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Abstract
Neural prostheses aim to improve the quality of life of severely disabled patients by translating
neural activity into control signals for guiding prosthetic devices or computer cursors. We
recently demonstrated that plan activity from premotor cortex, which specifies the endpoint of
the upcoming arm movement, can be used to swiftly and accurately guide computer cursors to
the desired target locations. However, these systems currently require additional, non-neural
information to specify when plan activity is present. We report here the design and
performance of state estimator algorithms for automatically detecting the presence of plan
activity using neural activity alone. Prosthesis performance was nearly as good when state
estimation was used as when perfect plan timing information was provided separately
(∼5 percentage points lower, when using 200 ms of plan activity). These results strongly
suggest that a completely neurally-driven high-performance brain–computer interface is
possible.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Each year millions of people suffer from neurological injuries
and disease, resulting in the permanent loss of motor functions.
Although most central nervous system impairments still do
not have effective treatments, electronic medical systems that
interface with the nervous system (termed neural prostheses)
have started to fill some of these treatment gaps.

One emerging and promising class of neural prosthesis
aims to provide control of paralyzed upper limbs and
computer cursors. Figure 1 illustrates the basic operating
principle behind these prostheses (Fetz 1999, Nicolelis 2001,
Donoghue 2002, Schwartz 2004, Scott 2006). Neural activity
from various brain regions, recorded using permanently-
implanted arrays of electrodes, is electronically processed
to create control signals for enacting the desired movement.

5 These authors contributed equally to this work.

After determining how each neuron responds before and
during a movement, estimation (decoding) algorithms can
infer the desired movement from only the neural activity.
Several groups have recently demonstrated that monkeys
(Serruya et al 2002, Taylor et al 2002, Carmena et al 2003,
Musallam et al 2004, Santhanam et al 2006) and humans
(Kennedy and Bakay 1998, Kennedy et al 2000, Hochberg
et al 2006) can learn to move computer cursors and
robotic arms to various target locations simply by activating
neural populations that participate in natural arm movements.
But even these compelling proof-of-concept laboratory
demonstration systems fall short of exhibiting the full level
of control needed for many everyday behaviors.

One critical control problem that must be addressed before
neural prostheses become clinically viable is the estimation of
the cognitive state (Shenoy et al 2003). This state estimation
involves determining, from neural data alone, when the
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Figure 1. Concept sketch of cortically-controlled prostheses. Several cortical areas in rhesus monkeys, and in homologous areas in humans,
participate in the preparation and execution of natural arm movements. Areas include the medial intraparietal area (MIP)/parietal reach
region (PRR) with largely plan activity prior to the movement onset (Shenoy et al 2003, Musallam et al 2004), the dorsal aspect of premotor
cortex (PMd) with both plan and movement activities (Santhanam et al 2006), and motor cortex (M1) with largely movement activity around
the time of the movement (Taylor et al 2002, Serruya et al 2002, Carmena et al 2003, Hochberg et al 2006). Neural prostheses measure
electrical neural signals (action and local field potentials) using arrays of chronically-implanted electrodes, extract action potential times for
each neuron on every electrode and, finally, estimate the desired arm movement and generate control signals for guiding prosthetic devices.
Motor prostheses use these signals to generate a continuous movement of an effector device while communication prostheses select from a
discrete set of targets.

prosthesis should move. Several brain regions are active well
before, or even without, upcoming arm movements while other
regions are active primarily during arm movements (figure 1).
Neural activity present well before movements would normally
begin is termed ‘delay’ or ‘plan’ activity, since it is typically
measured during a delay period separating target presentation
from ‘go’ cue presentation (e.g., Churchland et al 2006a,
2006b, 2006c, Churchland and Shenoy 2007, Crammond and
Kalaska 2000). Regardless of whether delay or peri-movement
activity is used to control prostheses, it is essential to determine
when plan activity is present or when peri-movement activity
is present as this is the time, and the only time, that a prosthesis
should move.

Prosthetic systems which translate peri-movement ac-
tivity into moment-by-moment movement commands cur-
rently do not perform cognitive state estimation (Serruya et al
2002, Taylor et al 2002, Carmena et al 2003, Hochberg et al
2006). As a result, these systems must be manually turned on
when the prosthesis is to be operated and turned off at other
times so as to avoid unwanted movement. Moreover, when the
prosthetic limb or computer cursor is to remain at rest, neu-
ral noise continues to drive the prosthesis causing unwanted
motion. Similarly, prosthetic systems which translate plan
activity into endpoint control signals (Musallam et al 2004,
Santhanam et al 2006) rely on an external non-neural source

of information to specify when plan activity is present, as they
too do not currently perform state estimation. In both cases,
clinically viable systems which operate autonomously for days
and weeks must incorporate some form of neurally-driven state
estimation.

