
ively. Thus the dispersion function has decoupled into two 
terms corresponding to a free-surface Rayleigh wave for the 
first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( j  - 1) finite layers, and a buried surface Stoneley wave 
for layers (j+ 1) to n. The thick layer-j effectively acts as a 
separating half-space when the frequency is sufficiently high. 

We may follow Haskell (1953) and extend this argument to 
higher and higher frequencies, when all the finite layers behave 
as effective half-spaces for the short wavelengths inferred. Now 
the dispersion function factorizes into n terms. The first corre- 
sponds to a free-surface Rayleigh wave with the properties of 
the first layer. The remaining factors correspond to Stoneley 
waves (if they actually exist for the given model parameters) 
at each successively deeper interface. 

3.2 Numerical considerations 

We begin this section with a brief statement of a computational 
algorithm to implement the Thomson-Haskell recursion of the 
dispersion function D(c, k), given in eq. (1). 

X ,  = U ' ;  Xi+l  = X r T  ( i =  1,2, ... , n); 

D=detIX,VI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( f=n+l) .  (13) 

This algorithm requires a subroutine to compute the propa- 
gator matrix IT; for each layer in the model for any selected 
values of the phase velocity c and wavenumber k. The inter- 
mediate matrix X i  is 1 x 2 (Love) or 2 x 4 (Rayleigh) and 
contains the successive products of the propagators. Note that, 
correspondingly, only 1 x 2 or 2 x 4 matrix multiplications are 
required, rather than 2 x 2 and 4 x 4 operations. For models 
with many layers, the computation of the propagator matrix 
is the most time-consuming. Considerable savings in computer 
time can be made by efficiently coding the propagator elements, 
using its many symmetry properties (see Appendix A2). Since 
the algorithm delivers only the dispersion function, the user 
must also provide code for extracting its zeros. In most 
practical applications, a simple bracketing method with linear 
interpolation will be sufficient. More accurate methods are 
available if desired. There are arguments for scanning the roots 
for either fixed c or fixed k (Kerry 1981), but we have avoided 
the issue in this paper by computing binary dispersion images, 
rather than specific dispersion curves. 

The problem of numerical overflow due to the exponentials 
appearing in the Ei matrices is solved by properly scaling the 

elements of the propagator matrix. Underflow is avoided by 
zeroing all elements below a minimum threshold. Although 
this scaling will change the numerical value of the dispersion 
function, it will not effect the location of its zeros. Further 
details are provided in Section 9. 

The problem of loss of numerical precision is, however, a 
far more serious one. The problem does not exist for Love 
waves, and appears only for Rayleigh waves, as illustrated in 
Fig. 1. The Thomson-Haskell algorithm generally works very 
well only up to a finite model-dependent k,,, (or equivalent 
maximum frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,,,), beyond which severe precision loss 
is encountered. The reasons for this instability have been 
thoroughly discussed in the referenced works. It is due to the 
subtraction, in the computation of the determinant, of very 
large terms which are identically equal in theory, but may 
differ numerically. In particular, consider a layer with the 
Rayleigh-wave eigenfunction matrix 

E, = diag[R, R- ' ,  S ,  S-'1 ; 

with R, S assumed real and numerically large. This matrix 
will generate a final Thomson-Haskell (2 x 2) dispersion 
matrix U'TV, whose elements are linear combinations of 
(R, R - l ,  S,  S-'). Hence D(c, k), the determinant of this matrix, 
will contain large terms of order R2, S2 and RS. However, as 
will be demonstrated in the next section, the terms in R2 and 
S2 should cancel identically. Owing to numerical round-off, 
exact cancellation fails, leading to the loss of precision alluded 
to, possibly with catastrophic results, as displayed in Fig. l(b). 

R = ekrJdj, S = eksidl, 

3.3 Transformations of propagators 

Let Si ( i  = 1,2, ... , d )  be any non-singular matrices with the 
same dimensions as the propagators IT;. The elements of Si 
may depend on the layer-i properties. Let z^i = Sip,. Then the 
basic surface-wave recursion equation (10): 

gi = zgi+ , (i = 1,2, . . . , n);  

U ' j l = O ,  j d =  Vat 

may be transformed to 

f i = i j ; p i+ ,  ( i=1,2, ..., n); 

P f , = O ,  f , = V a t ,  

where 

ij;=SiTS;ll; O'=u's;l; V=s,v. (16) 

O ' W =  O'(7iT2 ... $)V 

With these definitions, 

= (U'S;  I)(& T, s; l)(S, T,  s; 1 )  . . . (S ,  T. S, l)(S, V )  

= U'TV. 

Hence the dispersion function D = det I U'TVI remains invariant 
under the transformations Si. Theoretically, the two recursions 
are equivalent. 

We find in Section 5 such transformations connecting 
the delta matrix and Schwab-Knopoff algorithms, thereby 
demonstrating the equivalence of the two methods. 

The question arises, however, of whether suitable transform- 
ations can be found which lead to significant computational 
improvement. We shall find, in Section 6, matrices Si that 
transform the standard delta matrix recursion into a new fast zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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(a) Love zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.6 

3.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz 3g4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y 
W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 3.3 

3.2 

3.E 

3.5 

L? 3.4 
E 

0 3.3 

3.2 

n 

Y 
W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Free-mode wave computations 875 

(b) Rayleigh 

1 
0 50 100 

kH 

3.1 
0 

3.1 
50 100 
kH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Love- and Rayleigh-wave dispersion functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD(c, k)  computed using the Thomson-Haskell method for Haskell's two-layer model-H1 
(Haskell 1953; Case-1, p. 31). 

1 6.14 3.39 2.70 13.60 
2 5.50 3.18 2.70 11.85 

+-space 8.26 4.65 3.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco 

The binary images show D 0 (dark) and D < 0 (light), so that actual dispersion curves D = 0 lie on the edges. Catastrophic precision loss occurs 
in the Thomson-Haskell R-wave scheme at a normalized wavenumber kH z 50, where H is the total thickness of the layers. No instability is 
evident for L waves. 

recursion, similar to the fast version of the Schwab-Knopoff 
algorithm. 

One apparent disadvantage of such transformed schemes is 
that the new 'propagator', z=SirS;ll, depends on the 
properties of both layer-i and layer-(i + 1). As such, is 
actually an interface matrix, connecting wave properties 
between two adjacent layers. We shall see that this disadvantage 
leads to unnecessary complications in the original Knopoff 
scheme. Fortunately, it does not affect the fast Schwab-Knopoff 
and fast delta matrix schemes. 

4 DELTA MATRIX METHOD 

Several methods to handle the precision problem mentioned 
in the last section have been proposed. Although not the first 
to appear in the seismological literature, the delta matrix 
method (see Pestel & Leckie 1963) is probably the simplest to 
understand. Let A be any matrix, not necessarily square. Its 
corresponding order-p delta matrix (also called compound 
matrix), denoted in this paper by A, is defined to be the strictly 
ordered matrix of all order-p minors of A. That is, every 
element of 2 is a minor or determinant of order p obtained 
by selecting all possible sets of p rows and p columns of the 
original matrix A. The element Aij is the minor constructed 
from the ith row set andj th  column set. The strict ordering 
of elements is defined by row and column ranks relative to the 
original matrix A. Thus, if A is 4 x 4 and p = 2, the six rows 
of 2 correspond (in order) to the row sets 

of the original matrix A. The same ordering applies to the 
columns. 

