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FREE MODULES OVER FREE ALGEBRAS AND

FREE GROUP ALGEBRAS: THE SCHREIER TECHNIQUE

BY

JACQUES LEWINO

I. Introduction. It has become abundantly clear through the remarkable work

of P. M. Cohn and G. Bergman that free ideal rings (rings over which submodules

of free modules are again free of unique rank) form an extremely interesting class

of rings. The main goal of this paper is to provide an alternative proof of the fact

that free algebras (over a field) and free group algebras are free ideal rings

(Cohn [2]-[6]). The method used here goes back to Schreier: we obtain free

generators for a submodule of a free module from a special set of coset representa-

tives (§111). The analogy with the Schreier generators of a subgroup of a free group

is quite strict (see e.g. [10]) and theorems about free groups which only involve

Schreier techniques have easy translations into theorems about free modules.

Perhaps most striking is the fact that there is a "Schreier formula" relating the

number of generators of a submodule to the dimension of the quotient module

(§V).
If we restrict our attention to free algebras we obtain the following information

on finitely presented modules; they are extensions of a free module by a finite

dimensional module. Also, we find that the endomorphism algebra of a finitely

presented module without free summands is finite dimensional. Thus the eigenring

of an element in a free algebra is finite dimensional (§IV). This last fact can

essentially be found in Cohn [3, Theorem 5.1].

In a somewhat different direction, it is not known whether a finitely generated

subalgebra of a free algebra is finitely presented qua algebra. (Indeed it does not

seem to be known whether a finitely generated subsemigroup of a free semigroup

is finitely presented.)

We prove here that a subalgebra of finite codimension in a free algebra is finitely

presented (§VII).

II. Notation. The notation is uniform. G is either the free monoid or the free

group freely generated by the set X={Xa}aeA, and £ is the semigroup (group)

algebra of G with coefficients in the field Í. In the first case, £ is the free algebra

freely generated by X. N is the free right £-module with basis E={eK}ÁsA. If

A = xJJ- • -x£j, is an element of G (also called a monomial of £), an element m = eKx
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of N is called a monomial of N, and an element aeAx is called a monomial term of

N. We define initial and terminal segments of monomials of G as follows: <0)x=l,

(i)x = x^- • -x*; for i=l,..., « and xin = xett\*+\- ■ -x% for i = 0,..., n-l; x(n)=l.

The length function on G induces as usual a degree function d on A. If we assign

degree 0 to the eA's, then we also have, in the obvious way, a degree again called d

on the module N (e.g. d(2e1x2x1 + 3e2xi) = 2). We also wish to well order A^. This

is done in the usual way by well ordering X, E and f with 0 as the first element

xa<xäl, ordering G by length and reverse lexicographical order on elements of

the same length (x3Xi < XyX2), extending this order to monomial terms, and finally

to sums of monomial terms in the obvious way. Thus aye2XyX2<aye2XyX2 + e3Xy

and e3x2 < e5Xy.

If S is a subset of N, then <5'> is the ï-space spanned by 5 and Mod (S) the

A-submodule generated by S.

If M is a submodule of N, a transversal A for M in A7 is a complete irredundant

set of coset representatives (including 0) for M in A', both being considered as

abelian groups. The function </> which assigns to an element of N its representative

in A is called the transversal function. If the transversal A is also a ï-space (this

will always be the case) then tf> is ï-linear. Further, if a e Af and r e F, then

(a — <j>(a))r e M and hence

(1) </>(ar) = 4>(4>(a».

If A < B are f-spaces and the dimension of B/A is «, we say that A has codimension

« in A.

We will have occasion to use Cohn's notion of d-dependence. For a definition

of this important concept we refer the reader to [2].

III. Schreier transversals and Schreier generators. We will only prove the main

theorem for free modules over free group algebras. The proof for free algebras is

similar (and easier). Thus G is now the free group, and M a submodule of the

free A-module A'.

1. A partial Schreier basis for N mod M is a set B of monomials of N such that

(i) A is f-linearly independent modulo M,

(ii) if b = eÁx is in A, then all the initial segments e^x are again in B.

A partial Schreier basis A is a Schreier basis if A also spans N modulo M.

Following the proof of Lemma 1 of Dunwoody [7], there is no difficulty in estab-

lishing

Lemma 1. Any partial Schreier basis for N modulo M can be extended to a

Schreier basis.

