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sociate the compound. Films sputtered in argon are easily removed mechani-
cally, they show orientation readily and are easily poisoned. The rarity of
mixed patterns, with the exception of III, is striking. Types D, E, and F are
distinguished by their different modes of preparation. There is so far no
evidence to suggest that they are fundamentally different.

We have refrained from suggesting any mechanism for the act of catalysis.
Further experiments are needed to distinguish between various possible
explanations, and are being made by one of us (G.I.F.). The work described
in the present paper, which has taken two years and a half to complete, covers
the main features of the catalytic process as directly observable, and shows the
structure of the film at its various stages. We feel justified in expressing the
view that the method of electron diffraction is likely to play as important a
role in the study of the mechanism of heterogeneous catalytic reactions as is
played by spectrographic methods in the study of gaseous reactions.
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The necessity for the use of quantum mechanics in the theory of atomic
phenomena is most clearly manifest in the study of collision processes. Diffrac-
tion effects have been observed in the scattering of electrons from crystals*
and by atoms,T while the recent developments of molecular ray technique have
made it possible to establish the existence of cross-grating spectra in the
reflection of molecular heams from crystal surfaces. In view of the importance
of wave theory in these phenomena, it is clearly necessary to examine the
conditions under which the classical theory of gases must be modified and

* . P. Thomson, “ Free Motion in Wave Mechanics.”

t J.J. and G, P, Thomson, * Conduction of Electricity through Gases,” vol. 2, Chapter I11,
Camb, Univ, Press (1933).

1 Fraser, *“ Molecular Rays,” Camb. Univ. Press (1931).
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to determine the nature of the modifications.  Such an investigation receives
added importance owing to the possibility of experimental test by molecular
ray methods. Also, considerable interest is attached to the possibility of
direct experimental proof of the Bose-Einstein statistics for neutral atoms and
molecules from collision experiments as has already been possible for
a-particles.®
In order to develop the quantum theory of collisions in a form sunitable for
this purpose, we first discuss the simplest model which bears sufficient re-
Qsemblance to the actual facts, and so we consider the rigid sphere model for
Ngas atoms. This model has already proved valuable in the classical theory of
?&r&nsport phenomena and has the additional advantage of permitting an exact
équantum mechanical solution. It will be seen that the results obtained by
Sthe use of this model are of great interest and suggest several new lines of
ginvestigation, both experimental and theoretical. Finally, a method for
°‘dealmg with the general case of any law of force will be discussed.

S
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é § 1. The Physical Processes Involved and the Classical Formule.

e

é There is a large number of properties of gases which depend on the interaction

.Cenergies of the atoms, and many of these properties have already been investi-
gated for a variety of gases. We propose to discuss here only those properties

roy a15001et

>which are directly related to collisions between the gas atoms, and of these
gthe coefficients of viscosity and diffusion (including thermal diffusion) have
8long been known for various gases over a wide range of temperatures. To
< these we may now add the direct measurement of free paths, of the angular
odlstnbutlons of gas atoms scattered under various conditions, and of the
—cmoblhtles of positive ions in pure gases. The latter measurements virtually
'gconsxst in determining the diffusion coefficients of the ions in the gas.

= The great value of these investigations is that, when correlated with a
2 o satisfactory theory, they lead to a knowledge of the fields of force hetween gas
2 atoms, information of considerable value for chemistry, as well as providing a
check on the theoretical formule obtained from quantum mechanical theory of
atomic interactions. Laws of force have already been derived by Lennard-
Jones for a number of gases with the use of classical theory in connection with
observed coefficients of viscosity and diffusion and their variation with

(0]

* Mott, * Proc. Roy. Soc.,” A, vol. 126, p. 259 (1930) ; Chadwick, ¢ Proc. Roy. Soc.,’ A.,
vol. 128, p. 114 (1930); Blackett and Champion,  Proc. Roy. Soc.,” A, vol. 130, p. 380,
(1931).
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temperature.* Direct test of these laws of force by means of free path measure-
ments has no significance on classical theory, as the free path depends on the
experimental definition of a collision and tends to zero as smaller and smaller
deviations are included in the measurements. On the quantum theory this is
no longer true, and it is possible to obtain very interesting and valuable
information from direct observation of free paths.

Before discussing the quantum theory of collisions, we will give the classical

formule for the various quantities involved, and convert them to a form con-
venient for quantum mechanical discussion.

