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1 Introduction

Among the simplest conformal field theories in two dimensions are those with a U(1)cleft ×
U(1)cright current algebra, where c is the central charge. These CFTs are theories of c free
bosons, familiar from toroidal compactifications in string theory.
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In this paper we will revisit an old problem: mapping the landscape of torus partition
functions for free CFTs. In the first part of the paper, we undertake a systematic analysis of
constraints on the spectrum using techniques from the modular bootstrap [1–4]. In [5] it was
shown that the modular bootstrap for free CFTs is related to the sphere packing problem.
However, this relation holds only for the spinless version of the modular bootstrap, which
in terms of the torus modulus is restricted to τ = −τ̄ . Here we will apply the full modular
bootstrap, with independent τ and τ̄ , which does not appear to be related to sphere packing
in general.

Instead, the full modular bootstrap for free CFTs is related to the geometric problem
of constructing Narain lattices with a large spectral gap, which is a special case of sphere
packing. A Narain lattice is an even self-dual lattice in Rc,c, which famously defines a
theory of c compact bosons [6]. The spectral gap is the scaling dimension ∆1 of the first
nontrivial primary state in the CFT defined by this lattice, and a Narain lattice is optimal
if it maximizes this gap among all such lattices with a given central charge.

The modular bootstrap places an upper bound on the gap as a function of c. We
compute this bound numerically for c ≤ 15, compare the bounds to explicit Narain lattices,
and discuss cases where the numerical bound is saturated. We analytically solve the case
c = 1, where the optimal theory is a self-dual boson, by exhibiting a suitable bootstrap
functional. This is an interesting example for the bootstrap because while some spinless
bootstrap problems are analytically tractable [7], there are relatively few exact results with
spin (see, however, recent progress in [8, 9]).

In the second part of the paper, we use methods of Siegel [10–13] to study free boson
partition functions averaged over Narain moduli. These methods provide an ensemble-
averaged formula for the density of states in a free CFT, where the ensemble is defined by
the natural measure on the moduli space provided by the Zamolodchikov metric (which
in this case agrees with the Haar measure for O(c, c) up to scaling).1 In particular, the
formula provides information about the spectrum of an average Narain lattice in a large
number of dimensions, and we use it to prove that as c → ∞, there are Narain lattices
with ∆1 ≥ c/(2πe) + o(c).

This formula for ∆1 motivates the search for a holographic duality. To explain why,
let us first step back to review the status of holographic duality for pure gravity in three
dimensions, and the corresponding search for a dual CFT. A holographic dual for pure 3d
gravity would be a CFT with Virasoro chiral algebra and ∆1/c finite and nonzero in the
limit as c → ∞. No such CFT has been found. Indeed, to find or exclude such a theory
is one of the primary motivations of the modular bootstrap program. The interpretation
of such a CFT, if it exists, is that the Virasoro descendants of the vacuum are dual to
Brown-Henneaux boundary gravitons in AdS3, and the primaries with dimension of order
c are dual to black holes or other non-perturbative states.

In 2007, Maloney and Witten [15] calculated the path integral for 3d Einstein gravity
with a torus boundary condition. It takes the form

ZMW(τ, τ̄) =
∑

γ∈SL(2,Z)/Γ∞

χVir
0 (γτ)χ̄Vir

0 (γτ̄), (1.1)

1An ensemble of symmetric orbifold CFTs based on Siegel’s technique of averaging over Narain lattices
was considered by Moore in [14], with a different holographic interpretation.
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where χVir
0 is the Virasoro vacuum character, γτ is an image of τ under SL(2,Z), and the

other notation will be explained in section 5.2. This sum over images under the modular
group is known as a Poincaré series.2 In the gravity theory, it is a sum over topologies of
the BTZ black hole. Maloney and Witten computed the sum and found that the result
does not make sense as a CFT, because the density of states is continuous and non-unitary.
There have been various steps toward fixing the unitarity problem [21–24], most recently by
including conical defects in the path integral, but the resulting spectrum is still continuous
and the status of pure 3d gravity as a quantum theory is as yet unresolved.

Another wrinkle in this story is the recent discovery that pure gravity in two di-
mensions, where it is known as Jackiw-Teitelboim (JT) gravity, is holographically dual
to random matrix theory [25–28]. This duality provides a beautiful interpretation for a
theory with a continuous spectrum as an ensemble average over ordinary theories with
discrete spectra. Since JT gravity is the dimensional reduction of 3d gravity [29, 30], it
seems increasingly likely that averaging could also play a role in a putative dual to pure
3d gravity. On the other hand, the notion of a random CFT in two dimensions is rather
mysterious: what is the ensemble? There is a natural measure on the moduli space of
CFTs connected by exactly marginal deformations, but a CFT dual to pure 3d gravity
would have no marginal operators. It would be isolated in the space of CFTs. Therefore
even if we had a large class of theories to average over, it would be unclear how to define
a measure.

We will show that if the Virasoro algebra is replaced by the U(1)c current algebra,
then the sum over three-dimensional topologies can be carried out, and it has a consistent
interpretation as an average over Narain lattices. We will refer to the bulk theory in three
dimensions as U(1) gravity. It is perturbatively equivalent to U(1)c ×U(1)c Chern-Simons
theory, with the action

SCS =
c∑
i=1

∫
M3

(AidAi − ÃidÃi). (1.2)

We emphasize that this action is not supposed to define the non-perturbative theory, and
it is provisional in the sense that we will only check it on the torus. For comparison,
ordinary 3d gravity is perturbatively equivalent to an SL(2,R) × SL(2,R) Chern-Simons
theory [31–33], with a boundary condition inherited from gravity that differs from the usual
one in gauge theory (see, for example, [30]). In addition to the perturbative action (1.2),
U(1) gravity comes with a prescription to sum over three-dimensional topologies. This is
part of the definition of the theory. We will not attempt give a complete non-perturbative
definition in this paper, but for torus boundary conditions, the sum over topologies is
taken to be a sum over torus handlebodies, as in the Maloney-Witten path integral (1.1)
for ordinary 3d gravity.

The theory of U(1) gravity is certainly not an ordinary gravitational theory in three
dimensions, so the lessons learned from this theory do not necessarily carry over to more
realistic theories. We do not expect it to have black holes that dominate the canonical
ensemble at O(1) temperature. On the other hand, U(1) gravity does have excitations

2For related applications of Poincaré series in holography, see, for example, [16–20].
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equivalent to the Brown-Henneaux boundary gravitons in ordinary 3d gravity. They are
composites built from the U(1) gauge fields, mimicking the Sugawara construction in the
boundary CFT. There are also higher spin composites, built from higher products of the
gauge fields, so U(1) gravity has some similarities to higher spin gravity.3

The one-loop partition function for U(1) gravity on a solid torus is the U(1)c × U(1)c

vacuum character, denoted χ0(τ)χ̄0(τ̄). Therefore the full partition function for U(1)
gravity on a torus is the Poincaré series

Z(τ, τ̄) =
∑

γ∈SL(2,Z)/Γ∞

χ0(γτ)χ̄0(γτ̄). (1.3)

We will compute the sum and show that the resulting spectrum agrees exactly with Siegel’s
measure on random Narain lattices for any c > 2. The agreement between these two
calculations is in fact a special instance of the Siegel-Weil formula relating Eisenstein series
to integrated theta functions [11, 12, 39, 40]: the bulk calculation reduces to an Eisenstein
series, and the CFT calculation is an averaged theta function.

Thus, we conjecture that an averaged Narain CFT for c > 2 is holographically dual to
a theory of U(1) gravity. We have demonstrated that this duality holds at the level of the
torus partition function, but we have not given a fully non-perturbative definition of the
bulk theory, which would require an understanding of how to sum over topologies when
the boundary condition is a union of Riemann surfaces of arbitrary genus. If the duality
is correct, then it should also be possible to calculate ensemble-averaged quantities such
as 〈Z(τ1, τ̄1)Z(τ2, τ̄2)〉 from multi-boundary wormholes in the bulk, as in the JT/random
matrix duality [27]. The connection to the Siegel-Weil formula also suggests a way to
generalize the calculations to higher genus.

Higher topology contributions to the gravitational path integral have played a key
role in recent efforts to address Hawking’s information paradox [41, 42]. Whether these
wormholes correspond to an ensemble average is unknown, but in [43], it was argued that
spacetime wormholes in averaged theories can be reinterpreted by doing the path integral
with a boundary condition that selects an individual member of the ensemble. It would be
interesting to explore these alpha states in U(1) gravity, where both sides of the duality
are tractable.

In section 2 we review background material on partition functions with U(1)c ×U(1)c

symmetry. In section 3, we study bootstrap constraints and explicit Narain compactifica-
tions in low dimensions. Finally, in sections 4–5 we explore averaging over Narain lattices
and the holographic duality. The bootstrap section is largely independent of the later
sections, except as motivation, so it can be read independently.

As this work was nearing completion, we learned that related ideas regarding averaging
over Narain lattices were arrived at independently by Maloney and Witten [44].

3It differs from Vasiliev’s theory of higher spin gravity [34], and there is no obvious relationship between
our results and previous examples of higher spin AdS/CFT [35–38].
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2 Preliminaries

2.1 Partition functions

The partition function of a compact, unitary 2d CFT is

Z(τ, τ̄) =
∑

states
qh−c/24q̄h̄−c/24, (2.1)

where q = e2πiτ , q̄ = e−2πiτ̄ , h and h̄ are non-negative conformal weights of each state,
and τ and −τ̄ are independent complex numbers in the upper half-plane. In a theory with
U(1)cleft × U(1)cright current algebra, the partition function can be expressed as a sum over
primaries via

Z(τ, τ̄) =
∑
h,h̄

dh,h̄χh(τ)χ̄h̄(τ̄), (2.2)

where χh denotes the U(1)c character

χh(τ) = qh

η(τ)c , (2.3)

with η the Dedekind eta function η(τ) = q1/24∏∞
n=1(1− qn) and χ̄h̄(τ̄) = χh̄(−τ̄), and the

degeneracy dh,h̄ is the number of primaries with conformal weights h and h̄. There is a
unique vacuum state with h = h̄ = 0 and d0,0 = 1.