The importance of state estimation in plan-activity-based
prostheses, as well as preliminary estimator designs and
offline simulations based on individually-recorded parietal
reach region/medial intraparietal (PRR/MIP) neurons, was
described previously (Shenoy et al 2003). We report here the
design of a more advanced state-machine-based state estimator
for use in plan-activity-based prostheses (Musallam et al 2004,
Santhanam et al 2006) and performance simulations based on
simultaneously-recorded dorsal premotor (PMd) and motor
(M1) cortical neurons. Performance is quantified by operating
a state estimator and a maximum-likelihood-based target
estimator in tandem and calculating how well the correct (1 of
8) target in a prosthetic task could be predicted. We recently
reported that it is possible to swiftly and accurately predict
the desired target in a plan-activity-based brain–computer
interface (BCI) task if external information regarding the plan
period timing was provided (Santhanam et al 2006). We report
here, using a similar task, that it is possible to perform nearly
as well when a state estimator replaces this external timing
information.
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Figure 2. Overview of the state estimator operating on a single trial. Neural activity is recorded as the monkey performs a delayed
center-out reach task. Time 400 refers to 400 ms after the beginning of the trial. The epoch classifier calculates the baseline, plan and go
probabilities (red, blue and green lines) at each time step, using neural activity over the integration window specified by Tint. From these
probabilities it forms a state classification of either Baseline, Plan or Go, represented by differently colored rectangles in the figure. The
state machine declares a Baseline → Plan transition after the Plan classification has been received CPlan times in a row. The state machine
then estimates the start of the Plan period by subtracting the average plan detection latency, µPlanLatency. This figure displays the moment at
which the Baseline → Plan transition has been detected.

2. Methods

Animal protocols were approved by the Stanford University
Institutional Animal Care and Use Committee. Our basic
surgical, behavioral training, and experimental data collection
methods have been described previously (Santhanam et al
2006, Churchland et al 2006c, Hatsopoulos et al 2004) and
are only briefly described below.

2.1. BCI operation without state estimation

Communication prostheses aim to allow a patient to select
from a set of discrete ‘keys’. To investigate how
quickly and accurately a communication prosthesis can
perform when driven by cortical plan activity, but without
attempting to estimate when plan activity was present, we
recently conducted a series of experiments and computational
simulations (Santhanam et al 2006). Cognitive state
estimation was not considered in this recent study in order
to first focus on fundamental, neurobiologically dictated
performance limits. With these limits identified, we can now
design complementary state estimators which use trial timing

parameters identified in Santhanam et al (2006) yet maintain
overall prosthetic performance.

We trained monkeys to fixate and touch central targets,
and plan to reach a visual target that could appear at one of
several (2, 4, 8 or 16) different locations (see the top of figure 2
for a depiction of the task). Meanwhile, we collected action
potentials from all neurons recorded with a 96-electrode array
(typically 100–200 neural units) and used the number of action
potentials during an integration period (Tint) to predict where
the monkey was planning to reach. If our prediction, made
using maximum-likelihood (ML) techniques and Gaussian
or Poisson neural response models, matched the true target
location we displayed a circle around the target, played an
auditory tone, and provided a liquid reward to indicate a
successful trial. In this way, we were able to assess how
fast selections could be made and how often the selections
were correct. Importantly, since the computer-controlled
experimental apparatus turned on the visual target at a known
time (time 0), Tint could be arbitrarily positioned. Thus,
activity during known plan periods could be accessed. In
the present paper, we seek to position the neural integration
window based on neurally-derived estimates of when plan
activity is present.
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Figure 3. Free-paced system architecture. (a) Block diagram illustrating information flow. Note that epoch classifications are in italics and
states are in bold. The state estimator uses neural activity to estimate the time boundaries of the Plan period. The target estimator then uses
this Plan period estimate to decode the target using the same techniques as in fixed-paced systems (e.g. (Santhanam et al (2006)). (b) The
state estimator contains an epoch classifier, which provides instantaneous estimates of the activity period, and a state machine, which uses
the set of past classifications to estimate the activity period transition times. (c) The state machine determines transitions between Baseline,
Plan, and Go. The Baseline → Plan transition occurs when the epoch classifier decodes Plan CPlan times in a row, while the Plan → Go
transition occurs when the epoch classifier decodes Go CGo times in a row. Note that these constraints are an improvement upon the
algorithm in Shenoy et al (2003).

While it is possible to predict the desired target location
using neural activity from a variety of different windows
(Shenoy et al 2003, Musallam et al 2004), we swept the
temporal location and length of Tint in order to see how
these parameters affected accuracy (Santhanam et al 2006).
We found that a 200 ms window that started 150 ms after
the target presentation was the shortest window that resulted
in near asymptotic accuracy (∼90%).