If A has dimension m x n, then clearly A has dimension 
"C, x "C,, where "C, denotes the usual binomial coefficients 
and p must not exceed min(m, n). The delta matrix of order p 
for any given A is clearly unique. 

We shall need a number of well-known properties of delta 
matrices, which we are content to state here without proof. 
They are: 

(1) if A' denotes the transpose of A, then 2 = A'; 

(3) if A = BC, then A = Bc. 
(2) A = A - ' ;  

In the application of delta matrix theory to Rayleigh waves, 
we are concerned with boundary matrices U, V of dimension 
4 x 2 and propagators T of dimension 4 x 4. We therefore 
select p = 2 and observe that u, have dimension 6 x 1, while 
T has dimension 6 x 6. As noted above, the index set 
(1,2,3,4,5,6) for each row and/or column of an order-2 
delta matrix corresponds to the set of index pairs 
(12, 13, 14,23,24,34) of the original matrix. Thus, for example, 
the element 

When the Thomson-Haskell dispersion equation is expressed 
in terms of order-2 delta matrices, the result is (using the three 
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delta matrix properties): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- _ -  
D ( c , ~ ) =  U'TV=O,  

where 
_ _ -  

T =  T,T2 ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ; = Q ~ E ~ Q ; ' .  (18) 

A complete list of the 36 elements of IT;. is given in Appendix A3. 
Note that the matrix product above for D(c, k )  is symbolically 
(1 x 6)(6 x 6) ... (6 x 6)(6 x l), so that the final result is an 
order-I determinant or simply a scalar. 

We now investigate how the delta matrix method avoids the 
loss-of-precision problem inherent in the Thomson-Haskell 
method. Consider the offending layer defined in Section 3.1, 
with eigenfunction matrix Ej = diag[R, R-' ,  S, S-'1. Its corre- 
sponding delta matrix is readily calculated as the sixth-order 
diagonal matrix 

= diag[ 1, RS, RS-', SR-', (RS)- ' ,  1 1 .  

Note the important point that this does not depend on R2 or 
S 2 .  Thus the delta matrix formulation of the Thomson-Haskell 
solution automatically avoids the troublesome high-order 
terms. One can now use the computational algorithm given 
for the Thomson-Haskell method, but with all matrices 
replaced by their corresponding delta matrices. 

It may appear that the size of the dispersion calculation has 
been considerably escalated in the delta matrix approach, but 
this is an illusion. First, of the 36 elements of each layer 
propagator T ,  only 15 are actually independent, due to sym- 
metry (see Appendix A3). Second, the delta matrix algorithm 
performs only (1 x 6) by (6 x 6) matrix multiplications for 
each layer iteration. This requires only 36 scalar multiplications 
per iteration, compared to 32 in the original (2 x 4) by (4 x 4) 
Thomson-Haskell scheme. 

Further symmetries in 7; make it is possible to reduce the 
order-6 matrices to order-5. The resulting algorithm then only 
requires 25 scalar multiplications per layer iteration. These 
improved algorithms are called reduced delta matrix methods 
and are considered in detail in the next section. 

4.1 Reduced delta matrix method 

The ideas behind this method can be found in Pestel & Leckie 
(1963), but were first applied to Rayleigh-wave dispersion by 
Watson (1970). The method exploits symmetries in the delta 
matrix propagator elements to reduce the sixth-order calcu- 
lations to fifth-order. For models with many layers or many 
c, k pairs, the saving in computation time can be significant, 
as depicted in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATi j  for i , j  = 1,2, ... , 6  denote the delta matrix elements 
of any layer propagator matrix (as listed in Appendix A3). 
Examination of the second and fifth rows and columns of T j  
identifies the following two symmetry properties: 

s1: 7;, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz5 = [ O ,  1,0,0, 1, O]', 

S2: TZj - cj = [2T2,, (2T2, - I), 2TZ3, 2T,,, (1 - 2T2,), 2;iz6]. 

These two properties are the key elements in the construction 
of the reduced delta matrix algorithm. To see how this comes 
about, consider the delta matrix recursion 

Z1=O' ;  X j + l = Z i % ;  D = X , V .  (19) 

The second step is repeated for as many layers as are present 
in the model. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6', xi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv' are 1 x 6 row vectors with 

components uj, xi and v j  (say) respectively. Then, regardless of 
the boundary conditions selected, we always have 

u2 + u5 = 0 ,  

Inspection of 0' and (whose elements are also listed in 
Appendix A3) confirms the first and third equations above. 
The first symmetry property S1 of T above, ensures that 
x2 + x5 = 0 for all layer iterations. To prove this, let 

x2 + x5 = 0 ,  v2 + v g  = 0 .  

6 -  
y j = ( x T ) j =  1 x iz j  

i = l  

denote the j-element of the matrix product XT where 
x2 + x5 = 0. Then, using property S1, 

6 

y, + y5 = 1 Xi(%, + T 5 )  = x2 + x5 = 0 
i = l  

completes the proof. 

ing rules. 
The reduced matrix elements are now defined by the follow- 

(1) For all row vectors R =  [r,, r2, r3, r4, r5, r6] (including 
those that make up T )  define the reduced row vector 
R* = [ r , ,  r2, r3, r4, r6], obtained by dropping the fifth term. 

(2) For all column vectors C = [cl, c2, c3, c4, c5, c,]' (includ- 
ing those that make up T )  define the reduced column vector 
C* = [c,, (c2 - c5), c3, c4, c6]', obtained by dropping the fifth 
term and replacing the second by the difference (c2 - c5). 

With these rules, we obtain the following reduced delta matrix 
elements: 

'*'= [ul, u 2 3  u3, 1147 u 6 i ,  x: = [XI ,  x23 x3, x4, x6] > 

and 

In this construction, we have used the fact that us = - v 2 ,  and 
the second row of T* above is obtained from symmetry 
property S2 above. This agrees with Watson's result, once 
allowance for a change in row and column indexing is made. 