We assume the partition function is modular invariant. In other words, Z satisfies
the identity

Z(γτ, γτ̄) = Z(τ, τ̄) (2.4)

for all γ ∈ SL(2,Z), where γ =
(
p q
r s

)
∈ SL(2,Z) acts as

(γτ, γτ̄) =
(
pτ + q

rτ + s
,
pτ̄ + q

rτ̄ + s

)
. (2.5)

The group SL(2,Z) is generated by S and T , where

S(τ) = −1/τ and T (τ) = τ + 1. (2.6)

The scaling dimension and spin of a state are

∆ = h+ h̄ and ` = h− h̄, (2.7)

respectively. Invariance under T requires that ` ∈ Z. Thus, we can also write the partition
function as

Z(τ, τ̄) =
∞∑

`=−∞

∫ ∞
|`|

d∆ ρ`(∆)χ`,∆(τ, τ̄), (2.8)

where
χ`,∆(τ, τ̄) = χ(∆+`)/2(τ)χ̄(∆−`)/2(τ̄). (2.9)

The density of states ρ`(∆) is a sum of delta functions with positive integer coefficients,
and the unitarity bound h ≥ 0, h̄ ≥ 0 implies that ρ`(∆) has support only for ∆ ≥ |`|.
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2.2 Spinning modular bootstrap

The modular bootstrap is a version of the conformal bootstrap applied to 2d partition
functions. Following [1–4], we write the condition Z(τ, τ̄) − Z(−1/τ,−1/τ̄) = 0 for S-
invariance as ∑

h,h̄

dh,h̄Φh,h̄(τ, τ̄) = 0, (2.10)

where we symmetrize h and h̄ to obtain

Φh,h̄ = χh(τ)χ̄h̄(τ̄) + χ̄h(τ̄)χh̄(τ)− χh(−1/τ)χ̄h̄(−1/τ̄)− χ̄h(−1/τ̄)χh̄(−1/τ). (2.11)

Suppose ω is a linear functional acting on functions of (τ, τ̄), such that

ω(Φ0,0) > 0 (2.12)

and
ω(Φh,h̄) ≥ 0 (2.13)

whenever h ≥ 0, h̄ ≥ 0, h− h̄ ∈ Z, and h+ h̄ ≥ ∆gap for some constant ∆gap. Then every
CFT must have a primary state with scaling dimension below ∆gap, because otherwise∑

h,h̄

dh,h̄ω(Φh,h̄) ≥ d0,0ω(Φ0,0) > 0, (2.14)

which contradicts the crossing equation (2.10).
This method can be applied to any chiral algebra. Our focus is on theories with

U(1)c × U(1)c symmetry, for which the space of functionals can be found by the usual
logic with some minor adjustments. Under S, the U(1)c characters transform by a Fourier
transform in Rc: for x ∈ Rc,

χ|x|2/2(−1/τ) =
∫
Rc
dk e−2πik·xχ|k|2/2(τ). (2.15)

Thus, S acts on the product χh(τ)χ̄h̄(τ̄) as a Fourier transform in R2c with the identifi-
cations h = 1

2 |x|
2 and h̄ = 1

2 |x̄|
2 for (x, x̄) ∈

(
Rc
)2 = R2c. It follows that under these

identifications, the function ω(Φh,h̄) is always an eigenfunction of the Fourier transform
in R2c with eigenvalue −1. Furthermore, every −1 eigenfunction that is invariant under
exchanging x and x̄ occurs as ω(Φh,h̄) for some ω, as one can check using the derivative
basis given in (2.16) below.

In principle, the best bootstrap bound on ∆1 is obtained by optimizing over this space
of functionals. This is usually difficult, so it becomes necessary to truncate the problem
and use a computer to search over a finite dimensional space. We restrict to the space
spanned by the derivative functionals

ω = ∂m

∂τm
∂n

∂τ̄n

∣∣∣∣
τ=−τ̄=i

(2.16)
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with m+ n ≤ K. The resulting eigenfunctions are spanned by

fm,n(h, h̄) =
(
L(c/2−1)
m (4πh)L(c/2−1)

n (4πh̄) + L(c/2−1)
n (4πh)L(c/2−1)

m (4πh̄)
)
e−2π(h+h̄)

(2.17)
with L(ν)

m (x) a generalized Laguerre polynomial, m > n ≥ 0, m+ n ≤ K, and m+ n odd.
For each (m,n), these functions have one discrete label h − h̄, which we can take to be a
non-negative integer, and one continuous label ∆ = h+ h̄.

2.3 Narain compactifications

A Narain lattice Λ is an even, self-dual lattice of signature (c, c̄). For a review of the role
of Narain lattices in conformal field theory and string theory, see [45, 46]. We consider
Narain lattices of signature (c, c), where for (x, y), (x′, y′) ∈ Rc,c = (Rc)2 the inner product
is (x, y) · (x′, y′) = x · x′ − y · y′. A Narain lattice defines a CFT of c free bosons, with the
partition function

ZΛ(τ, τ̄) = 1
η(τ)cη(−τ̄)c

∑
(x,y)∈Λ

q|x|
2/2q̄|y|

2/2. (2.18)

The condition that Λ is even ensures that the CFT states have integer spin, i.e., the
partition function is invariant under T . Then the condition that Λ is self-dual implies that
ZΛ is also invariant under S and therefore under the full modular group. The primary
fields correspond to vectors (x, y) ∈ Λ, with scaling dimension and spin

∆ = 1
2(|x|2 + |y|2) and ` = 1

2(|x|2 − |y|2). (2.19)

For each c, starting with a Narain lattice Λ0, we can reach any other Narain lattice by
acting with an element of O(c, c) (see [47, chapter V] or [48, chapter II, §5]). The CFT is
invariant under the T -duality group O(Λ0) ∼= O(c, c,Z), defined as the discrete subgroup of
O(c, c,R) which preserves the original lattice, and the CFT is also unaffected by O(c)×O(c)
rotations acting individually on x and y. Therefore the moduli space of Narain CFTs is
the quotient (

O(c)×O(c)
)
\O(c, c)/O(Λ0). (2.20)

In the sigma model, this moduli space is parameterized by the metric and flux on the
target torus.

Consider c = 1, the theory of a single compact boson of radius R. The partition
function is

ZR(τ, τ̄) = 1
η(τ)η(−τ̄)

∑
m,n∈Z

q(m/R+nR/2)2/2q̄(m/R−nR/2)2/2. (2.21)

The theory is invariant under the T -duality R 7→ 2/R. The spectrum of primary opera-
tors is

∆m,n = m2/R2 + n2R2/4, (2.22)

– 7 –
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so the optimal Narain compactification for c = 1 — i.e., the CFT with the largest gap
between the vacuum state and the first nontrivial primary — is the self-dual boson, with
R =

√
2. It has ∆1 = 1/2 for its spectral gap.4

More generally, the spectral gap of a Narain lattice Λ is given by

∆1 = min
(x,y)∈Λ\{(0,0)}

|x|2 + |y|2

2 . (2.23)

In other words, we can form a sphere packing in ordinary Euclidean space by centering
spheres of radius

√
2∆1 at the points of Λ, with one sphere per unit volume in space because

all Narain lattices have determinant 1. Maximizing ∆1 amounts to maximizing the packing
density. Thus, CFTs consisting of free bosons correspond to a special case of the sphere
packing problem, in which the spheres must be centered at the points of a Narain lattice.

3 Upper bounds on the spectral gap

3.1 Numerical bootstrap bounds

We use the spinning modular bootstrap method described in section 2.2, together with
standard computational tools such as the semidefinite program solver SDPB [49], to place
an upper bound on the spectral gap ∆1 in theories with U(1)c × U(1)c current algebra.
More details of our implementation are in appendix A.

We denote the bootstrap bound at central charge c and truncation order K by ∆(K)
1 (c).

All CFTs with this chiral algebra have ∆1 ≤ ∆(K)
1 (c), and the bounds improve as K →∞.

The numerical results for K = 25 are plotted in figure 1. The red and green lines are
included as a guide to the eye. To see the slight nonlinearities in the bound, the piecewise
linear function min

(
c+2

6 , c+4
8

)
is subtracted from ∆(K)

1 (c) in figure 2. This figure also shows
various values of K, so that it can be used to judge whether the bound has converged. Some
values have converged better than others, and even some of the low-lying results may not
have converged. In particular the bounds around c ∼ 1.5 and c ∼ 3 are still changing
appreciably at K = 25, so the actual bounds could be significantly stronger. Note that
larger values of the central charge require a higher K to get a strong bound, so it is not
computationally feasible to find useful bounds from this method for c much larger than 15.
In figure 3, we compare to the spinless bootstrap bound for U(1)c×U(1)c obtained in [50].
For c 6= 4, the spinning bound is strictly stronger in this range.

In figure 2 we see that there are three points where the spinning bound appears to
converge to a known CFT, all sitting on the line ∆ = c+2

6 . The following upper bounds
are obtained at truncation order K = 19:

c = 1 : ∆1 < 1/2 + 2× 10−51

c = 2 : ∆1 < 2/3 + 2× 10−11

c = 4 : ∆1 < 1 + 10−4
(3.1)

4At rational values of R2 there are additional conserved currents, so the chiral algebra is enhanced.
The same happens at special values of the moduli for any c. However we can still decompose states under
U(1)c × U(1)c, and we will do this throughout the paper, so that the chiral characters are independent of
the moduli.
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(c+ 4)/8
(c+ 2)/6
∆(25)

1 (c)

central charge c

0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 1. Upper bound on ∆1 from the spinning modular bootstrap, at truncation order K = 25.

central charge c

∆
(K

)
1

(c
)−

m
in

((
c

+
2)
/6
,(
c

+
4)
/8

)

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14

K = 17

K = 19

K = 21

K = 23

K = 25

Figure 2. Comparison of the upper bound to the piecewise linear function min
(

c+2
6 , c+4

8
)
.

At c = 1, the CFT that saturates the bound is a compact boson at the self-dual radius,
discussed in section 2.3. This theory is equivalent to the SU(2)1 WZW model. At c = 2,
the bound is saturated by the SU(3)1 WZW model. This theory has a realization as two
bosons compactified on a 2-torus at the three-fold symmetric point in moduli space. At
c = 4, as discussed in [4, 50], it is saturated by 8 free fermions with the diagonal GSO
projection, or equivalently the SO(8)1 WZW model.

The sharp bound for c = 4 follows automatically from the known bound using the
spinless modular bootstrap [5], and we will prove the bound for c = 1 below. That leaves
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central charge c
∆

(K
)

1
(c

)−
∆

L
P

(c
)

−0.10

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

1 2 3 4 5 6 7 8 9 10 11 12 13 14

K = 17

K = 19

K = 21
K = 23
K = 25

Figure 3. Comparison of the spinning bootstrap to the spinless bootstrap bound ∆LP(c).

the c = 2 case as an open problem for the analytic bootstrap. It seems conceptually
similar to the sharpness of the spinless bound for c = 1, and both of these cases resist all
known techniques.

The line ∆ = c+2
6 has appeared in previous modular bootstrap studies [4, 51]. It is the

gap to the first primary in the WZW models for

SU(2)1, SU(3)1, (G2)1, SO(8)1, (F4)1, (E6)1, (E7)1, (3.2)

with

c = 1, 2, 14
5 , 4, 26

5 , 6, 7, (3.3)

respectively. We have already encountered these theories at c = 1, 2, 4. The other theories
on the list are consistent with our bound. Their partition functions can be found in [52, 53].
The (G2)1 WZW model does not have a U(1)cleft × U(1)cright current algebra. When c is
not an integer, this algebra does not even make sense, but we can still ask whether the
partition function can be expanded as in (2.2) with positive coefficients. In the (G2)1
theory it cannot, so the bound does not apply. The (E6)1 and (E7)1 theories do have the
required current algebra. These theories have gap ∆1 = c+2

6 with respect to the full chiral
algebra, but gap ∆1 = 1 with respect to the U(1)cleft × U(1)cright subalgebra, because there
are additional currents in the vacuum module that are primary under this subalgebra.
Therefore they fall below our bound. The situation for (F4)1 is similar. (This theory has
no U(1)cleft × U(1)cright subalgebra, because c is not an integer, but does have a positive
expansion of the form (2.2) with fractional coefficients.)
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3.2 Analytic functional for the self-dual boson

We will now construct an analytic functional to prove that every compact, unitary 2d CFT
with c = c̄ = 1 and current algebra U(1) × U(1) has a non-vacuum primary state with
∆1 ≤ 1

2 . In other words, the self-dual boson is optimal for this problem. This result may
be obvious, but the method is novel and may lend insight into more complicated bootstrap
problems with nontrivial spin dependence.