The most complete classical theories of transport phenomena are due to
Chapmant and Enskog,{ who obtained the same final results ; we shall use
Chapman’s formulae throughout. For the coeflicient of viscosity 7 of a simple
gas at absolute temperature T, he finds

_ 5 jomsele
=gae ) Ry @
where
7 = 1/2T, (2)

M is the mass of a gas atom, and « is Boltzmann’s constant. R, is given by

Ry=}| Qe 4vay, )

o -0

where

G, == 1t j sin? 0 dp?, )

p is the perpendicular distance between the asymptotes of the paths of two
atoms while entering on collision and 6 is the angle the relative velocity of
the atoms is turned through by the collision. V is the relative velocity of
the atoms before impact. Q, has the dimensions of area and may be defined
as the collision area effective in viscosity. ,

The quantity e depends in a complicated way on collision phenomena in the
gas (and hence on the law of interaction), but on the classical theory its value
is never greater than 0-017. As quantum modifications are unlikely to alter
the magnitude of ¢ sufficiently to make its calculation important, we shall
neglect it in what follows ; in a later paper its calculation will be considered
using quantum mechanical collision theory.

* For a summary of this work see chap. X by Lennard-Jones in R. H. Fowler’s Statistical
Mechanies,” Camb. Univ. Press (1929), and * Proc. Lond. Phys. Soc.,’ vol. 43, p. 461 (1931).

t ¢ Phil. Trans.,” A, vol. 216, p. 279 (1916); vol. 217, p. 115 (1917).

i “ Inaug, Diss.’ (Uppsala, 1917).
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~ For the coefficient of diffusion between two gases (distinguished by suffixes
1 and 2) Chapman gives the formula

‘M, + M,\"2 1 1
iy e [ 2
oo ( MM, ) (i + v Pl —g¢ ;

where M;, M, are the masses of the gas atoms, and v,, v, the number of atoms
of each per cubic centimetre, P, is given by

(%)

N «

S Pp=2 j_ VeQp (1. 2) exp. {Hz V“’} dv, (6)
?thete

2 Q1 2)=x J sin 10 dp?. @)
< 0

S

8a,nd is the collision area effective in diffusion.

gy like ¢ in expression (1), depends in a complicated way on the atomic
follisions and also on the relative concentrations of the two gases. It is never
very great—on classical theory its maximum value is 0-136—and so the
quantum theoretical calculation of ¢, will be deferred to a later paper.
The coefficient of thermal diffusion of a gaseous mixture cannot be written
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own in such a simple form, but it involves, in general, the interactions between
molecules of the same kind as well as molecules of different kinds. As a
onsequence of this, the formula includes integrals of the form

also

«w
Pa=2[ V5Qu (1, 1) exp. {— }jMV2} V. 8)
J—m
The mobilities of positive ions in pure gases are given in terms of the
coefficient of diffusion D by means of Langevin’s formula*

k = eD/xT, (9)

where ¢ is the charge on the ion.

Examination of the classical theory shows that the only modifications which
are introduced in the general formule above arise from the use of the Bose-
Einstein, instead of classical, statistics, and this modification can be neglected
except at extremely low temperatures and high densities. However, when we
apply the formule to the consideration of any particular model, the use of the
quantum theory of collisions between the gas atoms will affect the values of
the cross-sections Q,, Qp, in the formule (4), (7) above. The quantities &,

Downloaded from https://ro

* ¢ Ann. Chim. Phys.,” vol. 5, p. 245 (1905).
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g, will also be affected, but we neglect this at present for the reasons already
stated.

In order to obtain Q,, Qp in forms convenient for quantum mechanical
treatment, we must change the variable from the impact parameter p to the
angle of scattering 0 in relative co-ordinates.*

Since we are using relative co-ordinates we may discuss the collisions as if
one atom is held at rest. Suppose, then, that we have a stream of N atoms per
unit area per second incident with velocity v on this atom. Then the probable
number of particles per second crossing a plane perpendicular to the direction
of flight with angular momentum between J and J 4 dJ is

2reNJdJ [M*2,

To obtain the number of particles deflected between angles 6 and 6 4- d6,
which we write in the form

2xN1 (6) sin 0 d6,

where I(6) has the dimensions of area, we make use of the fact that J may be
expressed as a function of 0. Therefore

: 2rNJ dJ
t) e e e
27eNI (6) sin 6 46 oE 76 do.
Now J = Mwp, so
pdp =1 (0)sin 6 d6. (10)
Hence
Q, = %x [ 1 (6) sin® 6 d6, (11)
v 0
Qp = 9% j I (6) sin® 16 sin 0 d6, (12)

while the collision cross-section Q is given by

Q=2 ( 1(6) sin 6 do. (13)
L0

§ 2. The Quantum Theory of Collisions.