These prior results suggest that it is possible to position
computer cursors quickly and accurately enough to be
potentially clinically viable. However, and to reiterate, these
recently published results rely on knowing when the reach
target was specified—and thus when plan activity is present—
and we seek here to replace this external timing information
with a strictly neurally-derived estimate.

2.2. The behavioral task and neural recordings

Two adult male rhesus monkeys (G and H) performed a
delayed center-out reach task (see top of figure 2). Trials
begin by touching a yellow square and fixating a magenta
cross, both located near the center of a fronto-parallel screen.
After a brief random hold period (200–400 ms), a target cue
appeared at one of eight possible locations. Following a
variable delay period (200–1000 ms), the central touch and
fixation targets disappear; this is the ‘go’ cue indicating that
the reach may begin. The movement ends with the monkey
acquiring the target and holding for 200 ms. We recorded
neural activity from a 96-channel electrode (Cyberkinetics
Neurotechnology Inc.) implanted in the arm representation of
PMd (see supplementary materials by Santhanam et al (2006)
for the exact placement) and automatically spike-sorted data
using methods described previously by Santhanam et al (2004,
2006).

2.3. The free-paced system: state estimator and target
estimator

In addition to replacing external timing information, state
estimators, which are capable of identifying when plan activity
is present, are critical components of ‘free-paced’ systems.
In contrast to the system we recently reported (Santhanam
et al 2006), a free-paced system can wait indefinitely until
plan activity is detected and then move a prosthetic cursor
to the desired target. Similarly, such a system could wait
indefinitely for peri-movement activity to appear and then
guide a prosthetic arm to an object. There are three activity
periods within each trial that must be identified in order to
achieve free pacing:

(1) Baseline, before the target is shown (figure 2, the touch
hold period).

(2) Plan, after the target is shown but before the ‘go’ cue is
given (figure 2, the delay period).

(3) Go, from the ‘go’ cue until the acquisition of the target
(figure 2, the go period and real reach).

To identify these three activity periods we used the
free-paced system shown in figure 3(a), which performs
state estimation and target estimation separately. The state
estimator determines the start and end times of the Baseline,
Plan, and Go periods. Given the start and end times of the
estimated Plan period, the target estimator uses neural activity
from within this interval to provide an estimate of the reach
target.

2.4. The state estimator

The state estimator, shown in figure 3(b), consists of an
epoch classifier and state machine. The epoch classifier uses
neural activity within a sliding time window of fixed length
to provide a classification (Baseline, Plan, or Go) at each
time step. The state machine (figure 3(c)) then uses all past
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classifications to estimate the times of transition between the
Baseline, Plan, and Go states. It is important to distinguish
between the epoch classifications (in italics) and the states
(in bold). The classifications are instantaneous estimates of
the activity period using only a fixed period of time. The
state machine uses multiple classifications in time, as well as
training information from the reach trials, to form estimates of
the activity period transition times. These time estimates can
then be used for the target estimation.

2.4.1. The state estimator stage 1: epoch classifier. To
perform epoch classification, we first built a statistical model
of the neuron spike rates in each of the three activity periods.
We denote the time of the target appearance as TTarget, and the
time of the ‘go’ cue as TCue. Using the neural activity from a
set of reach tasks, we modeled the spike rate distribution by
target using data from the following windows:

(1) Baseline: TTarget + [−150, 50] ms.
(2) Plan: TTarget + [50, 250] ms.
(3) Go: TCue + [50, 250] ms.

In forming the statistical models for Plan and Go, we
begin using spike rate data following an offset of 50 ms from
the time of target presentation and time of go cue presentation.
This offset reflects the approximate time necessary for visual
information to be transduced at the retina, processed by several
subcortical and cortical areas, and reach PMd (Santhanam
et al 2006). For each of the eight potential reach targets,
we determined the mean spike rate and variance in each of
the three activity periods: one representing baseline; eight
representing plan activity for each possible reach target; eight
representing go activity for each possible reach target. These
parameters characterized the response distributions and were
used to later classify targets using either Poisson or Gaussian
models. Note that since plan and go activity is tuned to the
reach direction, using one model for all plan or go period
activity would not perform well. This is because using one
model would necessitate averaging the neural responses across
targets. Thus, if one were not to consider each target separately
when learning a model of plan (or go) period activity, one
would have a more difficult time differentiating plan from
baseline (or plan from go) activity.

Provided with this statistical model, the epoch classifier
used a sliding window, moving 10 ms at a time, that measured
the neural spike rates over an integration window, Tint. Since
200 ms of neural activity is sufficient for good target estimation
accuracy (Santhanam et al 2006) we chose Tint = 200 ms. The
200 ms window provided enough neural data to overcome
noise in the measured spike rates, yet was also short enough
to respond to activity period transitions within a reasonable
period of time. The epoch classifier used maximum-likelihood
decoding (Yu et al 2004, Shenoy et al 2003) to calculate the
probabilities of the 17 sub-classifications.