It remains to show that, when the Thomson-Haskell 
recursion is applied to the reduced delta matrices, the original 
dispersion function is obtained. This is demonstrated as follows. 
First, 

6 

(ZT), = c xi zj ( j  # 5) 
i = l  
- 

= x l T , j + x 2 ( ~ j - ~ j ) + x 3 ~ j + x 4 T 4 j + x 6 ~ j j  

5 

= x:TZ (k=1,2, ..., 5 )  
i = l  

= ( X *  T*), , 

and so the (1 x 6) by (6 x 6) layer transfer products are 
preserved in the reduced (1 x 5 )  by (5 x 5 )  products. 
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Free-mode wave computations 877 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where K,* denotes K, if n is even, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK,, if n is odd. The product 
contains two types of matrices, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK i  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKi, whose elements are 
obtained as certain minors of the blocks r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [Qi, - Ri]  which 
appear in K .  

r1412 r1413 r1414 r1423 ‘1424 ‘1434 

‘2312 ‘2313 ‘2314 r2323 ‘2324 ‘2334 

K i =  I 

Second, the dispersion function has the representation 
6 

D = X , V =  1 x i v i  

i = l  

=xlvl + 2x2v2 + x 3 4  + x 4 u 4  + x 6 0 6  since x5v5 = xzvz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 

= x f v r = x t v * = D * .  

i = l  

and this completes the proof. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 (27) 

5 SCHWAB-KNOPOFF METHOD 

This method is based on Knopoff’s (1964) representation of 
surface-wave dispersion. The method was first programmed 
for numerical computation by Randall (1967), and later devel- 
oped and improved by Schwab (1970) and Schwab & Knopoff 
(1972). The original Knopoff ( 1964) approach differs from the 
Thomson-Haskell method in two significant ways. 

The first departure occurs in the choice of layer transfers. 
Knopoff expressed these in terms of the amplitude vectors ai, 
in place of the state vectors Ei. Since Ji = Qiai, however, the 
basic layer recursion equation (10) can be expressed as 

Q,a,=Ria,+l ( i =  1,2, ..., n) ;  

P a l  = 0; a, = P u t ,  (21) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0’ = U‘Q;’,  P= Q i l V  and Ri = T Q i + l  is an interface 
matrix, depending on layer properties on both sides of the 
interface-i. Knopoff writes the recursion as a single matrix 
equation of the form 

- 
r3434 -r3424 r3423 r3414 -r3413 ‘3412 

-r2434 r2424 -‘2423 -‘2414 r2413 -‘2412 

‘2334 -‘2324 r2323 ‘2314 -‘2313 ‘2312 

r1434 -r1424 r1423 r1414 -r1413 r1412 

-r1334 r1324 -‘I323 -r’1314 r1313 -‘1312 

r1234 -r1224 r1223 r1214 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-r1213 ‘1212 ,i 

= 0 ,  

(22) 

with R,* = R, P. For L waves, the non-zero blocks for each 
row of K have dimensions: ( 1  x 2) for 0’; (2 x 4) for each 
[Qi, -Ri] and (2 x 3) for the last block [Q,,, -R,*]. The 
R-wave dimensions are exactly twice those of the L waves, i.e. 
(2 x 4); (4 x 8) and (4 x 6) respectively. 

The dispersion equation is therefore 

D = detIKI = 0.  (23) 

It is at this point that a second significant departure is made 
in the original Knopoff scheme and all subsequent Schwab 
Knopoff schemes as well. The determinant is evaluated using 
a row decomposition2 of Laplace’s Method (see Appendix A8). 
The procedure begins by developing minors of K in the rows 
of the first block 0‘; each corresponding complementary minor 
is then developed in the rows of the next block [Q1, -Rl]; 
then [Q2, - R,] etc. until the final block [Q,, - R,*] is reached. 
We shall call this procedure the Knopoff decomposition. It 
results in the following matrix product for the determinant 
(e.g. Schwab & Knopoff 1972): 

detlKl=K0k-,K2K3 ... K,*, (24) 

* Actually, a column decomposition leads to a simpler representation. 

Love waves 

Let r:b denote the order-2 minor of Ti = [Qi, - Ri] constructed 
from column-a of Qi and column-b of (-Ri). The structure 
of K implies that no other column combinations need be 
considered. Then 

The boundary matrices are 

K,=D’; K ,  * - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[‘“I or [ “l ] . (26) 
‘21 n(even) -rll n(odd) 

The Knopoff decomposition of det I KI for L-waves is therefore 
the symbolic matrix multiplication of order (1 x 2)(2 x 2) ... 
(2 x 2)(2 x 1). The final result is, of course, a scalar. 

Rayleigh waves 

Let r:bed denote the order-4 minor of T i=  [Qi, -R i ]  
constructed from columns-(a, b) of Qi and columns-(c, d )  of 
( - R i ) .  Again, the structure of K requires no other column 
combinations. Then 

1 ‘1212 ‘1213 r1214 r1223 ‘1224 r1234 

‘1312 ‘1313 ‘1314 r1323 r1324 ‘1334 

(28) 

Denoting the boundary matrices by ro = 0‘ (2 x 4) and 
r,* = [Q,, -R,*] (4 x 6) we obtain 

(29) K ,  = rrL, 1 - 7 ~ ~  rY4, r2O3, r;4, G4i, 
consisting of order-2 minors only; and 

K,* = > Of 

“(even) 
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The Knopoff decomposition of det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI K I for R waves is therefore 
the symbolic matrix multiplication of order (1 x 6)(6 x 6) ... 
(6 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6)(6 x l), and the final result is again a scalar. 

which consti- 
tute the elements of Ki and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARi, represents a formidable task 
when the original Knopoff representation Ti = [Qi, - Ri] is 
used. However, considerable simplification is achieved by 
rewriting the Knopoff recursion Qiai - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARiai+ = 0 in the equiv- 
alent form ai -Sia i+ l=O with Si=Q;1R,=Q,:17;Qi+,. The 
interface matrix Si  now corresponds to the transformed propa- 
gator considered in Section 3.3, with transformation matrix 
Qi. With this modification, the ri blocks of matrix K reduce 
to the simpler form 

The computation of the order-4 minors 

where I is a 2 x 2 identity matrix for L waves, and a 4 x 4 
identity matrix for R waves. In this representation, the L-wave 
order-2 minors r6b reduce to simple scalars; the R-wave order-4 
minors rLbcd reduce to more manageable order-2 minors. For 
example, the minor rlZl2 reduces as follows: 

0 1 -sz2 
0 0 -s3* 

r121z = det 

Similar expressions exist for all the other order-4 minors. 
In fact, there is no reason why we cannot simplify the 

Knopoff method even further by starting from the Thomson- 
Haskell recursion, p i  = TJi+l ,  and use the Knopoff decompo- 
sition of K to obtain the dispersion function D=detIKJ. In 
this representation, K has the same block structure as before, 
but with Ti replaced by 

ri = [I, - XI .  (32) 
Since, the propagators 7; depend only on the current layer-i 
properties, the analysis is indeed simplified. 

In the case of L waves, we find a simple connection between 
the matrices K i ,  K i  and the propagators IT;: 

K , = J ’ T ;  K i = z J ;  J=[p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;‘I. (33) 

The boundary matrices are KO = U’ and K,* = J* V, where 
J* = I  the 2 x 2 identity matrix if n is even, and J* = 3‘ if n 
is odd. 

The Knopoff decomposition for the dispersion function now 
becomes 

det I K I = U’(  Tl J ) (  J’ T,)( T3 J’ )  . . . T, J* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/ 

= U’(T,T2 ... K ) V .  