The function I (6) for the scattering of a particle of mass m and velocity v
by a field of force of potential V (7) is given by

1(6) = 4;,, |§ (2n + 1) (¢2*2 — 1) P,, (cos 0)|2 (14)

* § is the angle through which the direction of the relative velocity is turned.




Free Paths and Transport Phenomena in Gases. 439

where k = 2mmo/h and the phases 3, are obtained from the asymptotic form
of the solution of the equation

@u + ‘\kﬂ ) _7‘2_" vV (fr) — 2—("12#} u=_0, (15)

which is finite at the origin. The phases are such that this asymptotic form is*

u ~ sin (kr — dnw + 3,). (16)
gThe collision cross-section will then be given by
N
§° Q= 5 z (2n + 1) sin? 3,,. (17)
<

4

S Before proceeding to discuss those properties of the phases which are important
Sfor our purpose, it is necessary to remark the modifications of treatment
°°necessary when the colliding systems are of comparable mass, In this case
ebwe obtain the same expression as (14) in the co-ordinate system in which the
Eposition of one atom is defined relative to the other atom, but we must take

n

"2 for the mass m the reduced mass

2. M, M

& iy Bal L
2 M, + M,
Q

o

where M;, M, are the masses of the colliding atoms. V(r) is now, of course,
Othe interaction energy of the two atoms and v their relative velocity. In
mexpenmental observations of angular distributions, one measures the number
£ of atoms scattered in a given direction relative to the direction of incidence.
gTo convert the angular distribution in relative co-ordinates to the angular
ﬁ distribution relative to the direction of incidence, one merely uses the classical
2 momentum and energy relations. In particular, if the atoms are of equal
S mass, the distribution per unit angle will be given by

I(20) sin 20, (18)

Down

where © is the angle of scattering referred to the direction of incidence.
The most important property of the phases is that §, is small when

87;2111 V)< n(n+1) + 1) (19)

for such r that kr ~ n 4 }.

* Faxen and Holtsmark, * Z, Physik,’ vol. 45, p. 307 (1927),
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Under these conditions it is possible to use an approximate expression for

3, in the form*
4rdm
b= T |V 0 sy G, (20)
In the special case where all the phases are small, the series (14) may be summed
to give, approximately, ‘

64r*m?® | sin (2kr sin 16) '\
1) = 2 [V 0D ar) @)

which is the well-known approximation due to Born.} Substituting this |
formula in (13) we see that the total collision cross-section Q will be finite if
V(r) vanishes at infinity faster than =3, This same result must hold for the
exact formula (14), for, when » is sufficiently large, the exact and approximate
series converge together by virtue of (19) and (20). As it is extremely unlikely
that the interaction between atoms falls off as slowly as 772 for large r, we see
that the mean free path has a perfectly definite value depending on the law

of force and so provides a further means of determining this law.

In the particular case of the low velocity limit of the cross-section, it is not
yet possible to state the conditions under which the limit is finite, but it appears
that, for a potential which vanishes more rapidly than r~2 at infinity, the
limit is infinite only when very special relations are satisfied by the field of
interaction. This is illustrated in the appendix for the case of an exponential
field of force.

In the case of the collisions of gas atoms, it is easy to see that Born’s approxi-
mation is only applicable to phases of very high order except for collisions
at extremely low temperatures, As the ratio of wave-length to atomic diameter
is considerably less than unity, an approximation based on classical theory
will give satisfactory results for the phases of low order. Such an approxi-
mation is that given by Jefireys.} This method gives for the solutions of the
equation

d u + Jk’ Bﬁm Vi)—" (nrj- 1)} i,

the asymptotic forms < sh l}; . J~m o dr],
(22)

sin []T; |- J {f ()} dr]
* Mott, * Proe, Camb. Phil. Soc.,” vol. 25, p. 304 (1929).
1 ¢ Z. Physik,’ vol. 38, p. 803 (1926).