The activity period corresponding to the sub-classification
with the highest probability (which is the epoch classification)
was sent to the state machine; information about the target
itself was discarded. Figure 2 illustrates how an epoch
classification is obtained from the neural activity at a given

time step. Note that at each moment in time, the activity
period with the highest probability is the corresponding epoch
classification at that time.

2.4.2. The state estimator stage 2: state machine. The two-
stage state estimator was developed to solve two problems
that arose when using the epoch classifier alone to determine
activity period transition times. The first problem is the
latency between the appearance of the target and the first Plan
classification. If the time of the first Plan classification were
assumed to be the start of the Plan activity period, then a
significant amount of plan activity would be ignored by the
target estimator. The second stage of the state estimator applies
a correction factor to compensate for this latency.

Second, the amount of neural activity used in each
classification is fixed by the choice of the integration window
size. If lower error rates were desired in estimating the activity
period, a larger window would be needed. However, since
a given statistical model for an activity period assumes a
particular neural window size, one would need to create a
separate statistical model for each new window size desired.
With a dual-stage approach, the second stage can incorporate
a varying amount of neural activity by taking into account
multiple classifications. Note that this does not require a
separate statistical model for each potential value of Tint.
Thus, larger amounts of neural data are considered with less
computational cost and an easier implementation.

To overcome these problems, we employed the state
machine shown in figure 3, which uses training data and
the collection of past classifications to assign one of the
three activity periods to the system. To allow the system
to trade higher latency for a lower error rate, we specified
that the state machine would only transition to the Plan
state after the Plan classification had been received CPlan
consecutive times. The time at which CPlan consecutive
Plan classifications are received is denoted by T̂ PlanDetect.
Increasing CPlan will decrease the probability of a premature
Baseline → Plan transition, but will increase the delay in
detecting that transition. For example, in figure 2, the
epoch classifier provides a Plan classification at 450 ms,
though the target has not appeared yet. By setting CPlan
high enough, the system will not transition to Plan at this
time. A similar consistency rule is applied to the Plan → Go
transition, with CGo Go classifications required. With CPlan
and CGo set independently, one can trade off the error rate for
latency differently for the Baseline → Plan and Plan → Go
transitions. These are critical differences from the
implementation described in Shenoy et al (2003), which did
not look for consecutive classifications at this stage.

The state machine also contains the average plan and go
detection latencies, µPlanLatency = E[T̂ PlanDetect −TTarget] and
µGoLatency = E[T̂ GoDetect −TCue], which are learned through
training trials. Once a given test trial reaches T̂ PlanDetect, the
average plan detection latency is subtracted in order to obtain
the estimate of the target appearance time, T̂ Target. T̂ Target is
the start of the estimated Plan period that is used by the target
estimator. Similarly, T̂ GoDetect and the average go detection
latency are used to obtain an estimate of the go cue time, T̂ Cue.
T̂ Cue is the end of the estimated Plan period.
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uses a fixed length integration window. The target consistency rule uses a steadily expanding window, providing a series of target estimates
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2.5. The target estimator

For target estimation we built a different statistical model
which was optimized for decoding reach target locations, as
opposed to detecting changes in the activity period. We made
two changes: (1) we ignored Baseline, since it provided no
information about the target and (2) for Plan and Go, we used
data within [150, 350] ms after the start of each period instead
of [50, 250] ms as before. This further delay in the time
window reflects the additional time required for plan activity
to fully form and stabilize in PMd, as discussed above in
association with our recent fixed-pace results (termed Tskip in
Santhanam et al (2006); and normalized variance reduction
time in Churchland et al (2006c)). As with the state detection
model, we measured the mean and variance of the neuron spike
counts for each target during both Plan and Go periods.

Equipped with these statistical response models and the
estimate of the Plan period onset time (T̂ Target) we then
examined three target estimation rules for decoding the desired
target. These estimation rules, versions of which were
proposed in Shenoy et al (2003) and also used in epoch
classification, are illustrated in figure 4. These methods use
differing amounts of Plan neural activity and demonstrate the
tradeoffs between speed and accuracy when estimating the
desired target. Noted below are the differences between our
implementation and that in Shenoy et al (2003). The rationale
behind these choices is discussed in section 2.6.

2.5.1. The fixed window rule. The target estimator uses a
fixed time window, T̂ Target + [150, 350] ms, to calculate the
neuron spike count. Since only 200 ms of data is used, this rule
is most sensitive to errors in predicting the target appearance
time. This is because if the predicted appearance time differs
from the actual appearance time, then the target estimator will

use spike rate data from outside the time range used in building
the target prediction model. Note that this differs from the time
transition rule in Shenoy et al (2003) since it uses 200 ms of
activity instead of 500 ms.