From the definition of a Schreier basis A, it is clear that the space <A> is a

transversal for M in N, with associated transversal function <f>. We will have

occasion to make use of a "minimal" Schreier basis, i.e. a basis A for which

d(<f>(y)) g d(y). Such a minimal Schreier basis always exists as the following argu-
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ment (borrowed from group theory) shows : Using the well order of §11, let </> be

the function from N to N which assigns to an element of N the earliest element in

its coset, and let B be the set of monomials for which (/>(b) = b. We claim that B

is a minimal Schreier basis for N mod M, with transversal function (/>. The mini-

mality is of course clear. We first show that </> is t-linear. Thus let a e I, f and g

be in N. Since </>(af+g) and acf>(f) + <p(g) lie in the same coset, we must show that

a<p(f)+4>(g) is the least element in its coset. If not, for some m e M,m + a<f>(f)+<f>(g)

is earlier than a</>(f)+(/>(g). This can only happen if the latest monomial of m is the

same as some monomial of <*</>(f)+<p(g), and hence only if the latest monomial of

m is the same as some monomial of </>(a) or of <p(b). But then, modifying <f>(a) or

</>(b) by a suitable multiple of m yields an earlier element in either the coset of </>(a)

or of <p(b), a contradiction. It is now clear that B is f-independent modulo M, for

if 2 «A e M, then 0 = <£(2 aA) = 2 ai<p(°i)= 2 «A- To show that B spans N mod M,

suppose that x is the least element of N which does not depend on B mod M.

Then since <£(x)s¡x we must have </>(x) = x. Suppose x = 2/3¡/w¡, with mx its latest

monomial. Then, again by minimality, 4>^ßim-s)=ß\mi. Since x — ßxmx<x, there

exist b¡eB with x — ßxntx = 2 aA mod M. Since mxeB, this shows that x does

depend on £modA7. Finally, suppose beB and b = b'x%, with no cancellation

between b' and x%. Then, by (1) b = </>(b) = </>(<p(b')xa) = b'xa. Thus by minimality,

<p(b')xtt^b'xa. Since there is no cancellation, it follows that j>(b')~^b', and hence

b'=</>(b'). B then has the Schreier property and is then a minimal Schreier basis.

2. Proposition 2. £er now B be an arbitrary Schreier basis for N mod M, with

transversal function </>. (The Schreier property will actually not be used until later.)

Then M is generated by the set £f u S, with

Sf = {bxa-<f>(bxa) \beB, bxa-<f>(bxa) # 0},

g = {eÁ-*p(eJ I ex-<t>(eA) * 0}.

Proof. Let m be a monomial, say m = x%\- ■ -x£j of £. We define a function

o: N-> Mod (£f u ê) on monomials of N by

(2) eKma = (eA - </>(eÁ))m + "J (M"™)4', :} - M*+ ""OW*+1)-
i=0

Now, <p(e^m) = 2i ßt/bj, with ¿3 e £. Thus, using (1) and the linearity of </>,

4>(efm)x*a\-</>(ei + 1)m) = t(e?m)x*\-4(<l>(éPm)x°a't)

(3) =JlßiAbjxx\\-<Kblx>f)).

Further,

¿jX- ! - 0(¿>;x"x) = - [<¿(e;X¿- ^x«-<p(bjX¿ 1xa)]x-x
(4)

=   - [<p(bjXa ̂X,, - </>(<p(bjX¿ ^x^xä1 ■

Expanding <f>(b¡x¿x) as in (3), we find that eAmo e Mod (¡f u S).
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We now extend a to A' by linearity, and find that cr: A->- Mod (SP u <f). Now,

by the definition of o and the linearity of tf>, go=g-tf>(g), for any element g e N.

Thus, if g e M, ga—g, and o is the identity on M. Hence M=Mod (SP u S) as

claimed.

Corollary (cf. [11]). Let A be a finitely generated f algebra, A a finitely

generated R-module, and Q a submodule of finite codimension in A (over I). Then Q

is again finitely generated.