1 * Proc. Lond, Math, Soc.,’ vol. 23, p. 428 (1924).
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Here

f(r)=k2_@v_‘”(L:_l) (23)

n
h2
and r, is the largest zero of f(r).

The first of these two solutions is zero at the origin and is the solution we
require. Comparing (22) with (16) we obtain

b=t +im+ | [0 —Han. (24)
This approximation is satisfactory when
8n*m
=V ()

is large compared with the centrifugal force term n(n + 1)/r%, and is strictly
accurate in the classical limit of A —0. If, then, we wish to calculate the
scattering of one gas atom by another, we may calculate the phases for small
n by Jefireys’ method and for large » by Born’s method. The former method
will be accurate when 3, is greater than unity, the latter when 3, is less than
unity. The intermediate phases may then be obtained by interpolation.

By using this method it is thus possible to consider various types of inter-
actions between atoms.* However, before proceeding to such a detailed
investigation, we will consider the collision of rigid spheres, for which we may
readily find exact expressions for all the phases.

§ 3. The Effect of Symmetry.

Before expressing the formule (4), (7) in terms of the phases §, we must
introduce a modification of the above formule which is necessary when the
colliding atoms are similar. In this case it is impossible to distinguish experi-
mentally between the incident and struck atoms, and the wave function
describing the motion must satisfy certain symmetry properties with respect to
the co-ordinates of the two atoms. In particular, if the atoms obey the Bose-
Einstein statistics, the wave function describing their motion must be symmetric
in the co-ordinates of the two atoms.

Since interchange of the atoms changes 6 into = — 0 we must take the
scattered amplitude in this case in the form

27Hf(0) + f(x — O)},

* A preliminary account of this work was given in ‘ Nature,’ vol. 130, p. 276 (1932).
The cross-sections given there should be doubled.

VOL. OXLI.—A. 2 a
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where
f(0) = — 2. (e**n — 1) (2n + 1) P,, (cos 0).

This gives, for the function I'(0), the form
I1(0) = o ]Z (4n + 1) (e*%2n — 1) Py, (cos 0)[2,

all odd harmonics being excluded. This modification has the effect of reducing
the number of effective terms in the series and making the deviations from
classical theory more marked at a particular energy of the particles than they
otherwise would be.

We are now in a position to express the formulse (4), (7) in terms of the phases
8,. Firstly for the case of the viscosity, by using the formula

I _ m+2)(n+1) 4n® 4 6m® — 1
#Pal@ = nanr O T eI nen—nenrsy @
i Al p ool o

(2n + 1) (2n — 1)
we obtain
Q _ 4 4n3 4+ 602 — 2n — 2
"R (20 —1)(2n+3)
2 +2)(n+1)
2n + 3

Then for the diffusion, using the formula

sin® 9,

cos (8” - == 85+2) Sin 8'. Siﬂ 8n+2} . (25)

S ok i
xPn(x) —2n+ 1 n+1( ) + 2n+ 1 ﬂ-l(z)’
we have
Qo (1,2) = % % {(2n + 1) 6in? 8, — 2 (n + 1) 008 (8, — B,.+1) 8in 8,810 Spig

(26)

In the special case of self-diffusion, which is important in the theory of
thermal diffusion, the odd phases vanish and

Qp (1, 1) = %’; 3 (4n + 1) sin® 8,

These formula are to be compared with the formula (17) for the total cross-
section Q.
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§ 4. The Elastic Sphere Model.
If we consider the atoms as elastic spheres, we take the interaction energy

V (r) as given by
il Y({r)=0, r>r,

=W, r< (28)
Under these conditions the wave function representing the relative motion

must vanish at the boundary r =7, The wave equation from which to
determine the phases 3, is

d*u _n(n+1)[ e
W+{k2 et w—o, 29)

for »r > r,. The solutions of this equation are, in terms of Bessel functions,
U= r#JrH‘l (k’)'), 7'* J—-n—& (Iﬁ'),

so that the general solution is

r = AJ, .y (k) +BJI_,_y (kr). (30)
In order that this solution be zero at r = r, we must have
B Juyy(krg) (31)
_ AT TGy
Since
Tusy (k) ~ 1= sin (kr — ),
J_p—y (kr) ~ r~*cos (kr — }nrw),
we thus see that
3, = arctan (—1)**1 %, (32)
and in particular
¥ i (33)

In Table I the phases 3, are tabulated for various values of kr,. The
number of multiples of = to add to the smallest solution of (32) for 3, is deter-
mined from the number of zeros of the function J,.; (kr) eliminated by the
field. As the existing tables of half order Bessel functions* were inadequate
for our purpose, a number had to be calculated using the recurrence formulse
for the Bessel functions; it would be sufficient in many cases to use the
asymptotic expressions for Bessel functions of large argumentt in the relation
(31).