We can restate the requirements of section 2.2 for the spinning modular bootstrap
in terms of Fourier eigenfunctions as follows. To prove an upper bound of ∆1 < ∆gap,
we need a function f : Rc × Rc → R such that f̂ = −f , f(0, 0) > 0, and f(x, x̄) ≥ 0
whenever |x|2 − |x̄|2 ∈ 2Z and |x|2 + |x̄|2 ≥ 2∆gap. For a rigorous proof, f should decay
quickly enough; for example, a Schwartz function suffices. Without loss of generality, we
can assume that f(x, x̄) depends only on |x|2 and |x̄|2 and is invariant under exchanging
x and x̄.

The optimal choice of f will have f(0, 0) = 0. We conjecture that replacing the
condition f(0, 0) > 0 with f(0, 0) ≥ 0 is enough to obtain ∆1 ≤ ∆gap as long as f is not
identically zero, but we do not know how to prove it. We will first construct a function
satisfying f(0, 0) = 0 and ∆gap = 1

2 exactly, and then we will approximate it with functions
satisfying f(0, 0) > 0 and ∆gap >

1
2 to obtain a rigorous proof.

To construct f , we begin with a convex subset R of R2 that is symmetric about the
origin (in other words, −R = R). Let χR be the characteristic function of R, i.e.,

χR(x, x̄) =

1 if (x, x̄) ∈ R, and
0 otherwise,

(3.4)

and let g = χR ∗ χR be the convolution of χR with itself, so that g has support in 2R.
Then ĝ = χ̂R

2, which is nonnegative everywhere because χ̂R is real-valued (which holds
since R = −R). These functions satisfy ĝ(0, 0) = vol(R)2 and g(0, 0) = vol(R), where here
volume means area in R2.

Let f = ĝ − g, so that f̂ = −f . Then f(0, 0) ≥ 0 iff vol(R) ≥ 1. We also want f to
satisfy f(x, x̄) ≥ 0 whenever x2 + x̄2 ≥ 1 and x2 − x̄2 ∈ 2Z. We know that f(x, x̄) ≥ 0
whenever (x, x̄) 6∈ 2R, because g vanishes outside 2R and ĝ is always nonnegative. Thus it
suffices to find R such that

{(x, x̄) ∈ R2 : x2 + x̄2 ≥ 1 and x2 − x̄2 ∈ 2Z} ⊆ R2 \ 2R (3.5)

and vol(2R) ≥ 4. We can satisfy these conditions by taking R to be a square, namely the
convex hull of (±1/

√
2, 0) and (0,±1/

√
2), as shown in figure 4. Thus, we have obtained

an optimal eigenfunction f , which in fact satisfies f(x, x̄) ≥ 0 for far more points (x, x̄)
than required.

We can write down g and ĝ, and hence also f , in closed form by rotating 45◦ and
separating variables, to take advantage of decomposing the square R as a product of two
intervals. We find that

g(x, x̄) =
(

1−
∣∣∣∣x+ x̄√

2

∣∣∣∣)χ[−1,1]

(
x+ x̄√

2

)(
1−

∣∣∣∣x− x̄√2

∣∣∣∣)χ[−1,1]

(
x− x̄√

2

)
(3.6)
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Figure 4. The square 2R that attains a sharp bound, together with the unit circle and the
hyperbolas x2 − x̄2 = ±2.

Figure 5. An octagon 2Sε such that f(0, 0) > 0, together with the unit circle and the hyperbolas
x2 − x̄2 = ±2.

and

ĝ(x, x̄) =

√2 sin π(x+x̄)√
2

π(x+ x̄)

√
2 sin π(x−x̄)√

2
π(x− x̄)

2

. (3.7)

The function f = ĝ− g does indeed vanish at all the points (x, x̄) = 1√
2(m+n,m−n) with

m,n ∈ Z, as it should by (2.21).
If we wish to achieve f(0) > 0 while relaxing the constraint x2 + x̄2 ≥ 1 to x2 + x̄2 ≥

(1 + ε)2 with ε > 0, we cannot simply replace R with (1 + ε)R, because the enlarged set
2(1 + ε)R would overlap with the hyperbolas x2 = x̄2 = ±2. Instead, we can shave off
the corners of (1 + ε)R at 45◦ angles to obtain on octagon Sε such that 2Sε strictly avoids
the hyperbolas, as shown in figure 5. The decrease in area from shaving the corners is
quadratic in ε, and thus vol(Sε) > 4 when ε is small. This construction therefore comes
arbitrarily close to ∆gap = 1

2 while keeping f(0, 0) > 0.
The only remaining issue is that f decays slowly. To fix this issue, we can use a

standard mollification argument, as in the proof of Lemma 2.2 in [54]. Specifically, for
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c ∆1 ∆(25)
1 Name Best lattice packing

. 1 1/2 1/2 SU(2)1 WZW
√

1/3 = 0.5773 . . .
2 2/3 0.6667 SU(3)1 WZW

√
1/2 = 0.7071 . . .

3 3/4 0.8227 SU(4)1 WZW 6
√

1/3 = 0.8326 . . .
4 1 1 SO(8)1 WZW 1
5 1 1.0963 SO(10)1 WZW 10

√
4/3 = 1.0291 . . .

6
√

4/3 = 1.1547 . . . 1.2103 Coxeter-Todd
√

4/3 = 1.1547 . . .
7

√
4/3 = 1.1547 . . . 1.3300 14

√
64/3 = 1.2443 . . .

8
√

2 = 1.4142 . . . 1.4556 Barnes-Wall
√

2 = 1.4142 . . .

Table 1. Putatively optimal Narain compactifications, along with the spinning modular bootstrap
bound and the best lattice sphere packing known in R2c (without the Narain condition).

each δ > 0 we can replace f with a Schwartz function fδ such that fδ converges pointwise
to f as δ → 0, fδ(x, x̄) ≥ 0 whenever (x, x̄) 6∈ (1 + δ)2Sε, and f̂δ(x, x̄) ≤ 0 whenever
(x, x̄) 6∈ (1 + δ)2Sε. Then the eigenfunction fδ − f̂δ has all the desired properties when δ is
small enough.

Our construction of an optimal eigenfunction for c = 1 is essentially equivalent to the
optimal auxiliary function for the one-dimensional sphere packing bound from [55, p. 695]: g
consists of two orthogonal copies of the auxiliary function, at 45◦ angles from the coordinate
axes. This relationship raises the question of whether the c = 2 eigenfunction might be
related to an auxiliary function for 2-dimensional sphere packing in a similar way. It seems
plausible that they are related somehow, but we cannot pin down a specific relationship.

3.3 Seeking optimal Narain lattices

As discussed in section 2.3, there is a unique Narain lattice for each c, up to the action
of the orthogonal group O(c, c). Therefore we can try to find optimal Narain lattices by
optimizing over moduli. This optimization problem is highly non-convex, with many local
optima. We implemented a simple heuristic numerical algorithm, which starts from an
arbitrary element of O(c, c) and obtains a local optimum via hill climbing under small,
random perturbations. This algorithm does not perform well when c is large, but it gives
good results for c ≤ 8. We used it to generate a tentative list of optimal (c, c) Narain
compactifications, shown in table 1.

For c ≤ 5 the best lattices we found are equivalent to WZW models at level one. At
c = 6 or 8, they turn out to be the Coxeter-Todd and Barnes-Wall lattices, respectively.
These lattices are scaled to have irrational scaling dimensions, so they do not correspond to
any WZW model. They also happen to be the best sphere packings known in dimensions
twelve or sixteen, which means these cases cannot be improved without setting a new
record for the sphere packing density. The best Narain lattices match the spinning modular
bootstrap for c = 1, 2 (conjecturally), and 4, but seemingly not for 3 or 5 through 8. See
appendix B for further details and discussion of the Coxeter-Todd and Barnes-Wall lattices.
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4 Averaging over Narain lattices

In this section, we review how Siegel computed the expected number of primary states
with specified scaling dimensions and spins in a random Narain CFT [11].5 Let Λ0 be a
Narain lattice in Rc,c, so that the space of all Narain lattices in Rc,c is the orbit of Λ0
under O(c, c), and let O(Λ0) be the discrete subgroup of O(c, c) that preserves Λ0. Then
the space of Narain lattices is the quotient O(c, c)/O(Λ0).

The canonical measure on moduli spaces of CFTs is the Zamolodchikov metric [56]. For
Narain CFTs, this measure is invariant under O(c, c) and therefore agrees with the Haar
measure on O(c, c)/O(Λ0), up to scaling (see, for example, [14] for a detailed discussion).
Thus, we can normalize to obtain a canonical probability measure on Narain lattices if
O(c, c)/O(Λ0) has finite volume under the Haar measure. When c = 1, the volume is
infinite,6 but it turns out to be finite for c ≥ 2. This finiteness can be checked directly
by building a fundamental domain; it is also a special case of the theorem of Borel and
Harish-Chandra [57] that an arithmetic subgroup of a semisimple algebraic group has a
finite volume quotient (note that the identity component of O(c, c) is semisimple iff c ≥ 2).
Thus, the notion of a uniformly random Narain lattice makes sense for c ≥ 2 but not c = 1.

Narain lattices also behave unusually for c = 2: the number of primary states in a
Narain CFT with spin 0 and scaling dimension at most ∆ grows like a multiple of ∆c−1

as ∆ → ∞ when c > 2, but there is an extra factor of log ∆ when c = 2 (see Theorem 7
in [58]). In other words, Narain CFTs have excess spin 0 states when c = 2, which leads
to certain divergences. Siegel’s theorem therefore assumes c > 2.

Theorem 4.1 (Siegel). If c > 2, then the density of non-vacuum primary states of spin `
and scaling dimension ∆ in a random Narain CFT of signature (c, c) is given by

2πcσ1−c(`)
Γ(c/2)2ζ(c)(∆2 − `2)c/2−1 (4.1)

for ∆ ≥ |`| and 0 otherwise. In other words, for each measurable subset A of [|`|,∞), the
expected number of non-vacuum primary states in a random Narain CFT with spin ` and
scaling dimension ∆ ∈ A is

2πcσ1−c(`)
Γ(c/2)2ζ(c)

∫
A
d∆ (∆2 − `2)c/2−1. (4.2)

Here σ1−c(`) is the sum of m1−c for all positive integers m dividing `, and we define
σ1−c(0) := ζ(c−1) since all positive integers divide 0. Note that ζ(c−1) is infinite if c = 2,
and this divergence comes from the excess spin 0 states.

Theorem 4.1 is implicit in [11], and it is made explicit in Theorem 8 in chapter 4 of
Siegel’s TIFR lecture notes [13] (with somewhat cumbersome notation). In the rest of this
section, we will explain how one can compute these densities, while omitting technicalities.
First, we lay the groundwork by analyzing averaging over Euclidean lattices.