This is seen to agree exactly with the standard Thomson- 
Haskell result, when the condition JJ’ = I is applied. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.1 Relation to delta matrices 

We have seen that the Knopoff decomposition for R waves 
leads to the symbolic representation det I K I = ( 1 x 6)( 6 x 6) . . . 
(6 x 6)(6 x l), which is precisely the same as the delta matrix 
representation. We may therefore expect a close relationship 
between the two methods, and this is now discussed in detail. 
Let z denote the 6 x 6 delta matrix associated with IT; and 

discussed in Section 4. Then we find, similar to the L-wave 
case, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 -  

K i = J z ;  K i = z J ;  

(34) 

In addition, the boundary matrices are KO= u‘ and 
K,* = J *  v, with J*  = I  (the sixth-order identity) if n is even 
and J* = J if n is odd. 

In this case, the Knopoff decomposition for det 1K1 reduces 
to the standard delta matrix representation eq. (17): 

detlKl = u’(Tl J ) (  J T 2 ) ( E  J )  ... ( J * v )  

= U’(T1TZ ... Z ) V .  
This, of course, explains why Knopoff’s decomposition also 
handles the loss-of-precision problem inherent in the R-wave 
Thomson-Haskell scheme. 

If we follow through all the transformations from the original 
Knopoff scheme, where T i  = [Qi, --&I, leading up to the delta 
matrix scheme, we find: 

K , = ~ Q ~ ~ Q ~ ~ ~ Q ~ + ~ J ;  I ~ ~ = ~ Q ~ I J Q ; ~ I T ; Q ~ + ~ ,  (35) 

where lQil = detIQil. 
We are left with the conclusion that there is no real advantage 

of the Knopoff decomposition over the standard delta matrix 
method. In fact, the opposite is probably true. Both handle 
the loss-of-precision problem equally well. However, the 
Knopoff decomposition is considerably more difficult to 
implement than the delta matrix method. Even when we 
employ the transformation that reduces order-4 minor calcu- 
lations to order-2, we are still left with the need to compute 
the two matrix types K i  and Ki, which depend on layer-i and 
layer-(i + 1) properties. On the other hand, the delta matrix 
method requires only one type of layer matrix, z, which 
depends only on current layer parameters. 

6 FAST DISPERSION F U N C T I O N  
ALGORITHMS 

In Schwab (1970), a considerable effort is made to develop an 
efficient algorithm in terms of computational speed. Since 
many surface-wave applications are computationally intensive, 
significant savings can be made. In particular, Schwab was 
able to perform row and column transformations on the 
R-wave propagator which considerably simplified its algebraic 
form. The resulting algorithm exploits this in two ways. First, 
computational speed is enhanced by the need to evaluate 
simpler matrix elements; and second, the non-zero elements 
can be factorized for optimal speed of computation, through 
a significant reduction in the number of multiplications per 
layer iteration. Since the Knopoff decomposition of the disper- 
sion function is still employed in this fast version of the 
algorithm, we refer to the scheme as the fast  Schwab 
Knopoff method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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In this section, we find the explicit matrix transformations 
that reduce the propagators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArI; to the simple form discovered 
by Schwab. We shall use this representation to find the 
corresponding delta matrix expression for the dispersion func- 
tion. In this way, the main elements of the fast Schwab- 
Knopoff method become more transparent, without the 
difficulties of the Knopoff decomposition mentioned above. 

Our starting point is the observation that the matrix 

transforms the layer matrix Pi defined by eq.(5) to block 
diagonal form. Specifically, 

(37) 

Since r i  and si respectively depend only on the layer velocities 
ai and p i ,  the transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI: effectively decouples the P and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S waves in each layer. 

The propagator IT; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= MiPiEiP;'M;' can therefore be writ- 
ten as = M i  Y,:'Fi KM,:', where Fi is the block diagonal 
matrix 

Following the notation of Section 3.3, we now choose 

Si= KM;' (39) 

to transform the standard Thomson-Haskell scheme. The 
propagator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT is then transformed into the interface matrix 

z=SiTSL+ll = FiLi, 

with 

1 r ai 0 0 -bj 

t - a ;  0 0 bi 1 
The layer parameters (ai, a;, bi, bi), defined below, depend on 
the properties of layer-i and layer-(i + 1) and the phase velocity 
c. For i =  1,2 ... , n, define 

Ei=Pi+l/Pi; ~ i = 2 ( y i - & i v i + 1 ) = 2 ( B i ' - ~ i B ~ + + I ) / ~ ~ .  (42) 

Then, after some elementary algebra, we obtain 

a, = ci + q i ;  a! , = a. I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. , bi=1-  q i ;  b;=b i - l .  

(43) 

Li may be regarded as the matrix that couples the P and S 
waves across interface4 

With this representation, we find 

-aarS, bC, a'C, brS, 

-a'S,/s bC, aC, bS,ls 
% = (FL), = 

L -a'C, b s S B  assB bC, l i  
which is indeed much simpler than the original untransformed 
propagator T ,  listed in Appendix A2, despite the fact that % 
depends on layer-i and layer-(i + 1) properties. 

To complete the description, we must also evaluate the 
transformed boundary matrices. We obtain 

(45) U'S;' = U ' M  1 y-1. 1 , V = S , V = Y , M , ' V ,  

which for R-waves on a free surface reduce to 

-r,  0 1 -  0 -2 t ,  0 

t i 0  0 2  
t? = 

L 0 S C J  

(46) 

In order to control the instability problem, Schwab (1970) 
employed the Knopoff decomposition to obtain the dispersion 
function D. However, the delta matrix method achieves the 
same goal, and, for reasons stated previously, is compu- 
tationally preferable. We therefore adopt this approach here, 
which leads to a new algorithm which may be referred to as 
the fast  delta matrix algorithm. 

The resulting representation for D(c, k) has many similarities 
with the fast SchwabKnopoff solution. Details of the fast 
delta matrix elements are given in Appendix A4. In 
Appendix A5, we present the results of the corresponding fast 
delta matrix recursion: 

taking care, as did Schwab (1970), to optimize the algorithm 
for computational speed by exploiting common factors 
wherever they occur. We also identify in AS how this scheme 
is modified to accommodate the reduced matrix elements. 

Despite the obvious similarities with the fast Schwab 
Knopoff scheme, the present approach has a number of 
advantages. First it is algebraically simpler and more trans- 
parent, making it easier to see precisely how it is related to 
the original Thomson-Haskell scheme in terms of propagator 
matrices. Second, although both handle the stability problem 
equally well (see Figs 2 and 3), the new fast delta matrix 
algorithm is even more efficient than the fast SchwabKnopoff 
scheme (see Fig. 4). 