* Watson, “ The Theory of Bessel Functions,” Camb. Univ. Press (1922). In using these
tables it must be remembered that the definition of J_,— (kr) given by Watson is (— 1)»
that given above.

T Watson, chaps. VII and VIIL.

206 2
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Table 1.—Values of the phases —8&, which occur in the quantum theory of
the interaction of hard spheres for different values of kr, where r, is the
sum of the radii of the spheres and kk/2xM their velocity, M being the

“reduced mass.”
kry =
n 30 20 10 5 3 2

3000 20-00 10-00 500 300 200
28-46 15-48 8:53 3:63 1-76 0-89

{ 2696 1701 7-16 247 0-84 0-26
25-49 15-59 5:89 1:50 0-28 0-04
24-05 14-22 4-73 0:-79 0-06 0-003
22-65 12-90 3-08 0-32 0-007
21-28 11:63 2:74 0-09
19-94 10-42 1-93 002
18-64 926 1-256 0002

17-37 8:156 0-72
16-14 33 0-36
14-95 6-11 0-14
13-79 5-19 0-04
12-66 4:32 001

g—-—n—-—t—v—u—l—w-—
DTN =D LOITN AW ~D

11-57 3:52

10-53 2:79

9-52 2:14

8-56 1-56

7:63 1-08

674 068

5-90 0-39
21 5:10 0-21 |
22 4-34 0-09
23 366  0-08 1
24 2-99 0-01 !
25 237 |
26 1-86 ‘
27 1-39 !
28 0-98
20 0-66
30 0-40
31 0-24 q
32 0-12
33 0-05 [
34 0:02 1

Downloaded from https://royalsocietypublishing.org/ on 04 August 2022

The quantum theory formuls for the hard sphere are then obtained by
substituting the expression (32) for the phases in (17), (25), (26). The
corresponding classical formule are

Q=mr", (34)
Q= EgE o' (35)

Qp = inrl (36)
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In fig. 1 and Table II the classical and guantum theoretical values for Q,,
Q,, and the collision radius for the case of a hard sphere are compared. In
all cases we notice that when the colliding particles are similar, there are
deviations of 79, from classical theory for the first of these expressions

A B
1
I I
R e
Temperature ("absolute) :
8?" 3210" 7%0” pr’ 7120° 16|20° lll()’ 440 95{0"
0 10 20 30 10 20 30 10 20 30

kr,—
FIG 1.—Illustrating the ratio of the quantum theoretical to the classical effective collision
areas for the viscosity, collision radius, and diffusion, at different temperatures using
the hard sphere model. The temperatures refer to helium atoms of diameter 2-1 A.
1, Identical atoms; II, dissimilar atoms; — - — — = classical value. A, collision area
effective in viscosity ; B, collision radius effective in scattering; C, collision area
effective in diffusion.

Table IL—Values of the ratio of the quantum theoretical to the classical
areas effective in the viscosity, the collision radius, and the diffusion for
the rigid sphere model, for different values of kr, = 2mr /A (A the wave-
length). I for identical atoms ; II for different atoms.

kry 0 2 3 5 10 20 30 »
Viscosity—
L O T 16-00 | 2-28 ( 1-76 | 1-47 | 1-23 | 1-11 | 1-07 | 100
1 N A AR e R Sieihie o 800 | 2-17 | 1-78 ) 141 | 1-14 [ 106 | 104 | 1:00
Colhsxon radius—
............................................ 2:83 | 162|158 1-55| 1-61 | 1-53 | 1-48 | 1-41
II ................................................ 2:00 | 1-73 | 1:66 | 1:62 | 1-55 | 1-50 | 1-46 | 1-41
Diffusion—
g I DS K A G T S J 800|230 | 2:50 | 2-40 | 259 | 2-34 | 2-19 | 2:00
U i e Bt i ot B 4:00 | 1:65 | 1-42 | 1-17 | 1-11 | 1-04 | 1-02 | 1-00

when the wave-length is greater than one-fifth of the diameter of the atoms,
but when the colliding atoms are unlike, the classical theory holds to this
degree of accuracy up to wave-lengths as great as one-third of the sum of the
atomic radii. Referring to the corresponding temperatures indicated in the
figure for the collision of helium atoms, we see that, for light atoms, the
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deviations from the classical theory are quite important from ordinary tempera-
tures (300° K.) downwards.