Proof. If both A and A are free then a Schreier basis for A mod Q is finite and

Q is finitely generated by Proposition 2. Otherwise, letO-^/-^A->A->Obea

presentation of A, with A a finitely generated free algebra. Then A becomes a

finitely generated A-module with a presentation O^M^-N-^P—>0, where N

is a finitely generated free A-module. The corollary follows upon considering the

complete inverse image of Q in N.

We note that it is only when Ï is a finite field that we can also show that a finitely

generated module has only finitely many submodules of a given finite codimension.

3. We now want to show that, in the notation of Proposition 2,SP\J& generates

M freely.

If bxa-tf>(bxa)eSP, define u(b, xa) = bxa-tf>(bxa). Similarly, if eÁ — ̂(e,)eS,

define u(eÁ) = eh-t/>(en). Let M* be the free A-module generated by elements

u*(b, xa) and u*(eÁ) in one-to-one correspondence with the u(b, xa) and w(eA).

Given g e N, by (2), (3), (4) and the linearity of a there is a well-defined procedure

for writing go as

Sa = 2 u(b" *«)&.« + 2 u(e^Sx-

Define f : A-^ Af* by

gf = 2 "*(6" *«)&.«+2 "*(**)#*•
i,a A

We show that the restriction r=f |M is an A-homomorphism of M onto M* which

carries w(¿>, xa) onto h*(Z», xj and w(eA) onto w*(eA). This is clearly sufficient to

insure that the u(b, xa) and the w(eA) freely generate M.

It is clear from the linearity of o that t is f-linear. Thus we must show that if

ge M and/e A, then (gf)r = (gr)f. By the linearity of t we need only consider

the case where/is a monomial. By an obvious reduction we may further assume

that/=Xa. Suppose then that g=^,jaAjexmÁj, with the mAj's monomials of A.

Then

(gr)xea = 2 ^i(e>fnAj)fxl.

We segregate the eAmA/s which end in x„s and write

(5) g = 2' auehmM + Y' «»AV»"8
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where no mKj in the first sum ends with x~e. Let kKj be the degree of mkj. Then,

for eA«iA; in the first sum of (5), we have

(ehmÁix%)a = (eK-</>(ex))mÁix%+ 2   (M'H^iti-M'*1^))«?/"^
i = 0

+ (4>(e>fn^x% - tf>(ekm„x£a))

= (eAmA>x|; + (0(eA«2A;)x£ - t/>(eÁmÁjxea)).

For eKmK1 in the second sum of (5), we have

(eKmXixl)o = (eÁmÁj)tj = (eÁ-tf>(eA))mAj

+ 2   (<f>(e^iñ^xPiXl-tf,(eri)m,])W>¡i+1)

(7)
kK,-2

= (eA-¿(eA))mw*í+ 2 (Mf)««)-«í!:i-M,+1)'«w)X+u*í,
1 = 0

the last equality following since the initial segments of mkj are the same as the

initial segments of mKj. Thus, adding and subtracting the missing term in (7), we

find that

(eÁmMxEa)a = (exmÁj)oxEa - [</>(eÁmÁ,)x¿s - j>(eÁmÁ1)]xBa

(8)
= (eAmAÍ)(7X§ + [t/>(eAmÁ,)xea - </>(eAmÁjxsa)l

Putting (6) and (8) together, we find that

(gx%)o = (go)x%+^aM(^(ekmK,)xst-^(ehmÁix%)).
A,í

Now, by the definition of t, (gr)xEa and (gxea)T only differ by the effect of the term

r = lLx,j aki(<í>(e)fn},¡)xl! — 't>(exmÁjxl)). We show that this effect is null. For say that

^(eAwA;) = 2fcyA,A, with ¿>fceA. If e=l, then r = 2Ki,k «A/YA.f.kU(bk, xa) and if

£= — 1, then r = ~2,KJik aXjyKUku(t/>(bkxä*), xa), with the sums running over the

allowable /t's. In the first case, 0 = </>(g) = '2h.Jika/ijyAjkbk, and since the bks are

linearly independent, for fixed k, ~2KJ aKjyhUk = 0. Thus, for allowable k's,

2 aMYKikU*(bk, xa) = 0
A.Í

and, summing over the allowable A:'s,

2 2 avYMkU*(bk, xa) = 0.
k    \,i

The second case follows similarly and we have shown that t is an A-homomorphism.