5Of course, Siegel did not express his computation in these terms in his 1951 paper.
6The metric on the moduli space of a single free boson is proportional to dR2/R2, where R is the target

radius.
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4.1 Averaging over lattices

Before he proved Theorem 4.1, Siegel dealt with the easier case of Euclidean lattices of
determinant 1 in Rd. The space of such lattices is the orbit of Zd under the action of
SL(d,R), i.e., the quotient space SL(d,R)/SL(d,Z). This homogenous space has finite
volume under the Haar measure for SL(d,R), and thus we have a canonical probability
measure on the space of lattices. Siegel [59] found that the density of nonzero points in
such lattices is 1 if d > 1. In other words, for every measurable subset A of Rd, the
expected number of nonzero points in A for a random lattice of determinant 1 is vol(A).
(This assertion is clearly false for d = 1, because there is a unique lattice of determinant 1
in R, namely Z.)

Setting aside technicalities, it is not hard to arrive at this answer. Let µ be the
measure on Rd for which µ(A) is the expected number of lattice points in A. Then µ must
be invariant under the action of SL(d,R) on Rd. Because SL(d,R) acts transitively on
Rd \ {0} for d > 1 and preserves Lebesgue measure, the measure µ must be of the form
αδ0 + βλ, where δ0 is a delta function at the origin, λ is Lebesgue measure on Rd, and
α, β ≥ 0, since the invariant measure on each orbit is unique among regular measures. We
must have α = 1, since the origin occurs once in every lattice, and the only remaining
question is what β is. Because every lattice of determinant 1 has 1 point per unit volume
on a large enough scale, we conclude that β = 1, as desired.

To make this argument rigorous, one must check several things. The most important
omissions are that the quotient SL(d,R)/SL(d,Z) has finite volume, that µ is a locally finite
measure and in fact regular, and that we have enough uniformity to justify the interchange
of limits needed to obtain the averaged assertion β = 1 from facts about individual lattices.
All of these obstacles can be overcome; see [59] or, for example, [60] or [61] for a modern
perspective. We will omit such issues below, and simply refer to [11] and [13] for a rigorous
proof of Theorem 4.1.

4.2 Geometry of Narain lattices

Let µ be the density measure for points in Narain lattices. In other words, for A ⊆ Rc,c,
the expected number of points in A for a random Narain lattice is µ(A). As in the previous
case, every orbit of O(c, c) has a unique invariant measure, up to scaling, and the only
question is which scaling occurs for each orbit.

By definition, O(c, c) preserves the inner product (x, y) · (x′, y′) = x · x′ − y · y′, if we
represent elements of Rc,c as pairs of vectors in Rc with the usual inner product in Rc, and
it acts transitively on each hyperboloid

{(x, y) ∈ Rc,c : |x|2 − |y|2 = t} (4.3)

with t ∈ R except for t = 0, in which case {(0, 0)} and {(x, y) : |x|2 − |y|2 = 0} \ {(0, 0)}
are separate orbits (see section 2 of [62]).

The orbit {(0, 0)} contributes a delta function, since the origin occurs once in each
Narain lattice. The other orbits are parameterized by t = 2` for spin ` ∈ Z, and it
is not difficult to write down the invariant measures on these orbits (see, for example,
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section 2 in [62]). Because the space of Narain lattices is invariant under O(c) × O(c),
all the information in these measures is contained in the distribution of spins and scaling
dimensions, i.e., a measure on Z × [0,∞). We can compute this measure as follows. The
homogeneous metric on the hyperboloid |x|2 − |y|2 = 2` is proportional to

− dα2 − sinh2 αdΩ̃2
c−1 + cosh2 αdΩ2

c−1, (4.4)

with |x| =
√

2` coshα, |y| =
√

2` sinhα, and dΩ̃2
c−1, dΩ2

c−1 each a line element on a unit (c−
1)-sphere. This formula is derived by parameterizing the hyperboloid as x = z

√
2` coshα,

y = z̃
√

2` sinhα, with z and z̃ each unit vectors in Rc, and plugging into the line element
|dx|2 − |dy|2. The corresponding volume element on the hyperboloid is proportional to
(|x||y|)c−1dα. Because |x|2 = ∆ + ` and |y|2 = ∆− `, the density of scaling dimensions ∆
for spin ` is proportional to (∆2− `2)c/2−1 for ∆ ≥ |`|, and of course it vanishes otherwise,
since no state can have ∆ < |`|.

Thus, the subtle content of Theorem 4.1 is the constants

2πcσ1−c(`)
Γ(c/2)2ζ(c) (4.5)

used to scale these measures, while the general form follows from the O(c, c) symmetry. In
the Euclidean case, there was only one missing constant, which was easily determined, but
here we must obtain infinitely many constants. Fortunately, the same sort of argument
works: every Narain CFT with c > 2 has the same asymptotic number of primary states
of fixed spin ` and scaling dimension at most ∆, namely( 2πcσ1−c(`)

Γ(c/2)2ζ(c) + o(1)
) ∆c−1

c− 1 (4.6)

such states as ∆→∞, which agrees with the Siegel density. All that remains is to explain
this formula.

4.3 Counting states

To obtain the missing constants, we need to count states in a Narain CFT. A closely
related counting problem was treated in [14].7 To simplify the analysis, we choose null
coordinates so that our quadratic form of signature (c, c) is given by Q(x, y) = 2(x · y) for
(x, y) ∈ (Rc)2. Then (Zc)2 is a Narain lattice (see appendix B), and we will focus on this
specific lattice before generalizing to all Narain lattices.

The question is how many vectors in (x, y) ∈ (Zc)2 have x · y = ` and |x|2 + |y|2 ≤ r2

as r →∞. The Hardy-Littlewood circle method gives an answer when c > 2: the number
of such vectors is asymptotic to

σ∞(Br)
∏

p prime
σp, (4.7)

7One of the main results of [14] is the volume of moduli space for symmetric product CFTs with N

copies of a seed CFT. The calculation and final result are essentially the same as in this subsection and
appendices, with the replacement ` → N . The result of [14] was interpreted as evidence that CFTs with
a weakly coupled holographic dual are rare. Our ensemble and our interpretation are different, but not in
disagreement with this conclusion since our bulk theory is not standard 3d gravity.
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Figure 6. The circle method integrand with c = 3, r = 10, and ` = 0.

where Br is the ball {(x, y) ∈ (Rc)2 : |x|2 + |y|2 ≤ r2} of radius r, σ∞ is the singular integral
defined by

σ∞(A) =
∫
R
dt

∫
(x,y)∈A

dx dy e2πi((x·y)−`)t (4.8)

for A ⊆ (Rc)2, and σp is defined by

σp = lim
n→∞

#{(x, y) ∈
(
(Z/pnZ)c

)2 : x · y ≡ ` (mod pn)}
p(2c−1)n . (4.9)

The product
∏
p σp is called the singular series. The intuition here is that we are counting

integral solutions to the equation x · y = `, and each factor measures a different constraint:
σ∞ measures how many real solutions there are, and σp measures how many solutions
there are modulo high powers of p. There is no reason to expect such an elegant answer in
general, but it works here (see, for example, [63] or [58] for the circle method, or [64–67] for
other approaches to these sorts of counting problems). We will give a high-level description
of the method here, with some additional details in appendix C.

We begin by writing the lattice point count as a Fourier integral, namely

#{(x, y) ∈ Br ∩ (Zc)2 : x · y = `} =
∫ 1

0
dw

∑
(x,y)∈Br∩(Zc)2

e2πi(x·y−`)w. (4.10)

We would like to approximate this integral for large r, which requires understanding where
the integrand is large.

The integrand is largest when w = 0, in which case it simply counts the lattice points
in Br without regard for whether x · y = `. It turns out that the dominant contributions
to the integral come from intervals around rational numbers with small denominators, as
illustrated in figure 6. We will omit the estimates needed to prove this assertion, as well as
to bound the error terms throughout the argument; instead, we will outline the calculations
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without fully justifying them. Asymptotically, the dominant contributions come from w in
the major arcs {

w ∈ [0, 1] :
∣∣∣∣w − a

b

∣∣∣∣ ≤ 1
r2−ε

}
(4.11)

for rational numbers a/b in lowest terms with 1 ≤ b ≤ rε, where 0 < ε � 1 (strictly
speaking, we should wrap around and consider w modulo 1 to deal with the endpoints),
and the remaining minor arcs turn out to contribute a negligible amount.8 Note that the
major arcs do not overlap, and thus we can treat them independently. The remaining
calculations amount to approximating the integral over each major arc by an exponential
sum times the singular integral, and then factoring the sum of the resulting terms to obtain
the singular series. See appendix C for more details.

It is not hard to derive a recurrence for #{(x, y) ∈
(
(Z/pnZ)c

)2 : x · y ≡ ` (mod pn)}
(see appendix D), and we find that

σp = (1− p−c)(1− p−(c−1)(k+1))
1− p−(c−1) (4.12)

if pk is the largest power of p dividing `, where if ` = 0, we take k = ∞ and therefore
p−(c−1)(k+1) = 0. A little manipulation then shows that∏

p prime
σp = σ1−c(`)

ζ(c) . (4.13)

Furthermore, rescaling (x, y) and t shows that

σ∞(Br) ∼ r2c−2
∫
R
dt

∫
(x,y)∈B1

dx dy e2πi(x·y)t, (4.14)

and one can compute that∫
R
dt

∫
(x,y)∈B1

dx dy e2πi(x·y)t = πc

(c− 1)2c−2Γ(c/2)2 . (4.15)

Setting ∆ = r2/2 yields the desired asymptotics for the Narain lattice (Zc)2.
All that remains is to generalize this calculation to other Narain lattices. Using the

Iwasawa decomposition for O(c, c), we can reduce to the case of lattices

{(Ax+M(At)−1y, (At)−1y) : (x, y) ∈ (Zc)2}, (4.16)

where A ∈ GL(c,R) andM ∈ Rc×c is antisymmetric (see Proposition B.2 and the discussion
following it). We have

(Ax+M(At)−1y) · ((At)−1y) = x · y, (4.17)

and so the general problem amounts to counting solutions of x · y = ` with

(x, y) ∈ B′r := {(x, y) ∈ (Rc)2 : |Ax+M(At)−1y|2 + |(At)−1y|2 ≤ r2}. (4.18)

The only difference in this calculation is in the value σ∞(B′r), but σ∞ is an O(c, c)-invariant
measure. Because B′r is the image of Br under an element of O(c, c), we obtain the same
constant for any Narain lattice, which completes the informal derivation of Siegel’s theorem.

8The “arc” terminology comes from integrating around the unit circle.

– 18 –



J
H
E
P
0
1
(
2
0
2
1
)
1
3
0

4.4 Modular invariance

It is instructive to rephrase this derivation in terms of the partition function. Doing so
amounts to a weighted version of the circle method, and it highlights the role of modular
invariance in dealing with the major arcs. In this calculation we take τ̄ = τ∗.