For cross-sections we see that the calculated cross-section never tends to
the classical, but to a value roughly twice this. It may be proved that this
factor of 2 is to be expected without any calculation of the phases as shown
in §5.

§ 6. Free Paths and Angular Distribution of Seattered Gas Atoms.

It was seen in § 4 that the quantum theoretical collision cross-section for
elastic spheres tends to twice the classical cross-section as the wave-length
decreases (i.e., increasing temperature). This may be proved as follows.

When the wave-length is sufficiently small a large number of terms of the
series (17) is required and nearly all the important phases are large. We have

Q= %‘{. (2n + 1)sin?3,,

and under the conditions stated we may replace the sum by an integral to
give
X
Q=% | wsint { @)} do.

s 40

Owing to the magnitude of f(z) we may replace sin®{f (z)} by its mean value

of } giving i
_ X
Q="

If the field falls off very sharply at a point r = r, we have from (33)

X —_= k?‘o,
80 that
Q="2mr . (37)

Actually the cross-section may be slightly greater than this owing to the
assumption of a definite limit for X. It is clear from this result that the
quantum collision area for even, say, billiard balls is still twice the classical,
but the difference between classical and quantum theory is confined to such
small angles of deviation that the difference is of no practical value in such
cases, It is just as if the rigid spheres can, owing to their wave nature, affect
each other without interacting in the ordinary sense. With gas kinetic
collisions, the angles at which the deviations from classical theory are important,
are sufficiently large (of the order of several degrees for light atoms) to be
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within the reach of experiment, and the evidence in this direction will be
discussed below. These conclusions will not be affected by the existence of a
weak attractive field, when r = r, will refer to the distance at which the re-
pulsive field becomes important, @ having the perfectly definite value above.
If the attractive field is strong enough to introduce additional phases in the
series (17), the cross-section Q) may be considerably greater than 2mr ? if 7, is
taken as the distance at which the repulsive field begins to predominate.

From the point of view of the experimentalist it is important to be able to
determine the angular resolution necessary in any experiment in order to
measure free paths accurately. In particular we need some knowledge of
the distribution at small angles where quantum and classical theory differ so
markedly. We have

1(6) = 74'}?2 |Z (¢ — 1) (21 + 1) P, (cos O)[2, (38)
= 4—1—k2 {| 2':. 2sin® 3, (2n + 1) P, (cos 0) |2

+ |2, sin 28, (2n + 1) P, (cos 6) [2). (39)
In the limit of small angles
P, (cos 0) =1,
and under the conditions of experiment a large number of terms of the series
in expression (39) are required, and the 3, oscillate rapidly with n. Hence

X 2sin?3, (2n+ 1) > X sin 23, (2n + 1),
and so
I0)= k2|2 2n 4 1)sin23,[2
n

" e
= Tors 140)

or, in the special case of rigid spheres of radius 7,
Q = 2nrg?,
so that

e I(0) = 3, (41)
giving the value at the origin.

At large angles the scattering is classical and we have for a sphere of radius
fo,

L(0) = {r, (42)

This classical formula fails at angles less than the first zero of P,, (cos 6) (which

is nearly at 7/n) where 7 is the harmonic of highest order effective in the

scattering. # is approximately equal to kr,. To obtain a sufficiently accurate
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form for I(0) it is only necessary to assume a linear variation at small angles
between the value }k%,' at 0 =0 and the classical value which is taken to
fail at an angle 6 equal to w/kr,. By multiplying this angular distribution
by sin 0, the error made in counting only deviations greater than a certain
angle as indicating collisions can be easily
estimated. Fig. 2 illustrates the procedure to
be adopted.