Finally, we use the Schreier property to note that if b e <A>, then bf=0. For if

Z» = eA, then bf = eA-<£(eA) = eA-eA=0, and if b = eKm with m=xf.\- ■ -x^, then
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rKe?m)x%\ % \ - <p(ëî+»m) = 0, thus

u(eK)r = (eA-0(eA))r = e„f-<j>(eK)f = u*(eK)

and

u(b,xa)r = bxaf-</,(bxa)f = (bxa)f.

It is easily seen that the only term left in the expansion of (bxa)a is <p(b)xa — (p(bxa)

which is just u(b, xa). Therefore (bxa)f = u*(b, xa). To recapitulate, we have

Theorem 1. Let F be either the free algebra over t freely generated by X—

{xa;aeA} or the group algebra over 1 of the free group freely generated by

X={xa; a e A}. Let N be the free right F-module freely generated by {eA; A e A}.

Let M be a submodule of N, and let B be a Schreier basis for N modulo M, with

associated transversal function </>. Let

Sf = {bxa-<p(bxa) \beB,xaeX, bxa-<p(bxa) * 0},

* = K-¿(A) I eK-4(eK) * 0}

then M is the free module freely generated by ¿f u <f(2).

If F is the free algebra and B is a minimal Schreier basis for N mod M, then the

generators obtained for M are d-independent (in the sense of Cohn).

Proof. Only the last statement remains to be proved. Thus if ux are Schreier

generators for M which come from B and fie F, we must show that í/(2 w¡/)

= max (d(u¡) + d(fi)). This is however easy to see, for if 2 M¡/= 2 «w^a'^aí» with

«ía¡'s monomials, then, by the foregoing, J.ui*fx = (JiaAieÁmM)T. Now, if eKmhif

= 2"j*/> tnen since £ is a minimal Schreier basis, d(ekmM)^d(üj) + d(f). The

theorem now follows.

IV. Finitely presented modules over free algebras. In this section £ is the free

algebra. If £ is a Schreier basis for a submodule M of a free £-module and b e B,

we say that b is exceptional if there is a generator xa of £ for which bxa — <p(bxa)^0.

Thus b is exceptional if it contributes to the set of generators for M. We are now

in a position to show that finitely presented £-modules have large free submodules.

Theorem 2. £ef P be a finitely related F-module. Then P contains a free module of

finite codimension.

Proof. Let 0-^M->7V-^£->0 be a presentation for £, with N free and M

finitely generated, and let £ be a Schreier basis for N mod M. Then, every basis

for M is finite, hence by Theorem 1, B only contains finitely many exceptional

elements. Thus there are finite subsets A'cA and A'^A such that the exceptional

elements only involve letters with subscripts from A' and A'. Further there is an

(2) Actually the proof above works if F is the monoid algebra of the free product of a

free group and a free monoid.
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integer n such that the exceptional elements have degree at most «. Let IF' be the

set of monomials of £ which either are of degree greater than n or involve a letter

subscripted by an element of A —A' or A — A'. Then F' generates a submodule

T of N, and it is easily seen that some subset &~ of F' freely generates T (for since

T is generated by monomials, the set of monomials of N which are not in T form a

Schreier basis for N mod £). We claim that F actually freely generates a free

module modulo M. For let b e F. Then b is not exceptional and thus (/>(bxa) = bxa

for all ae A, and thus bxa e B. Since bxa e F', bxa is still not exceptional. Then,

for any monomial «i e F, bme B. Suppose now that there is a relation 2¡>¡6.r bxqx

= 0 mod M, with q¡ e F. Then, writing #¡ = 2 ai/%, with the mxj monomials of £,

we have "£blSr aijbimij=0 mod M and thus

0 = ¿(2 au°imv) = 2 "»¿(TV«) = 2 "«A»*« = 2 b'a'-

Since the ¿/¡'s are a free set, we must have <7¡=0. Now, T+M is complemented in

N by the finite dimensional f-space spanned by the monomials of B of degree at

most « and involving only subscripts from A' and A'. Thus the image of £ in £

fulfills the requirements of the theorem.

It is amusing to compare Theorem 2 with Stallings' recent result that a torsion

free finitely generated group with a free subgroup of finite index is again free [12]:

For modules, having a large free submodule is the rule rather than the exception.