Define the reduced partition function by

Ẑ(τ, τ∗) = (Im τ)c/2|η(τ)|2cZ(τ, τ∗), (4.19)

where the |η(τ)|2c factor removes the denominator from the characters while the (Im τ)c/2

factor restores modular invariance. Its leading behavior as Im τ →∞, the vacuum contri-
bution, is

Ẑ(τ, τ∗) ∼ (Im τ)c/2. (4.20)

Our goal is to show that this vacuum term is responsible for the asymptotics (4.6) using
modular invariance. We will again break up an integral into contributions from major
arcs, and dealing with them will require asymptotics for Ẑ(τ, τ∗) near rational numbers
a/b, or equivalently cusps of SL(2,Z). Specifically, suppose gcd(a, b) = 1, and we wish to
approximate Ẑ(τ, τ∗) for τ near a/b, i.e., τ = a/b+x+ yi with x and y small. By choosing
integers f and g with af + bg = −1, we obtain a matrix(

f g

b −a

)
(4.21)

in SL(2,Z), which maps a/b to i∞. It maps nearby points a/b+ x+ yi to

f

b
− x

b2(x2 + y2) + y

b2(x2 + y2) i, (4.22)

whose imaginary part tends to infinity as we approach a/b. When x and y are both small,
we conclude from modular invariance and (4.20) that

Ẑ(a/b+ x+ yi, a/b+ x− yi) ∼
(

y

b2(x2 + y2)

)c/2
. (4.23)

We will use this approximation in a manner similar to Cardy’s calculation of the total
density of states in a CFT [68], but refined to project onto an individual spin.9 By an
inverse Fourier transform, the density of primaries ρ`(∆) obeys

Z`(y) := yc/2
∫
d∆ e−2πy∆ρ`(∆) =

∫ 1

0
dx e−2πi`xẐ(x+ yi, x− yi). (4.24)

The asymptotic density of primaries is encoded in the behavior of Z`(y) as y → 0. The
dominant contribution to the integral in this regime comes from the major arcs and can
be described as follows (see, for example, [58]). Let B be a bound depending on y, with

9Related ideas have been discussed recently in the Virasoro context [23, 69]. See also [17, 18, 70, 71] for
supersymmetric versions (where the partition function is holomorphic) and [72] for related applications to
conformal correlators.
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B →∞, B3y → 0, and B4y →∞ as we take y → 0. Using the major arcs, we approximate
Z`(y) by

Z`(y) ∼
∑

1≤b≤B

∑
1≤a≤b

gcd(a,b)=1

∫ 1/(bB2)

−1/(bB2)
dx e−2πi`(a/b+x)Ẑ

(
a

b
+ x+ yi,

a

b
+ x− yi

)
. (4.25)

Within the range of integration in (4.25), our assumptions on B imply that we can
use (4.23) to estimate Ẑ. The phase e−2πi`x under the integrand is approximately constant,
and so

Z`(y) ∼
∑

1≤b≤B

∑
1≤a≤b

gcd(a,b)=1

e−2πi`a/bb−cyc/2
∫ 1/(bB2)

−1/(bB2)

dx

(x2 + y2)c/2

=
∑

1≤b≤B

∑
1≤a≤b

gcd(a,b)=1

e−2πi`a/bb−cy1−c/2
∫ 1/(bB2y)

−1/(bB2y)

du

(1 + u2)c/2
.

(4.26)

Now our assumption that B3y → 0 implies that the integral converges to an integral over
the entire line, which we can evaluate using the beta function as∫ ∞

−∞

du

(1 + u2)c/2
=
π1/2Γ( c−1

2 )
Γ(c/2) . (4.27)

Thus, we have found that

Z`(y) ∼ y1−c/2π
1/2Γ( c−1

2 )
Γ(c/2)

∞∑
b=1

∑
1≤a≤b

gcd(a,b)=1

e−2πi`a/bb−c. (4.28)

Ramanujan [73, §9.6] showed that
∞∑
b=1

∑
1≤a≤b

gcd(a,b)=1

e−2πi`a/bb−c = σ1−c(`)
ζ(c) , (4.29)

from which we conclude that

Z`(y) ∼
π1/2σ1−c(`)Γ( c−1

2 )
Γ(c/2)ζ(c) y1−c/2 (4.30)

as y → 0.
In terms of the density of states,∫

d∆ ρ`(∆)e−2π∆y ∼
π1/2σ1−c(`)Γ( c−1

2 )
Γ(c/2)ζ(c) y1−c (4.31)

as y → 0, and the inverse Laplace transform of the right side is

2πcσ1−c(`)∆c−2

Γ(c/2)2ζ(c) . (4.32)
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From Karamata’s Tauberian theorem [74, Theorem 4.3 of chapter V] we conclude that this
quantity is the density of states in an averaged sense as ∆→∞. That is,∫ ∆

|`|
d∆̃ ρ`(∆̃) ∼ 2πcσ1−c(`)∆c−1

(c− 1)Γ(c/2)2ζ(c) (4.33)

as ∆→∞, which gives precisely the constant in Siegel’s theorem.

4.5 Spectral gap

Theorem 4.1 proves the existence of Narain CFTs with spectral gap

∆1 = (1 + o(1)) c

2πe (4.34)

as c → ∞. The reasoning is simple: the expected number of non-vacuum primary states
with ∆ ≤ αc is

2πcσ1−c(`)
Γ(c/2)2ζ(c)

∑
|`|≤αc

∫ αc

|`|
d∆ (∆2 − `2)c/2−1, (4.35)

which is at most a constant times

πc

Γ(c/2)2

∑
|`|≤αc

(αc)c−1

c− 1 , (4.36)

and thus at most a constant times
(παc)c

Γ(c/2)2 . (4.37)

Stirling’s formula shows that this bound is

(2πeα+ o(1))c (4.38)

as c → ∞. If α < 1/(2πe), then the expected number of states tends to 0 as c → ∞.
Because the number of primaries with ∆ ≤ αc is always an integer, it must vanish for some
Narain CFTs, in fact almost all of them. Letting α → 1/(2πe) as c → ∞ shows that we
can obtain ∆1 = (1 + o(1))c/(2πe), as desired.

This sort of averaging argument cannot prove any better bound for the spectral gap:
if α > 1/(2πe), then the expected number of states grows exponentially, and we cannot
rule out the possibility that every Narain CFT has at least one non-vacuum primary in
this range. In sphere packing terms, α = 1/(2πe) corresponds to the Minkowski-Hlawka
lower bound for the sphere packing density (namely, a lower bound of 2−d in Rd), which
is the best lower bound known up to subexponential factors. Because all Narain lattices
yield sphere packings, any improvement on 1/(2πe) would yield exponentially denser sphere
packings and thus solve a longstanding open problem in discrete geometry.

5 Holographic duality

In this section we set τ̄ = τ∗, so that the CFT partition function is equal to the Euclidean
path integral on a torus with modulus τ .
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5.1 Warm-up: the U(1)c Cardy formula

The conclusion that averaged Narain lattices have ∆1 ∼ c/(2πe) suggests a holographic
interpretation. First we will aim to provide some intuition for this connection, while
postponing the more careful analysis to the next subsection.

Before turning to the U(1)c case, consider a CFT with only Virasoro symmetry. We
specialize to zero angular potential, i.e., τ = −τ̄ = iβ with β the inverse temperature.
At high temperature, or equivalently β → 0, the partition function can be approximated
by doing an S transformation and keeping only the vacuum state in the dual channel,
which yields

Z(β) = Z(−1/β) ≈ eπc/(6β). (5.1)

Re-expressed in the original channel, this approximation corresponds to the Cardy [68]
density of states

ρCardy(∆) ≈ exp
(

2π
√
c

3

(
∆− c

12

))
, (5.2)

where we have kept only the exponential dependence. In a general CFT, this formula
controls the average asymptotic density of states as ∆ → ∞, and applies only for ∆ � c.
However, in a holographic CFT dual to pure gravity in three dimensions, the Cardy regime
is extended. In these theories, (5.2) applies for ∆ & c

12 , and this formula should be viewed
as a large-c limit rather than a large-∆ limit [75].10 In the gravitational theory, (5.2) is
interpreted as the density of states of the BTZ black hole [77].

In a theory of pure 3d gravity, we may expect the first nontrivial primary state to
be a black hole microstate, so that ∆1 ∼ c

12 (although it could be lower; see [22–24]).
In fact, quite generally the physics of pure gravity in three dimensions is captured by
the contribution of the vacuum conformal block in different channels [75, 78, 79]. The
conclusion is that in the CFT dual, we can estimate the spectral gap to be the value of ∆
at which the Cardy density of states becomes large.

Now let us repeat this analysis for a theory with the chiral algebra U(1)c. The situation
is summarized in figure 7, along with numerical and analytic upper bounds on the spectral
gap. The analogue of the Cardy formula [50] for U(1)c is

ρCardy(∆) ∼ (2π)c∆c−1

Γ(c) , (5.3)

which has support down to ∆ = 0. However, that does not mean the spectral gap is zero,
because for small ∆ there is on average less than one state. To estimate the spectral gap
we set ρCardy(∆1) ≈ 1 and take the c→∞ limit. The result is

∆1 ∼
c

2πe. (5.4)

This calculation agrees with the spectral gap of an average Narain lattice from section 4.5.
In other words, an average Narain lattice saturates the Cardy estimate for ∆1.

10See [76] for a related discussion of elliptic genera in supersymmetric theories.
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∆1Virasoro
0 c/12

pure gravity?
c/9.1 c/8.503

Cardy gap
spinless
numerical
bootstrap

best
analytic
bound

∆1U(1)c

0 c/(2πe)
U(1) gravity

c/9.869 c/9.797

Figure 7. Spectral gap for the Virasoro algebra and U(1)c algebra at large central charge c.
The green and blue marks show upper bounds on ∆1 from linear programming, i.e., the modular
bootstrap. The numerical upper bounds were estimated for Virasoro in [80] and for U(1)c in [50].
The analytic result for U(1)c is the Kabatyanskii-Levenshtein bound [81, 82], and the analytic
bound for Virasoro was derived in [5].

This coincidence suggests looking for a holographic dual. This argument is certainly
not conclusive, though. In particular, we would not expect the holographic dual to have
black holes that dominate the canonical ensemble at finite temperature. In other words,
other modular images of the vacuum under SL(2,Z) can be equally important. To check
whether the holographic interpretation survives a more careful analysis we will now examine
these other contributions.

5.2 Bulk partition function

Let us calculate the partition function of the three-dimensional theory of U(1) gravity de-
scribed in the introduction. As we have stressed, we do not have a full non-perturbative
definition of this theory. In the introduction we have only specified its perturbative exci-
tations on a torus, and now we will give a prescription to calculate the genus-one partition
function by a sum over topologies.

The first step is to calculate the perturbative contribution in thermal AdS3. The theory
is topological, so the metric makes no difference, but we will nevertheless refer to these
manifolds in the language of AdS/CFT to make the analogy clear. Thermal AdS3 is a
hyperbolic 3-manifold with a torus conformal boundary and the topology of a solid torus.
To describe it, let z be a coordinate on the boundary torus, with the identifications

z ∼ z + τ ∼ z + 1. (5.5)

Thermal AdS3 is by definition the hyperbolic manifold filling in this torus with the cycle
z ∼ z + 1 contractible in the bulk.

The 1-loop partition function of U(1) gravity in thermal AdS3 is by design equal to
the U(1)c ×U(1)c vacuum character,

ZtAdS(τ, τ̄) = 1
η(τ)cη(−τ̄)c = χ0(τ)χ̄0(τ̄). (5.6)
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This formula is derived in [83] from the 1-loop determinant of the Chern-Simons fields
(including the contributions from gauge fixing). It is also easy to understand from a Hamil-
tonian point of view, because the bulk theory has asymptotic symmetries corresponding
to the U(1)c × U(1)c affine algebra. The theory is quadratic, so the result is exact in
perturbation theory.11

The full partition function is a sum over topologies with the boundary condition τ at
infinity:

Z(τ, τ̄) =
∑

topologies
ZM(τ, τ̄). (5.7)

We will sum over the solid tori obtained by filling in different cycles of the boundary torus,
as in [15]. In gravity language, we sum over the Euclidean BTZ black holes. It is not
obvious why this is the right thing to do, and it is a provisional choice motivated by the
analogy to 3d gravity.