7 ABO-ZENA METHOD 

Abo-Zena (1979) has suggested another approach to surface- 
wave dispersion. Although the validity of some of the claims 
made in this paper must be considered doubtful, the method 
adopted gives further insight into R-wave dispersion analysis. 
The basic idea of the method is to write the dispersion function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdet( U' TVI in the equivalent 2 x 2 form 

D=det[ u;Tv, u;Tvz 1, 
u;Tv, u;To, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,, v, are 4 x 1 vectors which constitute the 
columns of U and V respectively. That is, U = [uI, u,] and V = 

[v , ,  v,]. Note that each term uiTvj in the above determinant 
is a scalar. Hence 

where X1 = (ulu; - uzu;)  is a 4 x 4 antisymmetric matrix. For 
notational convenience, define 

L -  - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x3 x S  x6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

(50) 

(51) 

With this notation, we find for free-surface R waves: 

X ,  = asym[O, 0, 0, 0, 0, 11 = asym(U'), 

and, since T = 

X,=asym(U'); X i + l = T : X i K ;  D = u ; X , v , .  (52) 

This looks like an inefficient algorithm because of the triple 
matrix products. In fact, from a numerical viewpoint it is only 
more efficient than the RT-algorithm (see Fig. 4). Nevertheless, 
some simplifications can be made. First, since T ' X T  is antisym- 
metric whenever X is, we may conclude that X i  is antisym- 
metric for all i = 1,2, . . . , n, and therefore has only six 
independent components. 

The algorithm cannot be computed as it stands because of 
the instability problem. Abo-Zena solves the problem as fol- 
lows. Recall that 7; = (QEQ- ' ) i ;  so, if we define pa and qb as 
the ath column of Qi and ath row of QC1 (a = 1,2,3,4) so 
pa, q. are 4 x 1 vectors, and also define 

Ei  = diag[ekrd, e-krd 3 ,  eksd e-k"d]i = diagcf,, f,, f 3 ,  f 4 ]  (53) 

( f a  are scalars), then 7; has the representation 

T, . . . T,, this leads to the recursion 

4 

T = c fpoqh.  (54) 
a = l  

Hence 

(55) 

This sum has 16 terms, but since X, is antisymmetric, the 
products PbXiPb (scalars) are identically zero whenever a = b, 
and equal to -pbXipa when a # b. We thus obtain the simpler 
representation with only six terms: 

1 ffb(pbXipb)Cqo4b-qbqhl. (56) 
a < b  

One important observation, noted by Abo-Zena, is that 
this representation is independent of the products f : =  
(e i2 r , kd ,  e_f2s,kd, ), which give rise to the numerical instability 
encountered in the Thomson-Haskell scheme. Since they are 
obviated in the Abo-Zena scheme, instability will not arise, 
just as in the delta matrix and SchwabKnopoff schemes. 

Indeed, it is not difficult to prove that the representation 
eq. (56) above, for X i f l ,  is equivalent to the delta matrix 
representation 

Ti+, = xiz; % = (@Q-')i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(57) 

with X i  = asym(xi), and this establishes the connection 
between the two methods. 

Abo-Zena makes much of the fact that this algorithm 
computes X i +  , by factoring out all the frequency-dependent 
eigenfunctions (L, f b  above). In particular, it is claimed that 
this is the key feature in solving the numerical instability 
problem. A close examination, however, reveals that this is not 
the main reason. The instability problem is solved by ensuring 
that the eigenfunction products f :  occurring in eq. (52) are cor- 
rectly computed. All the methods discussed in this paper, other 
than the Thomson-Haskell, correctly handle the troublesome 
products. 

It is therefore possible to apply the Abo-Zena recursion in 
a somewhat simpler manner. From Appendix A2 we see that 
each propagator 7; can be written in the form IT;. = A  + B, 
where A is a 4 x 4 matrix with elements proportional to either 
Cui or S , ;  and B is a similar matrix with terms in Cpz or SDi. 
The Abo-Zena recursion can therefore be expanded in that 
form 

X i + , = ( A ' + B ' ) X , ( A + B ) .  (58) 

The reason for the instability lies in the fact that the matrix 
products in this recursion must be independent of terms in 
C:,, S i i ,  (CaiSmi) and Ci,,  S;,, (CptSp,). It is important to realise 
that this does not imply that A ' X i A  and B ' X i B  are zero, since 
many non-zero terms arise from the factors CZi - S;, = 1 and 
C g i - S & =  1. Analytic expressions for A ' X A  and B ' X B  can 
be found in Appendix A6. 

Since X i  is antisymmetric, the recursion can now be written 
as 

X i + I =  A'XiA + B'XiB + A'XiB - (A'XiB)' .  (59) 

This recursion will not suffer from the instability problem if 
the exact analytic expressions for A ' X i A  and B ' X i B  are used, 
instead of computing them numerically. Details of this modified 
recursion can also be found in Appendix A6. 

7.1 Fast extension of the Abo-Zena method 

Here we apply the Abo-Zena recursion to the fast transform- 
ation of the dispersion function developed in Section 6. Under 
this transformation, 

D =  o'($T, ... x ) p ,  
with z = F i L i  (see eq.40). The Abo-Zena recursion then 
becomes 

Xi+, = Z X i %  = [L ' (F 'XF)L] , .  (60) 

The matrix products in this representation are easily evaluated 
analytically. In fact, in the notation of Appendix A5, we obtain 

Xi=aSymCxl,xz,x3,x4,x5,x61, 

X i + ,  =L;ZiL i  

g i  = F i X i F i  = asym [ x1 1 419 q 2 ,  q39 q4, x 6 i  (xl = x 6 )  > 

= asym [b'y, + by,,ay, + a'y,, &q3, &q4, b'z, + bz,, az, + a'z,] 

=asym~Rl,R,,R3,R4,R5,R6]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Remarkably, this is exactly the same algorithm as given in 
Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA5, but is generated here in a far simpler and more 
direct manner. The instability problem has been eliminated. 
Furthermore, the efficient Schwab factorization, which pre- 
viously required considerable effort, emerges automatic- 
ally. The decomposition in eq. (60) effectively performs the 
factorization as part of the process. 

8 RT MATRIX ALGORITHM 

The reflection-transmission (RT) matrix method (Kennett 
1974, Kennett & Kerry 1979) solves the stability problem for 
the dispersion function D(c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk )  in a completely different manner. 
In order to see how this is achieved, we begin with the 
Thomson-Haskell scheme for D(c, k )  = det(U'TV). When fully 
written out for the case of a free-surface problem, we obtain 

The propagator matrix = QiE,Q,r1 relates stress-displace- 
ment vectors through p i  = 7;ji+1. The interface matrix S,,  on 
the other hand, relates amplitude vectors through a, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASiai+, .  
The diagonal matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEi = E(di) is the phase operator for waves 
in layer-i. We shall therefore refer to si as the unphased interface 
matrix and to Si as the corresponding phased interface matrix. 

In the RT matrix method, the amplitude vector a, is 
partitioned into order-2 up and down  component^:^ 

The corresponding 2 x 2 partitions of Si = Eig are 

The elements of these up and down partitions are listed in 
Appendix A7. In this representation, 

E, = [ '-: and E d  = [ ekz eky3,,] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEl1 . 