2.5.2. The target consistency rule. The target estimator uses
an expanding window, starting with the T̂ Target + [150, 350] ms
window of the fixed window rule and expanding by 10 ms
at a time. The target estimator decodes the target at each
step, only assigning a final estimate when the same target
has been decoded CTarget consecutive times. By enforcing
this consistency requirement, the system can be made more
immune to variance in the neuron spike rates and errors in
the predicted target appearance time. However, a target may
not be declared at all if the system fails to decode any target
CTarget consecutive times. This rule also introduces a higher
latency than the fixed window rule. The target consistency
rule may be useful in some human systems where failing to
move a prosthetic device is preferable to moving the device in
an unintended manner (e.g., wheelchair commands when near
automobile traffic).

One further source of error arises from the nonstationarity
of the spike rate statistics throughout the Plan period. To
limit the errors due to the nonstationarity, we expanded our
statistical model to include the spike rate statistics for windows
from TTarget + [150, 350 + 50k] ms, where k is an integer. As
our target estimation window increased, we used the window
model which provided the closest time fit in order to decode
the target.

Note that this is different from the time consistency rule in
Shenoy et al (2003) since different amounts of neural activity
are used (this rule uses a range of window sizes while the time
consistency rule always uses 500 ms). In addition, Shenoy
et al (2003) did not build multiple neural models as we did.
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2.5.3. The go detection rule. The target estimator waits
for the Plan → Go transition, then uses the entire Plan
period to estimate the target. A window of [T̂ Target + 150,
T̂ Cue + 50] ms is used to estimate the target. Since this rule
ideally incorporates data from the entire Plan period, it can
provide better accuracy than the (shorter) fixed window rule
if the Plan period is significantly longer than the 200 ms
window. However, longer Plan periods also lead to increased
latency. There are also errors arising from the need to estimate
two transition times (TTarget and TCue) instead of just one and
from the nonstationarity of the spike rate statistics. As with the
target consistency rule, we used the closest-fit window from
the expanded statistical model in order to offset errors from
nonstationarity. There still remains the possibility of no target
being decoded if the Plan → Go transition is not detected.
Nonetheless, the rule may serve as a useful benchmark in
suggesting an upper bound on detection accuracy in free-paced
systems.

This differs from the go transition rule in Shenoy et al
(2003) since the entire plan period is being used for decoding,
as opposed to only the last 500 ms in Shenoy et al (2003).

2.6. Summary of advances

As noted in the subsections above, there are several key
differences between our internally-paced system and that in
Shenoy et al (2003). These are summarized below.

First, there are fundamental differences in the datasets that
were used. We recorded from a different area of the cortex,
PMd/M1 as opposed to PRR/MIP. It is not immediately
clear that this algorithm would be successful using data from
a different area of the cortex. In addition, we recorded
our neurons simultaneously instead of using single-electrode
recordings. This is important for a few reasons. We have
a small handful of single units that are of as good quality
as single-electrode recordings, but most of the recordings
are multi-unit. In addition, it is theoretically possible that
there would be such strong correlations across neurons on
a given single trial that the decoding performance would
not increase relative to single-electrode recordings when
using multiple electrodes simultaneously. This is because
recording from additional neurons might not give us any
useful information about the motor plan. Thus, the success
of our algorithm shows that it is possible to build a free-paced
prosthesis using signals from a chronically-implanted array.
Finally, we were able to use our simultaneous recordings
to demonstrate our system’s feasibility in real time (see
section 2.7).

Second, we used improved algorithms. Given our results
in Santhanam et al (2006), we were able to optimize the
parameters used, whereas those used in Shenoy et al (2003)
were chosen in an ad hoc fashion. Specifically, the size
of neural windows used was based on the demonstration
in Santhanam et al (2006) that a 200 ms window was the
shortest needed for near optimal decoding accuracy. Note
that we assume that such a window was also good enough
for epoch classification. In addition, we required our epoch
classifier to have a certain number of consecutive decodes
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before transitioning from one state to the next; this restriction
was not present at all in Shenoy et al (2003). By not enforcing
a certain number of consecutive classifications, their method
was susceptible to being affected by noise when transitioning
out of the baseline state. Most importantly, we optimized these
parameters (see figures 5 and 6) in order to achieve the best
performance.

2.7. Real-time implementation

The causal design of our free-paced algorithm lends itself to
a real-time implementation. However, it is unclear how much
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computational delay the real-time implementation would
introduce in addition to the latency caused by the algorithm
itself (see section 3 for discussion of algorithmic latency and
jitter). This is a delay in association with state and target
estimation as well as the length of time required to render the
appropriate icon to the monkey (termed Tdec+rend in Santhanam
et al (2006)).