The different ways of filling in the boundary torus are related by the action of SL(2,Z),
so roughly speaking we must sum (5.6) over SL(2,Z) images. However, ZtAdS is invariant
under τ → τ + 1, so these contributions are not distinct. The distinct contributions are
labeled by elements of SL(2,Z)/Γ∞, where Γ∞ is generated by T . Thus

Z(τ, τ̄) =
∑

γ∈SL(2,Z)/Γ∞

1
|η(γτ)|2c = (Im τ)−c/2|η(τ)|−2c ∑

γ∈SL(2,Z)/Γ∞

(Im γτ)c/2, (5.8)

where in the second equation we used the fact that the combination (Im τ)1/2|η(τ)|2 is
modular invariant.

This sum is proportional to a non-holomorphic Eisenstein series. That is,

Z(τ, τ̄) = (Im τ)−c/2|η(τ)|−2cE

(
τ,
c

2

)
, (5.9)

where the Eisenstein series is defined by

E(τ, s) =
∑

γ∈SL(2,Z)/Γ∞

(Im γτ)s. (5.10)

For c > 2, the sum converges. Siegel proved that in this case Z(τ, τ̄) agrees with the CFT
partition function averaged over moduli [11–13].12 To reproduce his result, we will extract
the spectrum ρ`(∆) from Z(τ, τ̄) by comparing to the general form (2.8). We first do a
Fourier transform to organize by spin `, then an inverse Laplace transform to find ρ`(∆).
The Fourier expansion of the non-holomorphic Eisenstein series is (see, for example, [84,
section 5.2])

E(τ, s) = ys +
π1/2Γ(s− 1

2)ζ(2s− 1)
Γ(s)ζ(2s) y1−s

+ 4πs

Γ(s)ζ(2s)

∞∑
`=1

`s−1/2σ1−2s(`)y1/2Ks−1/2(2π`y) cos(2π`x)
(5.11)

11The perturbative calculation is insensitive to the global structure of the gauge group, so we can take
it to be non-compact. In other words, we are not performing an additional sum over nontrivial gauge
configurations.

12See Theorem 12 in chapter 4 of [13].
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with τ = x+ yi, Kν the modified Bessel function, and

σt(`) =
∑
n|`

nt (5.12)

the divisor function. Taking the inverse Laplace transform of the first two terms in (5.11)
and comparing to (2.8) gives the scalar density of states

ρ0(∆) = δ(∆) + 2πcζ(c− 1)
Γ( c2)2ζ(c) ∆c−2. (5.13)

The delta function at zero is the vacuum state.13 After an inverse Laplace transform, the
spinning terms in (5.11) lead to

ρ`(∆) = 2πcσ1−c(`)
Γ(c/2)2ζ(c)(∆2 − `2)c/2−1. (5.14)

The results (5.13)–(5.14) agree exactly with the density of states of an averaged Narain
lattice from Theorem 4.1.

5.3 Origin of the agreement

We have reproduced Siegel’s result relating the Eisenstein series to an integrated partition
function by explicitly calculating both sides and comparing term by term. A more concep-
tual explanation is as follows. In the derivation of the Siegel measure on random Narain
lattices in section 4.4, we argued that there is unique modular invariant partition function
that is homogenous on each hyperboloid |u|2 − |v|2 = 2` with (u, v) ∈ (Rc)2. That is, any
modular-invariant spectrum with ρ`(∆) ∝ (∆2 − `2)c/2−1 and a unique vacuum state will
necessarily agree with a random Narain lattice. The circle method calculation to determine
the prefactors for each spin orbit depends only on the asymptotics of the partition function,
and these asymptotics are fixed by modular invariance.

The Eisenstein series is modular invariant by construction for c > 2, so we only need
to check that ρ`(∆) has the correct dependence on ∆. To this end, we will use the fact that
the Eisenstein series is a Maass form, i.e., an automorphic eigenfunction of the hyperbolic
Laplacian on the upper half-plane. Let

∆H = −y2
(
∂2

∂x2 + ∂2

∂y2

)
, (5.15)

where τ = x+ yi. This operator is invariant under SL(2,Z) and satisfies

∆H(Im τ)s = s(1− s)(Im τ)s. (5.16)

It follows that the Eisenstein series is also an eigenfunction, with

∆HE(τ, s) = s(1− s)E(τ, s). (5.17)
13We use the convention

∫∞
0 d∆ δ(∆) = 1.

– 25 –



J
H
E
P
0
1
(
2
0
2
1
)
1
3
0

Now we examine the consequences for the partition function

Z = (Im τ)−c/2|η(τ)|−2cE(τ, c/2). (5.18)

The eigenvalue equation (5.17) implies

∆H

(
yc/2|η(τ)|2cZ

)
= c

2

(
1− c

2

)
yc/2|η(τ)|2cZ, (5.19)

and the expansion of Z in U(1)c ×U(1)c characters yields

|η(τ)|2cZ =
∞∑

`=−∞

∫ ∞
|`|

d∆ e−2πy∆+2πix`ρ`(∆). (5.20)

The key identity is(
∆H −

c

2

(
1− c

2

)
+ c∆∂∆ + (∆2 − `2)∂2

∆

)(
e−2πy∆+2πix`yc/2

)
= 0, (5.21)

where ∂∆ denotes differentiation with respect to ∆. The operator c∆∂∆ + (∆2 − `2)∂2
∆ is

proportional to the Laplacian ∇2
M`

on the (2c−1)-dimensional hyperboloidM` = {(u, v) ∈
(Rc)2 : |u|2− |v|2 = 2`} with the metric in (4.4), acting on a function of |u| or equivalently
∆ = 1

2(|u|2 + |v|2) = |u|2 − `. Specifically, the Laplacian acts on such functions by

∇2
M`
∝ − 1√

|G|
∂

∂α

(√
|G| ∂

∂α

)
= −4(c∆∂∆ + (∆2 − `2)∂2

∆). (5.22)

Here
√
|G| ∝ (|u||v|)c−1 is the volume factor on M` obtained below equation (4.4).14

Using (5.21) in the eigenvalue equation (5.19) and projecting onto an individual spin `

gives
0 =

∫ ∞
|`|

d∆ ρ`(∆)
(
c∆∂∆ + (∆2 − `2)∂2

∆

)
e−2πy∆. (5.23)

Integrating by parts now yields

ρ`(|`|)(2− c)|`|e−2πy|`| +
∫ ∞
|`|

d∆ (Dρ`(∆))e−2πy∆ = 0, (5.24)

where
D = 2− c+ (4− c)∆∂∆ + (∆2 − `2)∂2

∆. (5.25)

By acting on (5.24) with ∂y + 2π|`|, we can remove the first term and obtain∫ ∞
|`|

d∆ (∆− |`|)(Dρ`(∆))e−2πy∆ = 0, (5.26)

from which we conclude that Dρ`(∆) = 0. This equation expresses the requirement that
ρ`(∆) is proportional to a covariantly constant scalar density on the hyperboloidM`. The
solution to Dρ`(∆) = 0 that vanishes at ∆ = |`| is ρ`(∆) ∝ (∆2 − `2)c/2−1, and the other

14Equation (5.21) is a consequence of Howe duality [85, 86]. See [87, section III.2.3] for a pedagogical
discussion.
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solution does not satisfy (5.24) when ` 6= 0 because of the boundary term. (When ` = 0,
the other solution is ρ0(∆) ∝ 1/∆, which is not integrable near ∆ = 0.) Thus ρ`(∆)
is proportional to the volume factor (∆2 − `2)c/2−1, which is exactly what we needed to
conclude that the full spectrum agrees with the average Narain CFT.

To summarize, the fact that the Eisenstein series is an eigenfunction of the Laplacian
on the upper half plane implies that the spectrum for each ` is proportional to the volume
element on the hyperboloidM`, and then modular invariance fixes the full spectrum.

5.4 Comments

The density of states we have obtained is manifestly positive, unlike the analogous result
in pure gravity [15]. We interpret the continuous spectrum as a consequence of ensemble
averaging. The spectrum extends all the way down to the unitarity bound ∆ = |`|, with
the low-energy contributions on the CFT side coming from the decompactification limit in
the Narain moduli space. Note, however, that at large central charge, it is very rare to find
primary states with ∆� c other than the vacuum.

Non-compact, non-averaged CFTs also have a continuous spectrum. However it seems
impossible to interpret (5.13) in this way, because of the delta function corresponding to
the vacuum state. The vacuum is not present as a normalizable state in a non-compact
CFT, but is present in an averaged compact CFT.

In [88] Witten established an exact equivalence between Chern-Simons gauge theory
and rational CFT. With an abelian gauge group, Witten’s correspondence gives a three-
dimensional realization of a Narain CFT at rational points in moduli space (see [89–91]).
The dictionary for this duality differs from that of AdS/CFT, so it is not a holographic
duality in the usual sense. A direct connection to AdS/CFT was made in [92], where
a compact abelian Chern-Simons theory in AdS3 was related to a rational Narain CFT
following the usual holographic dictionary. It is not clear exactly how either of these
results is related to the duality conjectured in the present paper. Note that before doing
the sum over topologies, U(1) gravity is not dual to an individual member of the ensemble
of Narain CFTs, while the construction of [92] does provide such a duality. Perhaps this
construction can be used to define alpha states of U(1) gravity in the sense of [43, 93, 94].
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A Details of numerical bootstrap

At a given ∆gap, the infinite set of positivity constraints (2.12)–(2.13) can be recast as
a semidefinite program with an infinite sequence of constraints labeled by spin [95]. In
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practice, a functional satisfying all the constraints can be obtained even if we truncate to
a finite set of spins, such as

h− h̄ = 0, 1, . . . , L1, L2, (A.1)

for some large L1, L2. That is, once ∆gap is tuned to its optimum, the resulting functional
is found to automatically obey the higher spin constraints that were not included in this
list. The computational problem now takes the standard form of a semidefinite program
that can be optimized by a numerical solver. We use SDPB v1.0 [49], which is designed to
take advantage of the special structure in a semidefinite program organized by spin.

We fix ∆gap and run SDPB to determine whether the constraints can be satisfied; we
then adjust ∆gap by bisection to find the optimal bound at truncation order K. We have
generated bounds atK = 17, 19, 21, 23, and 25 for 1 ≤ c ≤ 15. To generate functionals that
obey all of the positivity conditions requires many bisection steps. To save computational
time, we ran only K = 19 at a high level of rigor: in this case we set L1 = 50, L2 = 100,
and ran a large number of bisections. The resulting functionals obey all of the constraints.
For other values of K, we set L1 = 20, L2 = 30, and ran fewer bisections. The resulting
functionals do not obey all of the constraints at high spin, but from experience we expect
them to be accurate nonetheless. The numerical functionals at K = 19 can be downloaded
from https://hdl.handle.net/1721.1/125646.

The spinning bootstrap is much more computationally intensive than the spinless boot-
strap. This is partly because we are now optimizing over a two-dimensional space of func-
tionals, and partly because at present there is no algorithm based on forced roots to bypass
linear programming. We therefore find a good estimate of the bound only for c . 10, as
compared to c . 1000 for the spinless bounds in previous work [50, 80].