Thus E,, Ed are the up and down phase operators for waves 
in layer-i. For phase velocities c < p i ,  the P and S waves are 
both propagating and the phase operators are complex-valued. 
For phase velocities c>ai ,  the P and S waves are both 
evanescent and the phase operators are real-valued. It is clear 

This partitioning requires a trivial re-ordering of our matrix elements 
as described in Appendix A7. 

that the numerical stability problem has its origin in the 
Ed = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE;' sub-matrix when the waves are evanescent. In this 
case, the exponential terms are real and may numerically 
swamp the ensuing recursion. 

have two 
symmetry properties which are used to improve computational 
efficiency. Let A* denote the matrix obtained from any 2 x 2 
matrix A by reversing the sign of its non-diagonal elements. 
Then, in the present representation, it transpires that 

The partitions of the unphased interface matrix 

The order-2 unphased reflection and transmission matrices 
associated with Ti are defined by (Kennett & Kerry 1979): 

There is an analogous set of relations for the phased interface 
sub-matrices (S,,, Sud, Sd,, sdd)  in terms of corresponding 
phased RT matrices (Td, Rd, T,, R,) .  The connection between 
the phased and unphased RT matrices, obtained from eq. (64) 
above, is: 

where E = E,. 
Remarkably, as noted by Kennett & Kerry (1979), the 

phased RT matrices depend only on E, and not on 
Ed = E l ' .  Hence, in this description, all the evanscent waves 
are exponentially decaying. The source of the numerical 
stability problem is therefore circumvented. 

The recursion for the RT matrices has been shown by 
Kennett & Kerry (1979) to be expressible in the form 

where I denotes the 2 x 2 identity matrix. The superscripts 
indicate that RT matrices for layers between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, < z < z, can be 
constructed from the RT matrices for z, < z < zb and zb < z < z,. 
The recursion can be performed either upwards from the half- 
space towards the free-surface, or downwards in the opposite 
direction. It transpires that there is considerable computational 
advantage in performing the recursion upwards, starting from 
the last finite layer and adding one layer at a time until the 
surface layer is reached. In practice, it is most efficient to 
compute the above recursion using the unphased RT matrices 
for the layer being added (those with the ab superscripts). The 
updated RT matrices can then be correctly phased by applying 
the phase operators of eq. (67) corresponding to the layer 
being added, after each recursion step. One reason for doing 
this lies in the observation that the only place that the 
wavenumber explicitly appears is in the phase operators. Hence 
the unphased RT matrices for a given phase velocity c can be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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882 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. Buchen and R. Ben-Hador zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
used without the need to recompute them for each new value 
of the wavenumber zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk .  

The symmetry relations eq. ( 6 5 )  above have their counterpart 
for the RT matrices, which can be expressed as 

RUT,* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ TdR2 = 0 ,  and TuT$ + RdR,* = I .  (69) 

These are somewhat different to the relations derived 
by Kennett, Kerry & Woodhouse (1978) due to different 
normalizations adopted for the matrix representations. 

In the RT representation, the dispersion function takes the 
form (Kennett & Kerry 1979) 

D(c, k )  = det[(Nd + N,RF)(TF)-'], (70) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Rayleigh Wave Dispersion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.6 

3.5 

2 3.4 
E 
0 3.3 

3.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh 

Y 
v 

- .  
3.1' I 

0 50 100 
kH 

Figure 2. R-wave D(c, k )  images for the same model as in Fig. 1, 
obtained with the reduced delta matrix, fast SchwabKnopoff, Abo- 
Zena, fast delta matrix and Kennett's RT matrix algorithms. The 
images are identical to the naked eye and there is, of course, no 
evidence of numerical instability. 

n * 3.4 
E s. 
0 3.3 

3.: 

I 

400 
3.1 " 

0 200 
kH 

where in our notation, 

The On superscripts indicate that the RT matrices are computed 
for the entire stack of layers between the free-surface z = 0 and 
the half-space z=z , .  These are, of course, the results of the 
full recursion described above. 

We make a number of points regarding the implementation 
of the RT algorithm. 

(1) Even though the above representation for D(c, k )  is real- 
valued, all computations necessarily require complex arith- 
metic. This is in direct contrast to all the other algorithms 
considered in this paper, for which the computations can be 
organized in such a way that only real arithmetic is required. 
This feature has the biggest impact on the efficiency of the RT 
method for surface-wave computations in perfectly elastic 
media. 

( 2 )  If one is interested only in the zeros of D(c, k), it is 
possible to ignore the factor (TF;")-', particularly since its 
determinant can lead to underflow problems when the fre- 
quency is high. However, it is useful to keep the factor to 
ensure that D(c, k )  remains real-valued. Indeed, it is only 
necessary to keep its phase in the form 

arg(det [(TF)-']). 

The underflow problem is then eliminated. We have adopted 
this strategy in our implementation of the RT algorithm, by 
developing a separate recursion for the phase of det(T,). This 
recursion is easily derived from equations given above. 

(3 )  The RT algorithm gives a dispersion image (Fig. 2) that 
is identical to those we have computed for all the other 
algorithms. However, it is seen to be the least efficient (Fig. 4). 

(4) It may be remarked that, even though the RT algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"'-600 700 800 
kH 

Figure 3. R-wave D(c, k) images for the same model as in Fig. 1 over two high-frequency ranges: (a) shows the separation of crustal and channel 
modes; (b) shows details of the separation near the phase velocity c = 3.39 (km s-l), Both images were computed with the new fast delta matrix 
algorithm, but the same images are also produced by the other stable algorithms. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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600 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
500 

- 
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z 
F 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

Efficiency Test 

/’ 
Kennett RT-Matrix 

Abo-Zena 

Standard Delta-Matrix 

Thornson-Haskell 

Reduced Deltamatrix 

Fast Schwab-Knopoff 

Fast Delta-matrix 

/ 

14 10 12 2 8 
No Layers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComparison of run times for computing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD(c, k )  dispersion 
images of size 300 x 200 pixels on a PC486 DX2-66. Run times increase 
approximately linearly with the number of layers. The most efficient 
is the new fast delta matrix algorithm, being about 12 per cent faster 
than the fast SchwabKnopoff algorithm as described in Schwab 
Knopoff (1972, p. 126). The reduced delta matrix algorithm has a 
similar improvement over the standard delta matrix method. There is 
little noticeable difference between Thomson-Haskell and the standard 
delta matrix algorithm up to 14 layers, although we expect the 
Thomson-Haskell to be relatively faster when the number of layers is 
increased further. 

is the least efficient of the algorithms considered here, this 
need not be the case for viscoelastic and anisotropic media. 
For viscoelastic media, all algorithms will require complex 
arithmetic. In the case of anisotropic media, Love and Rayleigh 
waves do not decouple, so the propagator and interface 
matrices expand to dimension 6. The corresponding order-2 
delta matrices would then have dimension 15, a considerable 
increase over the dimension-6 delta matrices required for 
isotropic media. Since the RT algorithm circumvents the need 
to implement special stability methods, it is likely to be the 
preferred method for anisotropic media. 