In fig. 3 two angular distributions are
illustrated for the collision of hard spheres
when the wave-length is approximately one-
third of the diameter. Curve A is for dis-
similar atoms, and curve B for the collision of
similar atoms. Comparison with the classical
curve reveals the behaviour discussed above.
Direct experimental test of the form of these

Scattered intensity
SRS e A S a0

=X
o

curves would be difficult, as any inhomo-
Fic. 2.—Illustrating a simple ap-

proximate method of obtaining y g (9"
the form of the angular distribu- certainly obscure the maxima and minima of

tion of the scattering of hard curve A. For collisions between similar atoms,
#pheres of radius 7, and velocity there js more hope of experimental verifica-
fﬂf:M » M Being Sbie S pmidond tion, as the maximum at 90° (45° when
measured relative to the direction of incidence)
does not vary in pogition with relative velocity of the gas atoms. It should
therefore be possible to detect it experimentally by scattering one atomic
beam by another. Such measurements offer a means of direct proof of the
applicability of the Bose-Einstein statistics, for the maximum at 90°is a con-
sequence of these statistics.

geneity in the colliding atomic beams would

§ 6. The Viscosity of Helium and Hydrogen with the Rigid Sphere Model.

Owing to the independence of temperature exhibited by the classical expres-
sion for Q,, the rigid sphere model predicts on classical theory a variation of
viscosity with temperature of the form

no T4, (43)

whereas the experimental evidence* indicates a variation of the form
7o T~ for helium, (44)
o T~""%% for hydrogen. (4b)

* ¢ International Critical Tables,’ vol. 5, p. 2 (1929).
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The difference of these exponents from 0-5 was then explained by Lennard-
Jones* as caused by deviations from the rigid sphere model, and from them he
determined the repulsive field of force between the molecules concerned. If,
however, we refer to fig. 1, we see that the quantum theoretical formula gives a
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6. 3.—Angular distributions (in relative co-ordinates) of helium atoms scattered in
helium for the case of kry = 2mry/h = 20. - - - denotes the classical value. A.
dissimilar atoms ; B, identical atoms,
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ariation of  with temperature more rapid than that given by a T~# law, and
';in Table I1I and fig. 4 the viscosity of helium and hydrogen is shown as calcu-
Slated on the assumption that the molecules are rigid spheres of diameter
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Fie. 4.—Comparison of calculated and observed viscosity of helium and hydrogen at
different, temperatures. calculated curve; X X X X observed values.
A, helium ; B, hydrogen,

=
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* Vide Fowler. loc. cit.
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Table I1I.—Comparison of the experimental values of the viscosity of helium
and hydrogen at different temperatures with the values calculated on
quantum and classical theory using the hard sphere model. (Values of
the viscosity are in micropoise.)

Absolute Experimental Quantum Classical
temperature. value. theory. theory.
f 2045 199-4 185 200
273-1 187-0 177 193
25603 176-8 169 184
203-1 156-4 150 167
Helivm ..c.............. it 1705 139-2 135 152
88-8 918 92 110
75-1 81:5 81-5 101
20-2 35-03 355 52
L 16-0 29-46 30 45
@ 2861 88-2 78 88
273-1 84-2 74 84
1702 609 56 66
Hydrogen ................. 89-6 39-2 38 48
70-9 31-9 33 43
206 85 15 23 \
15-4 a7 12 20
\

210 A. and 2-75 A. respectively. It will be seen that this model fits the
observations for helium over the whole range of temperature within 7%,
as contrasted with the classical rigid sphere model which is in error by
509, over this range. This result is very surprising, and seems to
indicate that the rigid sphere model is very near the truth, or that viscosity
phenomena are not sensitive to the actual fields of force between molecules '
in collisions when they are properly treated on a wave mechanical theory—
at least so far as light atoms are concerned. For heavy atoms (except at very
low temperatures) the classical and wave theories tend to the same result, as

is evident from fig. 1. :

For hydrogen, the agreement is not so satisfactory at low temperatures,
but as we are dealing here with a much more complicated phenomenon, the ,J
interaction of diatomic molecules, this is not surprising.

In order to test these results further, it is possible to compare the diameters
of the molecules obtained from the viscosity with those obtained from the
free paths measured by Knauer.* To do this we must use the value of the
quantum cross-section in formula (13) for the free path. We then obtain the
following comparison between theory and experiment.