The SDPB settings we used are listed in table 2. SDPB also requires a normalization
condition and a set of sampling points. Our normalization condition sets the coefficient of
f1,0 to 1, and the sampling points are the defaults in the Mathematica package provided
with SDPB.

B Details of optimal Narain lattices

Let 〈·, ·〉 denote the Euclidean inner product on R2c, and let [·, ·] denote the usual bilinear
form of signature (c, c); i.e., 〈x, x〉 =

∑2c
i=1 x

2
i and [x, x] =

∑c
i=1 x

2
i −

∑2c
i=c+1 x

2
i . In this

notation, a Narain lattice is an even unimodular lattice under [·, ·], which is uniquely
determined up to the action of O(c, c) but can look very different under 〈·, ·〉.

When one envisions a Euclidean lattice, one typically thinks about it up to isometries,
i.e., up to the action of O(2c). From this perspective, it is not obvious which Euclidean
lattices Λ satisfy the Narain condition: the issue is whether the O(2c)-orbit of Λ intersects
the O(c, c)-orbit of the even unimodular lattice for [·, ·]. For comparison, the Leech lattice
in R24 does not have this property, because the spinning modular bootstrap rules it out,
and it is a noteworthy fact that the Coxeter-Todd and Barnes-Wall lattices do. We can
verify it using the following technique, which we will describe more generally in terms of
verifying the output of our computer program.
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findPrimalFeasible false

findDualFeasible true

detectPrimalFeasibleJump false

detectDualFeasibleJump false

precision 500

dualityGapThreshold 1e-15

primalErrorThreshold 1e-100

dualErrorThreshold 1e-100

initialMatrixScalePrimal 1e20

initialMatrixScaleDual 1e20

feasibleCenteringParameter 0.1

infeasibleCenteringParameter 0.3

stepLengthReduction 0.7

choleskyStabilizeThreshold 1e-40

maxComplementarity 1e80

Table 2. SDPB runtime parameters.

The output is a floating-point basis b1, . . . , b2c for the lattice Λ, which we would like
to convert to an exact description of Λ. There is no reason to expect the entries of these
vectors to be recognizable numbers, but the Gram matrix is generally more understandable.
Let B be the matrix with b1, . . . , b2c as its columns. Then the Gram matrix of the basis
with respect to the Euclidean inner product is

G :=
(
〈bi, bj〉

)
1≤i,j≤2c = BtB, (B.1)

and the Gram matrix with respect to [·, ·] is

H :=
(
[bi, bj ]

)
1≤i,j≤2c = BtDB, (B.2)

where D is the diagonal matrix with diagonal entries 1, . . . , 1,−1, . . . ,−1, each repeated c
times. By the Narain condition, the entries of H must be integers, and we can round the
floating-point values to obtain the exact matrix H. A priori, there is no reason to expect
G to be a pleasant matrix, but for the best cases we have found with c ≤ 8 it turns out
to be proportional to an integer matrix, and the constant of proportionality is determined
by det(G) = 1. Thus, we can exactly identify G and H in practice. Now the question is
whether there is still a lattice corresponding to these exact matrices, or whether rounding
the matrices has destroyed the lattice. The following lemma shows that the existence of a
lattice basis amounts to checking that (GH−1)2 = I, where I is the identity matrix. Using
this technique, one can verify the values of ∆1 in table 1 rigorously.

Lemma B.1. Let G ∈ R2c×2c be a symmetric, positive definite matrix, let H ∈ R2c×2c

be a symmetric matrix of signature (c, c), and let D be the diagonal matrix with diagonal
entries 1, . . . , 1,−1, . . . ,−1, each repeated c times. Then there exists a matrix B ∈ R2c×2c

such that G = BtB and H = BtDB if and only if (GH−1)2 = I.
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Proof. By the hypotheses on G and H, there exist invertible matrices X,Y ∈ R2c×2c such
that G = XtX and H = Y tDY . Furthermore, these equations are preserved by acting on
X on the left by O(2c), or on Y by O(c, c). The question is whether the O(2c)-orbit of X
and the O(c, c)-orbit of Y intersect.

If we can take Y = X, then

(GH−1)2 = XtXX−1D(Xt)−1XtXX−1D(Xt)−1 = I. (B.3)

For the converse, suppose (GH−1)2 = I. This equation is equivalent to

XtXY −1D(Y t)−1XtXY −1D(Y t)−1 = I, (B.4)

and conjugating by Xt shows that

XY −1D(Y t)−1XtXY −1D(Y t)−1Xt = I. (B.5)

If we let Z = XY −1, we find that (ZDZt)2 = I. The matrix ZDZt is symmetric, and thus
by the spectral theorem there exists U ∈ O(2c) such that ZDZt = UD′U t, where D′ is a
diagonal matrix with only 1 and −1 on the diagonal. By Sylvester’s law of inertia, D and
D′ must have the same signature, and so we can take D′ = D without loss of generality.
Then

(U−1Z)D(U−1Z)t = D, (B.6)

which means U−1Z ∈ O(c, c). Because Z = XY −1, we have obtained U ∈ O(2c) and
V := U−1Z ∈ O(c, c) such that U−1X = V Y . Thus, the O(2c)-orbit of X intersects the
O(c, c)-orbit of Y , as desired.

In the rest of this appendix, we develop a more conceptual framework for the Coxeter-
Todd and Barnes-Wall lattices as well as more general Narain lattices. First, we need some
notation. We will write vectors in R2c as (x, y) with x, y ∈ Rc, which we interpret as column
vectors for matrix multiplication. The group O(c) × O(c) acts on the two components of
vectors in R2c, and it preserves the inner products of signatures (2c, 0) and (c, c). We will
use 〈·, ·〉 to denote the Euclidean inner product on Rc. Then the dual lattice Λ∗ of a lattice
Λ in Rc is defined by

Λ∗ = {x ∈ Rc : 〈x, y〉 ∈ Z for all y ∈ Λ}. (B.7)

Equivalently, if the columns of a c × c matrix B form a basis for Λ, then those of (Bt)−1

form a basis of Λ∗.
The following proposition is a standard result about the Narain condition. It essen-

tially amounts to the Iwasawa decomposition for O(c, c), but we will give a proof for the
convenience of the reader.

Proposition B.2. A lattice in R2c satisfies the Narain condition if and only if it is equiv-
alent under the action of O(c)×O(c) to a lattice of the form{(u+ (M + I)v, u+ (M − I)v)√

2
: u ∈ Λ, v ∈ Λ∗

}
, (B.8)

where Λ is a lattice in Rc and M is a c× c antisymmetric matrix (i.e., M t = −M).
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In the CFT interpretation, M is the flux of the toroidal compactification, while the
choice of metric is absorbed into Λ and Λ∗. It is not hard to check that such a lattice satisfies
the Narain condition (the key observation is that 〈Mv, v〉 = 0, because M t = −M), while
the converse is trickier. Both directions follow from the proof given below.

Note that the action of the 2c× 2c block orthogonal matrix

T := 1√
2

(
I I

I −I

)
(B.9)

sends {(u+ (M + I)v, u+ (M − I)v)√
2

: u ∈ Λ, v ∈ Λ∗
}

(B.10)

to
{(u+Mv, v) : u ∈ Λ, v ∈ Λ∗} (B.11)

and vice versa. We will work in these coordinates, because the expressions involve
fewer symbols.

Under the action of T , the bilinear form [·, ·] with signature (c, c) is transformed into
the form with block matrix (

0 I
I 0

)
(B.12)

with respect to the standard basis of R2c. Equivalently, the vector (x, y) ∈ R2c satisfies

[T (x, y), T (x, y)] = 2〈x, y〉. (B.13)

In particular, the group O(c, c) is conjugate under T to the group

G :=
{
M ∈ R2c×2c : M t

(
0 I
I 0

)
M =

(
0 I
I 0

)}
. (B.14)

The lattice Z2c is an even unimodular lattice under this bilinear form, and thus all that
remains is to determine the orbit of Z2c under G. We can do so using the following lemma.

Lemma B.3. Every element of G can be factored as

1
2

(
U + V U − V
U − V U + V

)
·
(
I M

0 I

)
·
(
A 0
0 (At)−1

)
, (B.15)

where U, V ∈ O(c) and A and M are c× c matrices with detA 6= 0 and M t = −M .

Each of the three factors comes from a subgroup of G. In particular,

1
2

(
U + V U − V
U − V U + V

)
= T

(
U 0
0 V

)
T (B.16)

is conjugate to an element of O(c)×O(c) under T .
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Proof of Proposition B.2. Given a factorization as in Lemma B.3, let Λ = AZc. Then
Λ∗ = (At)−1Zc, and the image of Z2c under(

I M

0 I

)(
A 0
0 (At)−1

)
(B.17)

is {(u+Mv, v) : u ∈ Λ, v ∈ Λ∗}. The remaining factor from the lemma is conjugate to an
element of O(c)×O(c) under T , which completes the proof.

Proof of Lemma B.3. Let A,B,C,D be c× c matrices such that(
A B

C D

)
(B.18)

is an element of G. In other words,(
At Ct

Bt Dt

)(
0 I
I 0

)(
A B

C D

)
=
(

0 I
I 0

)
, (B.19)

which amounts to AtC + CtA = BtD +DtB = 0 and AtD + CtB = I.
First, we deal with the case C = 0. Then AtD = I and DtB is antisymmetric. Let

M = BD−1, which is antisymmetric because DtB is and M = (D−1)t(DtB)D−1. We
conclude that our group element is given by(

A B

0 D

)
=
(
A M(At)−1

0 (At)−1

)
=
(
I M

0 I

)(
A 0
0 (At)−1

)
, (B.20)

as desired. In this case, we have only two factors; in other words, the missing factor is the
identity matrix.

All that remains is to show we can make the lower left block of(
A B

C D

)
(B.21)

vanish through multiplying on the left by a group element of the form

1
2

(
U + V U − V
U − V U + V

)
(B.22)

with U, V ∈ O(c). The lower left block of the product is

(U − V )A+ (U + V )C
2 , (B.23)

and so we would like to find U, V ∈ O(c) such that (U − V )A+ (U + V )C = 0.
Because AtC +CtA = 0, we can obtain U and V such that (U −V )A+ (U +V )C = 0

by taking U = At +Ct and V = At −Ct, but these matrices are generally not orthogonal.
In particular,

UU t = (At + Ct)(A+ C) = AtA+ CtC (B.24)
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and
V V t = (At − Ct)(A− C) = AtA+ CtC, (B.25)

again because AtC + CtA = 0.
We can repair U and V as follows. No nonzero vector can be annihilated by both A

and C, because otherwise the matrix (
A B

C D

)
(B.26)

would not be invertible. Thus, the symmetric matrix AtA+CtC is strictly positive definite,
and so it can be written in the form XtX for some invertible matrix X. Now let U =
(Xt)−1(At + Ct) and V = (Xt)−1(At − Ct). Again (U − V )A+ (U + V )C = 0, but now

UU t = (Xt)−1(At + Ct)(A+ C)X−1

= (Xt)−1(AtA+ CtC)X−1

= (Xt)−1XtXX−1 = I,

(B.27)

and similarly V V t = I. Thus, U, V ∈ O(c), as desired.