9 SCALING FOR OVERFLOW AND 
UNDERFLOW 

The layer eigenfunctions C,, S, and C,, S, can lead to numeri- 
cal overflow when c < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALY < p and the frequency is high enough. 
The problem is treated in detail in Schwab et al. (1984) and 
Panza (1985), but is easily understood as follows. In the range 
c < LY, the eigenfunctions are hyperbolic, so we have 

C, =$(ere + e-c-) and S, = f(ec= - e-ca), 

where [, = kr,di. Similar expressions hold for C, and S,. There 
exists a machine-dependent [,,, such that, if [, > c,,, the 
exponentials suffer numerical overflow and ~nder f low.~ 
Numerically, C,  and S, become indistinguishable from eC.12. 

One approach to the problem is to reduce [, by dividing 
thick layers into a number of thinner layers. Schwab et al. 

(1984) have explored this idea and found that it had only 
limited success. There exists, however, a simpler procedure 

We have found Cm, z 80 to be reasonable and have used this value 
in all images displayed in this paper. 

which works for all practical cases. The propagator elements 
for a layer in which the overflow problem occurs can be scaled 
by the large and positive factor C, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx S,. Although this scaling 
changes the value of the dispersion function D(c, k), it will not 
alter its zeros. It has no effect at all on the binary dispersion 
function images displayed in this paper. Nevertheless, care 
must be exercised to ensure that the removal of the overflow 
problem in this manner does not result in a corresponding 
underflow problem. This will occur for propagator elements 
with components independent of C,  and S,. The underflow is 
avoided by setting these components equal to zero. Thus a 
propagator element of the form aC, + bS, + c is replaced by 
a + b after scaling. 

There are several such propagator elements in the delta 
matrix, fast delta matrix and Abo-Zena algorithms. They are 
readily identified for the delta matrix elements in Appendix A3. 
In the fast delta matrix algorithm (Appendix A5), scaling will 
remove all terms in x1 (and x6). In the Abo-Zena recursion 
(Appendix A6), all the gi factors, corresponding to the term 
A ’ X , A  + B’X,B, will be removed when scaling is applied. All 
figures displayed in this paper have been produced with scaling 
of the above type. 

10 CONCLUSION 

We have reviewed in this paper several methods for computing 
seismic surface wave dispersion functions. These are: 

(1) Thomson-Haskell 
(2) Standard delta matrix 
(3) Reduced delta matrix 
(4) SchwabKnopoff 
(5) Fast Schwab-Knopoff 
(6) Fast delta matrix 
(7) Abo-Zena 
(8) Kennett RT matrix. 

All the methods, bar the first and last, were designed (to some 
extent) to handle the numerical instability problem inherent 
in the original Thomson-Haskell method. We have found 
analytical relations connecting these methods and discussed 
how each solves the instability problem. We have programmed 
the different algorithms and compared their outputs for a 
range of models (see Figs 2 and 3). We conclude from this 
study that although there are significant differences in compu- 
tational efficiency, as, illustrated in Fig. 4, each solves the 
problem of numerical precision loss completely. Scaling for 
overflow/underflow must also be applied, as described in 
Section 9, if dispersion for unlimited frequencies is required. 

We have also presented details of a new fast delta matrix 
algorithm in Appendix A5. This algorithm is derived from a 
transformation of the delta matrix representation, suggested 
by the fast version of the SchwabKnopoff algorithm. 
Factorizations, similar to those employed in the fast Schwab- 
Knopoff method, partly give the fast delta matrix method its 
computational efficiency. It transpires that the fast delta matrix 
algorithm is slightly more efficient than the fast Schwab 
Knopoff scheme, and also that it has a much simpler algebraic 
representation. We therefore propose that the fast delta matrix 
algorithm is the best one to use in the computation of surface- 
wave dispersion for perfectly elastic, isotropic, plane-layered 
models. In addition, it incorporates all the computational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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advantages of the reduced delta matrix scheme and is readily 
scaled for overflow and underflow problems. 

We have explained a misunderstanding given in the paper 
by Abo-Zena (1979) and developed his recursion in a simpler 
manner. When the recursion is applied to the ‘fast’ transform- 
ation of the propagator matrix, we obtain, rather remarkably, 
the same algorithm as the fast delta matrix algorithm with the 
factorizations automatically performed. In this regard, the Abo- 
Zena recursion applied to the fast transformed propagator is 
the most convenient theoretical tool for deriving the fast delta 
matrix algorithm. 

We have not considered here dispersion computations for 
viscoelastic and anisotropic media. These present different 
problems of efficiency and stability. However, in these cases, it 
seems likely that Kennett’s RT matrix method, although 
inefficient for perfectly elastic and isotropic media, will be a 
very appropriate algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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APPENDIX A: MATHEMATICAL DETAILS 

Appendicies Al-A4 list the elements of the propagator matrices 
for Love waves ( A l )  and Rayleigh waves (A2-A4). For ease of 
exposition, the layer index-i is generally suppressed on the 
layer quantitites yi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi ,  ri, si,  t i ,  SUi,  Cai, SDi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACPi.  

Note that the propagator elements are always real. They 
are also finite, since when 

1 
c + a i ,  -SUi+kdi ,  

Ti 

and when 

The listed boundary matrices U‘, V are those for a top 
free-surface and a bottom half-space respectively. 

A1 Love-wave propagator matrix 

U‘=[O, l ]  v = [  ] 
P C S C  

A2 Rayleigh-wave propagator matrix 

) T,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1/’ - -s, + 2SSp c 
Y 
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq4 = - -(C, - C,) 

T,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy 2rS, - - S, ( 3 
T,, = y ( -  tC, + 2C,) 

T23 = - T14 
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Free-mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcomputations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA885 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& l =  - T 3 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

) T42 = p y  - - s, + 4ssp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( T  
T 4 3 = - c 2  

&4 = T22 

A3 R-wave standard delta matrix 

Define 

S,,Sp, for O I r n 1 4 .  

Then 

TI, = y2[  -4t + ( t 2  + 4)C,Cp - Q2] 

Z2=-[ (2+t ) ( l  -CaCp)+Q1l 
Y 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

1 t 2  s1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApy 4SC,SP - ;S,Cp " 
- 

F31= - T24 

T33 = c,cp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s4 = - -s,sp S 

r 

z 5  = T24 

- 
F36 - T14 

0' = [O, 0, 0, 0, 0, 1 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv =  
- pr( 2 - t )  

A4 Fast delta matrix elements 

Define 

Ei=Pi+l/Pi; ~ i =  2 ( ~ i - - ~ i ~ i + 1 )  

and 

a i = ~ i + q i ;  a !=a . -1 .  * I >  b . = l - q i ;  b i = b i - l .  

We also use the identities af + bi = ai + hi = aibi - a:b: = t i . 