Corollary. A finitely presented F-module P is residually finite dimensional, and

hence Hopfian. In other words P is a submodule of a direct product of finite dimen-

sional modules, and any endomorphism of P onto P is an automorphism.

Proof. The proof follows by standard arguments (see e.g. [9, Corollary 3]) from

Theorem 2 and the fact that the corollary is true for finitely generated free modules.

Let £ be a right ideal of £ and I its idealizer (the intersection of all subalgebras

of £ in which £ is a two sided ideal). The algebra I/R is called the eigenring of £

and is usually denoted by £(£). As was known to Fitting, £(£) is isomorphic to

the algebra of £-endomorphisms of the module £/£. We show that if £ is finitely

generated and nonzero, then £(£) has finite f-dimension. This fact can also be

proved by Cohn's methods (see [3, Theorem 5.1]). More generally, we have

Theorem 3. Let P be a finitely presented bound F-module (i.e. Horn (£, £) = 0).

Then Horn (£, £) has finite l-dimension.

Proof. By Theorem 2 we have the exact sequence

0^A^£^ß^0

where N is free of finite rank and Q is finite dimensional. Hence we have the exact

sequence

0 -* Horn (£, N) -> Horn (£, £) -> Horn (£, Q).
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Since every submodule of N is again free, Horn (A, A) = 0 and we have the exact

sequence

0 -> Horn (A, A) -> Horn (A, Q).

Thus, since Horn (A, 0çHom (N, Q), Horn (A, A) is a submodule of the direct

sum of finitely many copies of Q and the theorem is proved.

The above proof is due to P. M. Cohn. It replaces my cumbersome proof of a

weaker theorem.

Using Proposition 3.11 of [6], we have

Corollary. If I is algebraically closed, and x e Fis an atom (x is multiplicatively

indecomposable), then A(xA) = f.

If A is a two sided ideal of A, then A(A) = A/A. Thus we have the

Corollary. If R is a finitely generated right ideal of F, and R is also a two sided

ideal of F, then A/A has finite t-dimension.

V. The Schreier formula. If A is a free ideal ring and A is an A-module with

presentation 0—>Af—^A^A—^0, then the Euler characteristic Xr(R) ¡s defined

to be x«(A) = rank A-rank M. If A is a field, then Xß(7,) = dimB (A). In analogy

to Schreier's formula for subgroups of a free group, the following theorem relates

the rank of a submodule of a free A-module to its codimension.

Theorem 4. Suppose that G is free on r generators and that M is a subi nodule of

codimension « in the free F-module N of rank k. Then

rank M = n(r—l) + k.

Equivalently

-XF(N/M) = (r-l)Xt(N/M).

Proof. The proof is of course much the same as in group theory. The slightly

harder case is when G is the free group, and we assume that A is the free group

algebra. As usual A is a Schreier basis for N modulo M, with transversal function

</>. Suppose b e B has positive degree. Then b = b'xsa with b' e B, with no cancellation

between b' and x%. If £=1, then b'xa — t/>(b'xa)=0 and if £= — 1, then ^(b'x'^Xa

- 4>(b'xâ 1xa) = 0. In this fashion we have a one-to-one correspondence between the

elements of B of positive degree and the bxa — </>(bxa) which are zero. If ne =

Card {eA | eA - </>(eA) = 0}, then there are «-«e Z»'s of positive degree, and hence

nr-(n-ne) elements in SP. On the other hand there are obviously k-ne elements

in <?. Thus there are

nr — (n-ne) + (k-ne) = n(r-l) + k

elements in SP u S, as claimed.

In the special case that N is itself the free algebra, P. M. Cohn (private com-

munication) has a much shorter proof of this theorem. The argument involves
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examining the coefficients of a power series of the type used by Golod and

Safarevic.

Using arguments like Karrass and Solitar's [8], it is not difficult to extend the

second corollary to Theorem 3 to the free group algebra. Since all our results are

also true for left modules, we have

Corollary. Suppose that I is a two sided ideal in F. Then the rank of I as a right

F-module equals its rank as a left F-module.

Here again Cohn has pointed out that the corollary can be proved by an

elementary argument which involves what Bergman [1] calls w-bases.