One consequence of this characterization of Narain lattices is a lower bound for the
spectral gap, which comes within a factor of 2 of the bound obtained in section 4.5:

Proposition B.4. For every positive integer c, there exists a Narain CFT with spectral gap

∆1 ≥
c

4πe(1 + o(1)) (B.28)

as c→∞.

In physics terms, this bound comes from averaging over Narain CFTs with zero flux.

Proof. To prove this proposition, we will take M = 0 in Proposition B.2 and average over
the choice of Λ. Taking M = 0 yields a lattice that is isometric to Λ × Λ∗ under the
Euclidean metric, and thus

∆1 = min
(
{|x|2/2 : x ∈ Λ \ {0}} ∪ {|y|2/2 : y ∈ Λ∗ \ {0}}

)
. (B.29)

The existence of a lattice Λ that makes ∆1 ≥ (1 + o(1))c/(4πe) follows from an averaging
argument using the Siegel mean value theorem; in fact, Λ can even be chosen to be a
self-dual integral lattice (see Theorem 9.5 in [48, chapter II]).

For comparison, the lattices in table 1 with 2 ≤ c ≤ 8 cannot be isometric to lattices
of the form Λ × Λ∗, because ∆1 is too large: one of Λ or Λ∗ would violate the linear
programming bound for sphere packing in Rc. The only way to circumvent this obstacle
is to use a nonzero antisymmetric matrix M , and the averaging argument in section 4.5
takes advantage of M as well as Λ.
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The Coxeter-Todd and Barnes-Wall lattices can be obtained through Proposition B.2,
but the prettiest constructions we have found use a variant of this construction: the lattice

T{(u+Mv, v) : u ∈ Λ, v ∈ Λ∗} (B.30)

is a Narain lattice if and only if 〈Mv, v〉 ∈ Z for all v ∈ Λ∗. This equivalence follows
immediately from the formula [T (x, y), T (x, y)] = 2〈x, y〉. If M is antisymmetric, then
〈Mv, v〉 = 0 automatically, while otherwise it is a matter of compatibility between M and
Λ∗. If Λ∗ is a rescaling of an integral lattice, then taking M to be a corresponding multiple
of I works, and we can of course add to it any antisymmetric matrix.

To obtain the Barnes-Wall lattice, we start with the E8 root lattice, which is an even
unimodular lattice in R8. It has the structure of a module over the Gaussian integers Z[i];
in other words, there exists J ∈ O(8) such that J2 = −I and multiplication by J preserves
E8. If we let M = (I + J)/

√
2, then

T{(u+Mv, v) : u ∈ 21/4E8, v ∈ 2−1/4E8} (B.31)

is a Narain lattice, and one can check that it is isometric to the Barnes-Wall lattice (rescaled
to have determinant 1). One can compute ∆1 as follows. If we set u = 21/4x and v = 2−1/4y

with x, y ∈ E8, then checking that ∆1 =
√

2 amounts to showing that∣∣∣∣x+ I + J

2 y

∣∣∣∣2 + 1
2 |y|

2 ≥ 2 (B.32)

unless x = y = 0. If y = 0 or |y|2 ≥ 4, then the inequality trivially holds, and therefore
the interesting case is |y|2 = 2. In that case, (I + J)y is a vector of norm 4 in E8 since
|(I+J)y|2 = |y|2 + |Jy|2 = 4, and therefore (I+J)y/2 is a deep hole of E8 (see [96, p. 121]),
which is at distance 1 from the nearest points of E8.

Similarly, the Coxeter-Todd lattice (again rescaled to have determinant 1) is given by

T{(u+
√

3v, v) : u ∈ (4/3)1/4E6, v ∈ (4/3)−1/4E6}, (B.33)

with no need for an antisymmetric matrix. The remaining case is c = 7, where we do not
know of a previous occurrence of the best lattice we have found. It achieves ∆1 =

√
4/3

by using

Λ = (2/31/4)D∗7
= (2/31/4)

(
Z7 ∪

(
Z7 + (1/2, 1/2, . . . , 1/2)

)) (B.34)

and the antisymmetric matrix

M = 1√
3



0 1 1 1 −1 1 1
−1 0 1 −1 1 1 1
−1 −1 0 1 1 1 −1
−1 1 −1 0 1 −1 1

1 −1 −1 −1 0 1 1
−1 −1 −1 1 −1 0 1
−1 −1 1 −1 −1 −1 0


. (B.35)
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In the above constructions, we built the Coxeter-Todd and Barnes-Wall lattices using
rescalings of E6 and E8, respectively, but taking M to be a linear combination of the
identity matrix and an antisymmetric matrix. In fact, the use of the identity matrix is
unnecessary: one can use exactly the same c-dimensional lattices, and replace M with an
antisymmetric matrix.

C The Hardy-Littlewood circle method

The remaining circle method calculations work as follows, in the notation of section 4.3.
Recall that we are trying to approximate the integrand∑

(x,y)∈Br∩(Zc)2

e2πi(x·y−`)w (C.1)

and integrate it over the major arcs, which consist of the w satisfying∣∣∣∣w − a

b

∣∣∣∣ ≤ 1
r2−ε (C.2)

for rationals a/b with 1 ≤ b ≤ rε.
If w = a/b+ u with u small, we can decompose our sum into residue classes modulo b

and write the integrand as∑
(x,y)∈Br∩(Zc)2

e2πi(x·y−`)w =
∑

(x̄,ȳ)∈(Z/bZ)2c

e2πi(x̄·ȳ−`)a/b ∑
(x,y)∈Br∩(Zc)2

(x,y)≡(x̄,ȳ) (mod b)

e2πi(x·y−`)u. (C.3)

(Here we use the fact that e2πi(x·y−`)a/b depends only on x · y modulo b.) Because u is
small, we can approximate the last sum by an integral, to obtain∑

(x,y)∈Br∩(Zc)2

(x,y)≡(x̄,ȳ) (mod b)

e2πi(x·y−`)u ∼ 1
b2c

∫
(x,y)∈Br

dx dy e2πi(x·y−`)u. (C.4)

If we let
S(a, b) =

∑
(x̄,ȳ)∈(Z/bZ)2c

e2πi(x̄·ȳ−`)a/b, (C.5)

then the integral over the major arc at a/b is asymptotic to
S(a, b)
b2c

∫
|u|≤rε−2

du

∫
(x,y)∈Br

dx dy e2πi(x·y−`)u. (C.6)

As r →∞, replacing u with ur2 and (x, y) with (x, y)/r yields
S(a, b)
b2c

r2c−2
∫
R
du

∫
(x,y)∈B1

dx dy e2πi(x·y)u. (C.7)

Aside from justifying the quality of these approximations,15 we have shown that #{(x, y) ∈
Br ∩ (Zc)2 : x · y = `} is asymptotic to∑

b≥1

∑
1≤a≤b

gcd(a,b)=1

S(a, b)
b2c

σ∞(Br) (C.8)

as r →∞.
15Recall that the result is not even true when c ≤ 2.
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Let
S(b) =

∑
1≤a≤b

gcd(a,b)=1

S(a, b). (C.9)

All that remains is to justify that ∑
b≥1

S(b)
b2c

=
∏

p prime
σp, (C.10)

where

σp = lim
n→∞

#{(x̄, ȳ) ∈
(
(Z/pnZ)c

)2 : x̄ · ȳ ≡ ` (mod pn)}
p(2c−1)n . (C.11)

By the Chinese remainder theorem, S(bb′) = S(b)S(b′) whenever gcd(b, b′) = 1. Thus,
factoring into prime powers reduces what we need to prove to the case

∑
k≥0

S(pk)
p2kc = σp (C.12)

for p prime. To obtain this formula, we write the partial sums as
n∑
k=0

S(pk)
p2kc =

n∑
k=0

∑
1≤a≤pk

gcd(a,pk)=1

1
p2kc

∑
(x̄,ȳ)∈(Z/pkZ)2c

e2πi(x̄·ȳ−`)a/pk

=
n∑
k=0

∑
1≤a≤pk

gcd(a,pk)=1

1
p2nc

∑
(x̄,ȳ)∈(Z/pnZ)2c

e2πi(x̄·ȳ−`)a/pk

(C.13)

and then set a′ = apn−k and use the identity

b∑
a=1

e2πima/b =

b if m is a multiple of b, and
0 otherwise

(C.14)

to conclude that
n∑
k=0

S(pk)
p2kc = 1

p2nc

pn∑
a′=1

∑
(x̄,ȳ)∈(Z/pnZ)2c

e2πi(x̄·ȳ−`)a′/pn

=
#{(x̄, ȳ) ∈

(
(Z/pnZ)c

)2 : x̄ · ȳ ≡ ` (mod pn)}
p(2c−1)n ,

(C.15)

as desired.

D Counting solutions modulo prime powers

Let p be a prime and ` be any integer, and let

V (pn, `) = {(x, y) ∈
(
(Z/pnZ)c

)2 : x · y ≡ ` (mod pn)}. (D.1)

In this appendix we compute
σp = lim

n→∞
#V (pn, `)
p(2c−1)n . (D.2)
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Note that this scaling is sensible, since we are putting one constraint modulo pn on 2c
variables, but the constant of proportionality σp will depend on p and `.

We will show that #V (pn, `) satisfies the recurrence relation

#V (pn, `) =
(
pcn − pc(n−1))p(c−1)n + pc#V (pn−1, `/p), (D.3)

where we interpret #V (pn−1, `/p) as 0 if ` is not divisible by p. Once we have the recurrence,
we find that

#V (pn, `)
p(2c−1)n = 1− p−c + p−(c−1) #V (pn−1, `/p)

p(2c−1)(n−1) , (D.4)

and it follows immediately that

σp = (1− p−c)
k∑
i=0

p−(c−1)i

= (1− p−c)(1− p−(c−1)(k+1))
1− p−(c−1)

(D.5)

when ` is divisible by pk but no higher power of p, where we take k =∞ and p−(c−1)(k+1) = 0
if ` = 0.

To prove the recurrence, we divide into two cases. Suppose first that x 6≡ 0 (mod p).
Every integer not divisible by p is a unit modulo pn (i.e., it has a multiplicative inverse
modulo pn), and so some coordinate of x is a unit, say xi. Then we can choose the other
coordinates yj of y arbitrarily, and achieve x · y ≡ ` (mod pn) through a unique choice for
yi, namely

yi ≡ x−1
i

(
`−

∑
j 6=i

xjyj

)
(mod pn). (D.6)

There are pcn−pc(n−1) choices of x that are not divisible by p, and each of them has p(c−1)n

choices of y that work with it. Thus, there are
(
pcn − pc(n−1))p(c−1)n solutions to x · y ≡ `

(mod pn) with x 6≡ 0 (mod p).
The remaining case is when x ≡ 0 (mod p). In that case, let x = px′, where x′ is

defined modulo pn−1. The only way we can have x · y ≡ ` (mod pn) is if ` is divisible by
p. If so, for each y′ modulo pn−1 satisfying

x′ · y′ ≡ `/p (mod pn−1), (D.7)

there are pc choices of y modulo pn that reduce to y′ modulo pn−1 (namely, y′ + pn−1z

for any vector z modulo p), and there are therefore pc#V (pn−1, `/p) solutions with x ≡ 0
(mod p). Thus, the recurrence relation holds.
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