TI, = ab 

T12 = aa' 

T13 = 0 

T,, = 0 

T15 = bb' 

F16 = a'b' 

0 1996 RAS, GJI 124, 869-887 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
2
4
/3

/8
6
9
/5

8
4
1
9
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



886 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. W. Buchen and R. Ben-Hador 

T4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -ab’(rS,)C, + a’bC,(S,/s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TA2 = -a2(rSu)Cp + u”C,(S,/s) 

7h3  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-&(rSJ(S,/S) 

T44 = EC, c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TAS = -b‘2(rS,)CB + b2C,(Sp/s) 

7 h 6 = 7 h 1  

G, = -ab’(rS,)(sS,) + a‘bC,Cp 

Ts2 = -a2(rS,)(sS,) + u”C,CP 

!is, = -E(rS,)C, 

T5, = EC,(SS,) 

Ts5 = -b”(rS,)(sS,)  + bZC,C, 

T56 = 

i& = a’b 
- 
T62 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaa‘ 

T63 0 

T64 0 

T65 b b  

T66 = ab 
- 

A5 Fast delta matrix algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This algorithm is similar to the fast Schwab-Knopoff algor- 
ithm, except that the determinant is computed using the delta 
matrix formalism rather than the Knopoff decomposition. The 

resulting algorithm is algebraically simpler, and is some 12 per 
cent more efficient. 

The algorithm is expressed in terms of a single row vector 
X of six components. Only five are actually needed, and these 
correspond to the ‘reduced’ version of the algorithm. 

Factorizations optimized for numerical computation 
are expressed in terms of the parameters pa ,  qn, y,, z, 
(a = 1,2, 3,4; b = 1,2). Note that there are no resultant factors 
containing terms in C:, S:, C i  or S;, which would give rise to 
the instability problem. 

Let 

In every iteration, x 6 = x 1  (and 2 6 = 2 1 ) ,  so dropping these 
terms gives the reduced algorithm. We include them here only 
for the sake of completeness. 

(1) Initialize: 

(2) Layer Recursion: (repeated for i = 1,2, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn) 

p1 = c p x ,  + sspx, 41 = Cap, - ~ S ~ P Z  

p 2  = c p x ,  + ss,x5 

p 3  = -s ,x ,  + c ,x ,  

1 

r q2  = - -sup, + CUP4 

93 = C,P3 - rSmP4 

1 
S 

1 1 
S r p4 = -s,x‘$ + CpX5 94 = - -sap, + CCP, 

y ,  = a’x, + aq, 

y ,  = ax,+ a‘q, 

Z,  = bxl + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb q ,  

z2 = b’ XI + bq, 

g2 = ay, + a’y, 

g3 = E q j  

g6 = az, + a’zz = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 

(3) Dispersion function: D(c, k )  = 2, + sCP3 - rt(24 + stas), 
where the 2s are the final values obtained from the previous 
recursion. 

A6 Abo-Zena algorithm 

In Section 7 we developed a modified Abo-Zena recursion 

X i + ,  = A ‘ X i A  + B’XiB + A‘X iB - (A’XiB)’ 
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Here we identify the following matrices: 

r 2c, -ts,lr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsu~(rp) - c U q  
2rS, -tC, CJp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-rSaJp 

4prs, -2tpC, 2C, -2rS, 
A = y i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L -2ptC, 4pss, - 2 4  2c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl i  
A'XiA = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy? asym[ -2tx, - 4ptx2 + 2pt2x5 + 4p2t2x6, 

2/pX, + 4x2 - 2tx5 - 4ptx6, 

0, 0, 

- tJpx, - 2tx2 + t2X, + 2Pt2X6, 

1/p2x, + 2/px2- tJpx5 - 2tx6]i 

B'X,B = y' asym[-2tx1 - 2pt2xz + 4ptx5 + 4p2t2x6, 

tJpx, + t2x2 - 2tx5 - 2pt2x6, 

0, 0, 

- 2/px1 - 2tx, + 4x5 + 4ptx,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1/p2x1 + t/pxZ - 2JpX5 - 2tX6]i. 

Note that A'XiA and B'XiB are independent of the eigen- 
functions Ce,, S , ;  C,,, S,,. They also happen to be independent 
of x3 and x4. A close examination shows that the coefficients 
of A'XiA + B'X,B are precisely the constant terms (those 
independent of C, and C,) in the propagator delta matrix 
elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT j  listed in A3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Xi  = asym[ xl, x2, ... , x6]; 

Then the Abo-Zena algorithm can be written in the following 
form. 

Let (see eq. 50) 

Xi+1 = asym[ R,, R2, ... , a,]. 

(1) Initialize: X ,  = asym[O, 0, 0, 0, 0, 11 
(2) Layer Recursion: (for i = 1,2, . . . , n) 

g, = -4ti 

g,= -2piti(2+ti) g5=4+t :  

g4 = (2 + tillpi 

g3 = 8p'tf g6 = '/p? 

of the last iteration in the previous recursion, and 

u1 = [ 1, r, 2pr, pt ] ; ;  u2 = [s, 1, pt, 2psl;. 

A7 Kennett's RT method 

Here we list the partitions of the 2 x 2 unphased interface 
matrix Si = Q;'Qi+l described in Section 8. The subscript i is 
suppressed and a dashed symbol will denote a quantity with 
subscript ( i  + 1). The up and down partitions of Si will appear 
as in eq. (64) by applying the permutation (3 142) to the 
columns of Qi .  

Define m = pi + ,/pi = p'/p. Then 

2-trtJr+m(2r'Jr-t') -2s'+tJr+m(2s'-tfJr) 

- 2r'+ tJs + m(2r'- t'Js) 

2 + tr'/r - m( 2r'/r + t') 
2r' + tJs - m(2r' + t'Js) 

2 - ts'Js + m(2s'Js - t') 

2s' + t/r - m( 2s' + t'Jr) 

2 + ts'Js - m(2s'Js + t') 1. s u d = z y  

- 
- " 
Sdu = $:d and Sdd = $&, where the * indicates that the signs of 
the off-diagonal terms are reversed. 

A8 Laplace's method 

This is a general method of calculating the determinant of a 
square matrix A of any order. It works by summing over all 
minors and complementary minors associated with a given set 
of rows (or columns) of A. 

Let M denote the set of minors of A with any fixed subset 
of rows (columns) of A. Let n be the dimension of A and p the 
number of rows (columns) selected. Then there are "C, minors 
M, each of order p. 

Let M" represent the unique minor complementary to M ;  

that is, M" is the minor constructed from all rows and columns 
of A not contained in M. The order of M" is therefore (n - p). 
It is assumed that all rows and columns of M and M" have 
the same relative rank as contained in the original matrix A. 

Laplace's Theorem states that 

detlAl=C(-l)"MM". 

The sum is taken over all "C, minors M, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs (which 
determines the sign of each term in the sum) is equal to the 
sum of all row and column indicies of A that are contained in M .  

Example 

Let A be a 4 x 4 matrix with elements aij for i, j = 1,2, 3,4. 
Choose M to be the set of minors associated with the first row 
of A. There are four such minors, all of order 1, and equal to 

M i  = a l l ,  M2 = a12, M3 = 0-13, Mq = U14.  

Let A;; denote the order-3 minor obtained from A by deleting 
row4 and column-j. Then Laplace's formula reduces to the 
well-known formula 

detlAl = a , l A i i - ~ , 2 A i Z + ~ , 3 A i j - ~ , 4 A i i .  

The signs are obtained from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs1 = 1 + 1; s2 = 1 + 2; s3 = 1 + 3; 
sq = 1 + 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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