* * 7. Physik,’ vol. 80, p. 80 (1932).
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Table 1V.
Effective diameter in collisions.
Diameter of
molecule
from viscosity. Caloulated Observed
(quantum theory). (from free paths).
Heliom ..o 2-10 A 2:97 A, (2:10 X 4/2 2-74 A.
Hydrogen.................. : 2:-75 A 389 A. (2:75 X /2 3-54 A.
o
S
‘;, The observed values are obtained from Knauer’s free path | by using the
Bpexpression
= 1
< _—— 46
s : ot
S where v is the number of atoms per cm.? at the pressure of the gas in which the
5 measurements are made. The agreement is good and seems to provide further

£ 'support for the rigid sphere model with the dimensions indicated. However,
< owing to the complexity of the conditions of Knauer’s experiment, it will be
= necessary to obtain further measurements of free paths under definite conditions
>before any decision can be arrived at.

publish

§ 7. Diffusion and Thermal Diffusion.
Referring to fig. 1, we expect little deviation from classical theories of
& diffusion except at very low temperatures. For self-diffusion the identity

< of the colliding atoms would reduce the classical result by a factor of nearly 2.
: gAlthough this phenomenon is not observable, the same effect will appear in

= = the thermal diffusion in which integrals of the type of Qy, (11) occur as well as

'c integrals of the type Qp (12), and this must therefore be taken into account
’?:' in all calculations of fields of force deduced from observations of thermal

2 diffusion effects.

A For the mobilities of positive ions in pure gases, we expect, then, no deviations
from classical theory unless the ions are passing through a gas containing neutral
atoms with the same nuclei as the ions, as, for example, in the mobility of
helium ions in helium. Owing to “umladung”’* an appreciable percentage of the
lons may be scattered towards large angles and the phenomenon then becomes
comparable with self-diffusion. One would thus expect appreciable deviations
from classical theory. The calculations for this case are in progress.

tps://royalsociet
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h * Vide, Kallman and Rosen, * Z. Physik,” vol. 64, p. 808 (1930).
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It is clear, however, that the most interesting field for investigation, both
experimental and theoretical, lies in the comparison of observed and calculated
mean free paths, and it is to be hoped that accurate measurements will soon
be obtainable for various gases,

APPENDIX.

Calculation of the Zero Velocity Limit of the Collision Cross-Section for an
Exponential Field of Force.

We take the mutual potential energy of the two particles as
V=De™»,

The equation for the zero order scattered wave, which alone differs from a Bessel
function at the low velocity limit, is in relative co-ordinates

Tu + N (& — Doy u=, (1)

where u must satisfy the boundary conditions

u=0at r=0,

u ~ sin (kr + 3), r—~ . (48)
Using the substitution y = ¢™*" reduces the equation (47) to

u | 1du M E  4n®MD
o L L o ey - e} A 9
dy* s y dy (\ a*h® y* a*h® ) i )

The solutions of this equation are the Bessel functions

Jiir (""my)'
where
o =ME e 4*MD !
a>h? “ath®

In order to satisfy the boundary conditions at the origin we must have
u = AJ . (vmy) + BJ _, (imy),

where
AJ i (im) + BI_; (9m) =0,
giving
A__J_alm) (50)
B T (im)

We have further to break this solution into an incident and a scattered wave.
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The asymptotic expansion of u for large r will be obtained from the series
expansion of the Bessel functions, which gives

A (%ime""')"‘ n B (— Yime—or)~i*

R o Y T(1 — i) (61)
This must be equivalent to »
c {s“}vk” +aet), (52)

ihere 47|x|? gives the scattering cross-section. Equating the expressions
{81) and (52) we find

us

jm) T (1 + k) J g (vm) z
= e fafp = X | i) o L o 1
zZ il a2 | (3em)*T (1 — k) I _g (vm) s
%For a repulsive field m is real and the above expression tends to a finite

[fnit under all conditions. When m is large (as with gas atoms) we obtain,
%?ing the asymptotic expressions for the Bessel functions,

4r
r ot == (64)

ublishing.

Shere y = 0-5771. For an attractive field the cross-section becomes infinite
-@hen m is approximately equal to (n 4 ) w, where » is integral. When
& is small it is easy to see, using the series expansions for the Bessel
gmctions, that the cross-sections for both the attractive and the repulsive
{led become equal to mm'a™2, the result obtained by the use of Born’s
Brmula (21).

Summary.

from ht

The quantum theory of collisions is applied to the motion of gas atoms.
@sing the rigid sphere model, the range of validity of the classical theory of

ee paths, viscosity, and diffusion is determined. The use of quantum
Blecha.mcs greatly improves the applicability of this model to the viscosity
@f helium. The scattering of atoms is considered in detail, and the possibility
of experimental proof of the Bose-Einstein statistics is discussed.