In order to show that it is possible to create an
implementation that does not result in an unacceptable
additional delay, we extended our experimental platform to
allow for real-time state and target estimation. This required
performing real-time spike sorting and neural data collection
as described in Santhanam et al (2006). In addition, two other
computers were used: one to extract the relevant window of
neural activity at sub-millisecond resolution (30 kHz sampling
with Pentium 4, 2.8 GHz); another to calculate all of the
relevant state probabilities, execute the target estimation rule,
and report a decoded target when appropriate (AMD Athlon
dual-core, 2.2 GHz). All of the machines that handled raw
neural data from the amplifier were running real-time Linux,
which allowed for the real-time hardware control necessary
for the precise timing required; the machines that dealt with
stimuli presentation were running Windows and DOS. Our
implementation fetched 50 ms blocks of neural data at a time
to allow for latencies involved in packaging the spiking data
into Matlab structures. The 200 ms sliding neural window was
then moved every 10 ms as described above.

Parameters were chosen such that the mean delay of the
algorithm was less than 350 ms (see section 3), and the fixed
window rule was used for our real-time target estimation. The
algorithm would therefore always wait until 350 ms after the
estimated target presentation time to perform the target decode.
Thus, the only additional implementational delay was due to
the time to perform the last ML target decode and render
the target. As stated in Santhanam et al (2006), this is only
approximately 40 ms.

3. Results

After learning the statistical models, we ran the free-
paced system offline on three datasets: one for monkey
G (G20040508) and two for monkey H (H20041118 and
H20041217). From each dataset, we used 400 trials—50 trials
for each of the eight targets—to build the statistical models
and to choose a value of CPlan, CGo and CTarget. We then
chose a separate 800 trials—100 for each of the targets—to
run through the state and target estimators to determine the
target prediction accuracy and latency.

3.1. The state estimator

For each dataset, we first characterized the plan and
go detection latency of the state estimator so that we
could choose an appropriate CPlan and CGo. Figure 5
displays the performance curves for Plan onset detection
for H20041118, as calculated by the state machine. While
varying the consistency number, CPlan, we calculated the
mean (µPlanLatency) and jitter (standard deviation) of the Plan

detection latency, using both Poisson and Gaussian neural
response-model statistics. The plot only shows the results
from Poisson statistics, since Poisson statistics performed
better during target estimation for these datasets. Figure 5 also
shows the percentage of false state transitions, defined as the
cases where the time the algorithm determined the target was
presented before its actual appearance. The average detection
latency is calculated using all trials, including those where
there are false state transitions.

In our recent fixed-paced experiments, where plan activity
(Tint) was used starting 150 ms after TTarget until a few tens
or hundreds of milliseconds later, accuracy was observed
to saturate for Tint times around 200 ms or slightly less
(Santhanam et al 2006). In other words, by approximately
350 ms (Tskip of 150 ms plus Tint around 200 ms) after target
appearance the system should decode the desired target and
move the prosthetic device accordingly.

Therefore, as long as we chose CPlan such that µPlanLatency

∼350 ms, the average latency of the free-paced system would
be quite similar to that of the fixed-paced system which yielded
high-performance values. For the data displayed here, we
chose CPlan = 23. At this point, the jitter is near its minimum
while µPlanLatency is still approximately within the 350 ms limit
(343 ms in this case). For greater values of CPlan, the number
of false state transitions decreases only marginally, while
µPlanLatency increases and the jitter does not change appreciably.
Note that this determination could not have easily been made
a priori since the relationship between µPlanLatency and CPlan

cannot readily be found analytically.
CGo, which is required for the go detection rule, was

chosen in a similar way to CPlan. We looked for a choice
of CGo which minimized the jitter of difference between the
inferred and actual go cue times while also keeping the latency,
µGoLatency, about 350 ms. Although the 350 ms latency limit
was obtained from experiments that decoded based on plan
activity alone (Santhanam et al 2006), we chose it here as an
approximation of a good latency limit for movement activity
as well. For this dataset, CGo was chosen to be 21 to result in
a µGoLatency of 348 ms.

Note that choosing a CPlan and CGo that result in a mean
latency less than 350 ms for the training data does not guarantee
that the mean latency for test data will also be <350 ms.
This is because the statistical models learned on the training
data do not necessarily perfectly explain the test data.

3.2. The target estimator

Having inherited the Plan activity period start time estimate
(T̂ Target) from the state estimator, the target estimator now
uses one of the target estimation rules to predict the desired
target location. For CPlan = 23, we used the estimated
target appearance time to obtain the decoded target and target
detection time for the three estimation rules. Table 1 displays
the percentage of trials decoded correctly, along with the target
detection latency average and jitter, sorted by dataset and
estimation rule type. Also included is the percentage of trials
where no target was detected, due to either an undetected
activity period transition or the failure to decode enough

343



N Achtman et al

Table 1. Performance summary for the free-paced system.