VI. Dunwoody's theorem. If V is a vector space and V¡ a decreasing sequence

of subspaces of V with intersection U, a finite set £ which is dependent modulo

every V¡ is also dependent modulo U. Bearing this elementary fact in mind, there

is no difficulty in adapting Dunwoody's methods [7] to show

Theorem 5. Let F be the free algebra or the free group algebra and let N be a

free F-module. Let further Mx3 M<¡p ■ ■ ■ be a decreasing sequence of submodules of

N with intersection M. Then any finitely generated direct summand of M is a direct

summand of all but finitely many of the Mx's.

Corollary. If R is a right ideal of F, then

(f| Mt)R = H (MiR).

VII. Subalgebras of finite codimension. We show in this last section that a

subalgebra T of finite codimension in a finitely generated free algebra is, if not

again free, at least a finitely presented algebra. Fortunately, we may restrict our

attention to right ideals (with 1 adjoined). For an argument along the lines of the

proof of Lemma 1 of [11] shows that if £ has finite codimension in £, then T

contains a right ideal £ of £ which is again of finite codimension and it is a simple

matter to show that if £ (with 1 adjoined) is finitely presented, so is £. The result

will follow once we have shown that a right ideal of £ is also a free left module

over a suitable free algebra. We use both Schreier bases (the Schreier property is

however irrelevant here) and Cohn independence.

Theorem 6. Let F be a free algebra and R a right ideal of F. Let B be a minimal

Schreier basis for F modulo R, with transversal function </>. Let rF be a right d-

independent set of right module generators for R, and let T= Alg (F). Let finally

gik = tjbk with tj e ¡F and bk e B. Then R is the free left T-module freely generated

by the gjk.

Proof. Let M be the left T-module generated by the gJk. We first show that M= R.

It is clear that M<=R. Since every element r e R can be written as r = 2 txqi, qx e F,

we need only show that tm e M for t e T and m a monomial. Suppose then that m

is a monomial of least degree for which tm$M for some t e T. Then, if <¿(«i) = 2 «A
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the minimality of A insures that d(b^d(m). Now m-t/>(m)e R, so there exist

q¡ e R and t} e A with «2 = 2 «A + 2 hQv % tne r'ght independence of ^", it follows

that d(tjqj)-¿d(m) and hence, since d(tj)>0, that d(qj)<d(m). By the assumption

on the degree of m, 2 /,(/, e Af and

tm = 2aA + '2^>

is also in Af. This contradiction shows that R = M.

It remains to show that Af is free. Note that Ais free since !F is right ^-indepen-

dent. Suppose that there is a relation

(9) 2 "VkSrt = °        *» e T>

and write

7Tite = 2_ ttTjkl + ajte tie^~, ^m 6 71-

Then

Thus

and

2 aikgik + 2 (2 ^¡W = °-
l,k i.k  \ I J

2 2 í¡°í<a+2 2 tpmzik= °>
¡   y.fc

2 M2 aiA-2 nmgik) = 0.
1        \ te í.te /

By the freedom of the /,, we have

2aifc_27rÄi^'c = °'
k i.k

and thus 1,alkbkeR. Since the bks are independent modulo A, aIfc = 0 for all /

and k. Thus each irjk has order at least 1. We may then assume that (9) cannot

occur nontrivially when any irJk has order at most «. If the minimal order of the

TTjk is « + 1, then

ir¡k — 2 ^m       nsu eT,tleSr,

and

2 2 t^wgjk = 2ti 2 "vw&*= °-
j,fc    ¡ 1        i.te

Thus, again by the freedom of SP,

2 "¡ktgfk = 0.

Since some wiW has order « it follows that (10) is a trivial relation. Thus TTjk=0 for

all / and k and the theorem is proved.
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Corollary. If £, is a subalgebra of finite codimension in the finitely generated

free algebra F, then £, is finitely presented.

Proof. As we remarked, we may assume that £, = Alg (£) with £ a right ideal

of finite codimension. Then, in the notation of the theorem, both £ and !F are

finite. Since £ must contain an element of degree 0, we may assume that 1 e B.

It then follows from the theorem that £ is generated by the finite set {gik}. Then,

since £ is a free £ module on the gjk and £ is a free algebra the multiplication table

gjikigizko, = 2-, T*Ji,i2,ki,k2,lmglm
l,m

with TTJlj2ikuk2Am eTis clearly a complete set of defining relations for £,.
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