Correct target detected (%) No target detected (%)

G20040508 H20041118 H20041217 G20040508 H20041118 H20041217

Fixed window 81.8 82.3 82.3 4.6 0 0
Target consistency 83.0 84.8 84.8 4.6 0 0
Go detection 90.3 88.8 90.2 4.6 0.3 0
Fixed paced 87.3 85.0 84.2 0 0 0

Latency mean (ms) Latency jitter (ms)

Fixed window 358 369 356 162 110 98
Target consistency 500 554 550 177 149 138
Go detection 1232 1148 1197 187 214 198
Fixed paced 350 350 350 0 0 0

consecutive targets for the target consistency rule. Note that
premature transitions are considered to be errors (not listed in
either column). For comparison purposes, table 1 also contains
the decoding accuracy for an offline fixed-paced system run on
these exact datasets, in which the target estimator is provided
with the exact Plan onset time of the target appearance and
uses a target estimation window of TTarget + [150, 350] ms.

As expected, the target consistency rule provided better
accuracy than the fixed window rule across all of the datasets,
though only showing slight improvement. The go detection
rule provided the best accuracy across all three datasets, since
many of the trials had Plan periods that were longer than
the 200 ms used by the fixed window rule. Our algorithm’s
performance on the G20040508 and H20041118 datasets was
impacted by the failure to detect an activity period transition,
with 4.6% of G20040508 trials and 0.3% of H20041118 trials
failing to detect Go.

Note that for the target consistency rule there was no
performance decrease due to failure to decode a target CTarget

consecutive times. As displayed in figure 6, the values of
CTarget for which target estimation accuracy is greatest are
much less than the values of CTarget for which no target
estimations are made. This result suggests that the increased
latency of this rule in comparison with the fixed window rule
is more of a concern than the possibility of failing to estimate a
target. The slight decrease in accuracy after reaching a certain
CTarget arises from the use of Go neural activity in the target
estimation. The target consistency rule does not check for the
Go transition and uses the Plan statistical models. Therefore,
as CTarget increases, the trial may enter the Go period, where
the Plan model is not valid, leading to reduced accuracy.

Finally, in comparing the fixed window rule with the fixed-
paced system, the free-paced system incurred a loss in accuracy
ranging from 1.9 to 5.5% while having a mean latency increase
of 6–19 ms, suggesting that a free-paced system could be
utilized in place of a fixed-paced system without sacrificing
much accuracy or latency.

4. Discussion

Neural prostheses hold considerable promise for dramatically
increasing the quality of life of severely disabled patients,
but these systems will only become a reality if overall

safety and performance are sufficiently high (Scott 2006).
Recent research has provided very encouraging proof-of-
concept demonstrations (Serruya et al 2002, Taylor et al
2002, Carmena et al 2003, Musallam et al 2004), evidence
that penetrating electrode arrays can be implanted safely
in humans and that well-tuned neural activity persists long
after spinal cord injury (Hochberg et al 2006), and design
principles for achieving performance potentially high enough
to outweigh the surgical risk accompanying neurosurgery
(Santhanam et al 2006). However, several major challenges
must be addressed before these cortically-controlled prosthesis
are adopted for widespread use. Among the challenges is
complementing prosthetic decode algorithms, which spatially
guide prostheses, with state estimation algorithms, which must
temporally instruct prostheses.

We report here the design and characterization of a
relatively straightforward cognitive state estimation system
capable of largely preserving overall system performance
while enabling the user to freely pace prosthetic movements.
Our offline simulations show that neural data can be used
to detect transitions between the various activity periods
(Baseline, Plan, and Go). These transition-time estimates are
accurate enough to allow target estimates that come close in
accuracy to the estimates from a fixed-paced system (table 1).
This represents an important step toward what must eventually
become a theoretically optimal framework for joint state and
target estimation.

Increasing the speed and accuracy of free-paced systems
will largely rely upon improving the detection of the
Baseline → Plan transition. One method for improving target
estimation accuracy is to reduce the jitter in the plan detection
latency. This might be achieved by using local field potential
(LFP) data in conjunction with the action potentials since low-
frequency power is known to be higher during preparatory
(plan) periods than during baseline or movement periods
(Shenoy et al 2003, Santhanam et al 2003, Scherberger et al
2005). Other methods could provide new algorithms for
converting the epoch classifications into estimates of the
activity period transition times. For example, rather than
requiring CPlan consecutive Plan classifications, the state
machine could merely require that 90% of the classifications
are Plan over a given time interval.
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We also observed that in many of the cases where the target
was incorrectly predicted, the estimated target was adjacent to
the correct target. As discussed in Santhanam et al (2006),
this error pattern contains information beyond what the simple
accuracy metric, which does not differentiate systematic errors
from random errors, captures. This information can be readily
used in prostheses. Importantly, these systematic and useful
error patterns which are present in fixed-paced experiments are
also present in the current free-paced system, further indicating
that the latency and jitter endemic to free-paced systems is not
so large as to destroy these patterns.

In addition, not many neurons are required for this system
to function properly. First, the majority of neurons that we
recorded from were significantly tuned (p < 0.01) to the
Baseline → Plan and/or Plan → Go transitions (see the insets
in figure 7). Further, most of these neurons were also tuned
during the Plan period, so they would be useful when decoding
the target selection as well. As shown in the neuron dropping
analysis in figure 7, about 120 neurons are necessary to reach
near asymptotic performance for our algorithm. Since most
electrode arrays can successfully record from 100 to 200 units,
this should not be difficult to achieve with current technology.

As discussed in section 2.7, we have recently implemented
this entire free-paced system in real time. Although a detailed
discussion of the performance achieved is outside the scope of
this paper, this demonstration underscores the point that such
a system is indeed realizable. Further, our platform is easily
extensible to allow for the integration of other algorithms, such
as mixture models that decode trajectories (Yu et al 2007) or
other free-paced algorithms such as hidden Markov models
(Kemere et al 2006, 2004).

We believe that this free-paced system (or one similar to
it) can be used by patients. It has already been shown that
neural activity from paralyzed and diseased patients can be
used to control prostheses (Hochberg et al 2006, Kennedy
et al 2000). These prostheses employ algorithms that are
dependent upon the fact that individuals neurons are tuned to
control signals such as the desired movement direction. It
therefore seems likely that our algorithm, which also exploits
this tuning of neurons, would be successful in the clinic. In
a similar fashion to what was done in Hochberg et al (2006),
the patient would be asked to make imagined movements to
targets displayed on a computer screen. These trials would
have known timing and would serve as the training trials for
our free-paced system since all epochs would be known. Once
sufficient training trials have been recorded, the free-paced
system would then be asked to determine on its own when the
patient had selected a target and which target had been selected.
Note that it is still important to determine the Baseline → Plan
transition, since plan-like activity has been observed during
the reaction time interval (Crammond and Kalaska 2000,
Churchland et al 2006c). In addition, teasing apart plan and
peri-movement activity would be useful in the clinical setting
since studies have noted improved decoding performance
when these activities are considered separately (Yu et al 2007,
Kemere et al 2004, 2006). In our clinical implementation,
each target could have a corresponding function, such as typing
letters on a keyboard or opening a particular application. The
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Figure 7. Results from a neuron dropping analysis for all three
datasets: G20040508, H20041118, H20041217. For each point in
the graph, ten simulations were run by selecting the appropriate
number of neurons without replacement for a given run. The mean
and standard deviation are plotted. Insets: Venn diagrams showing
the number of neurons for each dataset that were significantly
(p < 0.01) tuned to the target direction (top left circle), Baseline →
Plan transition (top right circle) and Plan → Go transition (bottom
circle). Significance for state transitions was determined by
performing a paired t-test between firing rates in Baseline and each
Plan state (or between each rates in Plan state and its corresponding
Go state) and looking for those neurons that had a significance of at
least p < 0.01/(number of pairs) (8 in this case due to eight targets)
in at least one of the tests.

patient would be able to stop and think mid-sentence about
what to write next while writing an e-mail without fear of the
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decoder continuing to decode possible words, for instance.
Contrast this functionality with that offered by a fixed-pace
decoder, with which the patient could only type letters when
prompted and could not easily stop when he chose to do so.
It is also possible that the patient’s performance will improve
with time as he adapts to the prosthesis (Tillery et al 2003).

Note that the average latency of our algorithm (∼350 ms)
is about as large as the observed reaction times (200–400 ms).
Therefore, it is reasonable to think that one could instruct
a human user to merely select keys without the instructed
delay present in our task design and maintain our reported
performance. Thus, a human user might not detect a difference
in speed between having and not having an instructed delay.
Importantly, we were able to choose our Tint and Tskip values
that allowed for this speed because of the number of neurons
used. If we had recorded from fewer, a larger Tint would have
been necessary for similar accuracy (see figure 3 in Santhanam
et al (2006)).

This system encompasses several different parameters
and algorithms, and we do not claim to have optimized the
system over this entire space. Furthermore, the strategy
in choosing the parameters and algorithms will change
depending on the relative importance of accuracy and speed
in a given application. We present here only one possible
implementation of a free-paced system, providing a framework
that is adaptable enough to meet the needs of different
prosthetic applications.

Future experiments must further explore the real-time
implementation of these algorithms and push the online
performance of free-paced systems employing joint state and
target estimators. While this initial online implementation
of the approach reported here appears encouraging, extensive
experimentation and characterization remains.
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